Araştırma Makalesi
BibTex RIS Kaynak Göster

Optimizing bandwidth parameter estimation for non-parametric regression using fixed-form threshold with Dmey and Coiflet wavelets

Yıl 2025, Cilt: 54 Sayı: 3, 1094 - 1106, 24.06.2025
https://doi.org/10.15672/hujms.1605499

Öz

The article aims to reduce the effect of data noise or outliers and estimate the optimal bandwidth parameter used in nonparametric regression models using a proposed method based on wavelet analysis, specifically Dmey and Coiflet wavelets with fixed-form threshold and apply the soft threshold, particularly when the data have long-tailed and multimodal distributions (abnormal distribution). The fixed-form threshold level value estimates the bandwidth instead of the classical method (geometric, arithmetic mean, range, and median). A simulation study was used to examine the suggested method, comparing it with four other Nadaraya-Watson kernel estimators (classical techniques), using a MATLAB language created especially for this purpose with actual data. The findings show that the suggested method outperforms classical methods for all cases of simulations and real data in accurately estimating the bandwidth parameter of the non-parametric regression kernel function based on the mean square error criterion.

Kaynakça

  • [1] I. Abramson, On bandwidth variation in kernel estimates—a square root law, Ann. Stat. 10:1217–1223, 1982.
  • [2] T. H. Ali, Using proposed nonparametric regression models for clustered data (a simulation study), ZANCO J. Pure Appl. Sci. 29:78–87, 2017.
  • [3] T. H. Ali, Modification of the adaptive Nadaraya-Watson kernel method for nonparametric regression (simulation study), Commun. Stat. Simul. Comput. 51:391–403, 2022.
  • [4] T. H. Ali, H. A. A.-M. Hayawi, and D. Shaker Botani, Estimation of the bandwidth parameter in Nadaraya-Watson kernel non-parametric regression based on universal threshold level, Commun. Stat. Simul. Comput. 52:1476–1489, 2023.
  • [5] T. H. Ali and J. R. Qadir, Using wavelet shrinkage in the Cox proportional hazards regression model (simulation study), Iraq J. Stat. Sci. 19:17–29, 2022.
  • [6] T. H. Ali and D. M. Saleh, Comparison between wavelet Bayesian and Bayesian estimators to remedy contamination in linear regression model, PalArch J. Egypt. Egyptol. 18, 2021.
  • [7] K. H. Aljuhani and L. I. A. Turk, Modification of the adaptive Nadaraya-Watson kernel regression estimator, Sci. Res. Essays 9:966–971, 2014.
  • [8] I. L. Cascio, Wavelet analysis and denoising: New tools for economists, 2007.
  • [9] A. Christmann and I. Steinwart, Consistency and robustness of kernel-based regression in convex risk minimization, Bernoulli 13:799–819, 2007.
  • [10] R.R. Coifman and M.V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Trans. Inf. Theory 38(2):713–718, 1992.
  • [11] S. Demir and Toktamı􀀀ş, On the adaptive Nadaraya-Watson kernel regression estimators, Hacet. J. Math. Stat. 39:429–437, 2010.
  • [12] R. Eubank, Spline Smoothing and Nonparametric Regression, Dekker, 1988.
  • [13] J. H. Friedman and W. Stuetzle, Projection pursuit regression, J. Am. Stat. Assoc. 76:817–823, 1981.
  • [14] Y. A. Hassan and M. Y. Hmood, Estimation of return stock rate by using wavelet and kernel smoothers, Period. Eng. Nat. Sci. 8(2):602–612, 2020.
  • [15] W. Härdle and G. Kelly, Non-parametric kernel regression estimation optimal choice of bandwidth, Stat. 18:21–35, 1987.
  • [16] D. Li and R. Li, Local composite quantile regression smoothing for Harris recurrent Markov processes, J. Econom. 194:44–56, 2016.
  • [17] H. Läuter, Silverman, B. W.: Density estimation for statistics and data analysis. Chapman & Hall, London – New York, 1986, Biometr. J. 30:876–877, 1988.
  • [18] M. Y. Mustafa and Z. Y. Algamal, Smoothing parameter selection in kernel nonparametric regression using bat optimization algorithm, J. Phys.: Conf. Ser. 1897, 2021.
  • [19] E. A. Nadaraya, On estimating regression, Theory Probab. Appl. 9:141–142, 1964.
  • [20] D. H. Rashid, M. Y. Hmood, and S. K. Hamza, Nadaraya-Watson estimator a smoothing technique for estimating regression function, J. Econ. Adm. Sci. 18(65):283, 2012.
  • [21] D. W. Scott and G. R. Terrell, Biased and unbiased cross-validation in density estimation, J. Am. Stat. Assoc. 82:1131–1146, 1987.
  • [22] S. Shahzadi, U. Shahzad, and N. Koyuncu, On the adaptive Nadaraya-Watson kernel estimator for the discontinuity in the presence of jump size, SDU J. Nat. Appl. Sci. 22:511–520, 2018.
  • [23] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall, 1995.
  • [24] G. S. Watson, Smooth regression analysis, Sankhyā Ser. A 26:359–372, 1964.
  • [25] S. Weisberg, Applied Linear Regression, Wiley, New York, 1985.
Yıl 2025, Cilt: 54 Sayı: 3, 1094 - 1106, 24.06.2025
https://doi.org/10.15672/hujms.1605499

Öz

Kaynakça

  • [1] I. Abramson, On bandwidth variation in kernel estimates—a square root law, Ann. Stat. 10:1217–1223, 1982.
  • [2] T. H. Ali, Using proposed nonparametric regression models for clustered data (a simulation study), ZANCO J. Pure Appl. Sci. 29:78–87, 2017.
  • [3] T. H. Ali, Modification of the adaptive Nadaraya-Watson kernel method for nonparametric regression (simulation study), Commun. Stat. Simul. Comput. 51:391–403, 2022.
  • [4] T. H. Ali, H. A. A.-M. Hayawi, and D. Shaker Botani, Estimation of the bandwidth parameter in Nadaraya-Watson kernel non-parametric regression based on universal threshold level, Commun. Stat. Simul. Comput. 52:1476–1489, 2023.
  • [5] T. H. Ali and J. R. Qadir, Using wavelet shrinkage in the Cox proportional hazards regression model (simulation study), Iraq J. Stat. Sci. 19:17–29, 2022.
  • [6] T. H. Ali and D. M. Saleh, Comparison between wavelet Bayesian and Bayesian estimators to remedy contamination in linear regression model, PalArch J. Egypt. Egyptol. 18, 2021.
  • [7] K. H. Aljuhani and L. I. A. Turk, Modification of the adaptive Nadaraya-Watson kernel regression estimator, Sci. Res. Essays 9:966–971, 2014.
  • [8] I. L. Cascio, Wavelet analysis and denoising: New tools for economists, 2007.
  • [9] A. Christmann and I. Steinwart, Consistency and robustness of kernel-based regression in convex risk minimization, Bernoulli 13:799–819, 2007.
  • [10] R.R. Coifman and M.V. Wickerhauser, Entropy-based algorithms for best basis selection, IEEE Trans. Inf. Theory 38(2):713–718, 1992.
  • [11] S. Demir and Toktamı􀀀ş, On the adaptive Nadaraya-Watson kernel regression estimators, Hacet. J. Math. Stat. 39:429–437, 2010.
  • [12] R. Eubank, Spline Smoothing and Nonparametric Regression, Dekker, 1988.
  • [13] J. H. Friedman and W. Stuetzle, Projection pursuit regression, J. Am. Stat. Assoc. 76:817–823, 1981.
  • [14] Y. A. Hassan and M. Y. Hmood, Estimation of return stock rate by using wavelet and kernel smoothers, Period. Eng. Nat. Sci. 8(2):602–612, 2020.
  • [15] W. Härdle and G. Kelly, Non-parametric kernel regression estimation optimal choice of bandwidth, Stat. 18:21–35, 1987.
  • [16] D. Li and R. Li, Local composite quantile regression smoothing for Harris recurrent Markov processes, J. Econom. 194:44–56, 2016.
  • [17] H. Läuter, Silverman, B. W.: Density estimation for statistics and data analysis. Chapman & Hall, London – New York, 1986, Biometr. J. 30:876–877, 1988.
  • [18] M. Y. Mustafa and Z. Y. Algamal, Smoothing parameter selection in kernel nonparametric regression using bat optimization algorithm, J. Phys.: Conf. Ser. 1897, 2021.
  • [19] E. A. Nadaraya, On estimating regression, Theory Probab. Appl. 9:141–142, 1964.
  • [20] D. H. Rashid, M. Y. Hmood, and S. K. Hamza, Nadaraya-Watson estimator a smoothing technique for estimating regression function, J. Econ. Adm. Sci. 18(65):283, 2012.
  • [21] D. W. Scott and G. R. Terrell, Biased and unbiased cross-validation in density estimation, J. Am. Stat. Assoc. 82:1131–1146, 1987.
  • [22] S. Shahzadi, U. Shahzad, and N. Koyuncu, On the adaptive Nadaraya-Watson kernel estimator for the discontinuity in the presence of jump size, SDU J. Nat. Appl. Sci. 22:511–520, 2018.
  • [23] M. P. Wand and M. C. Jones, Kernel Smoothing, Chapman and Hall, 1995.
  • [24] G. S. Watson, Smooth regression analysis, Sankhyā Ser. A 26:359–372, 1964.
  • [25] S. Weisberg, Applied Linear Regression, Wiley, New York, 1985.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Uygulamalı İstatistik
Bölüm İstatistik
Yazarlar

Delshad Botani 0000-0002-5465-8989

Nazeera Kareem 0000-0002-4252-3366

Taha Ali 0009-0005-3288-4976

Bekhal Sedeeq 0000-0002-8243-8318

Erken Görünüm Tarihi 27 Nisan 2025
Yayımlanma Tarihi 24 Haziran 2025
Gönderilme Tarihi 25 Aralık 2024
Kabul Tarihi 24 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 54 Sayı: 3

Kaynak Göster

APA Botani, D., Kareem, N., Ali, T., Sedeeq, B. (2025). Optimizing bandwidth parameter estimation for non-parametric regression using fixed-form threshold with Dmey and Coiflet wavelets. Hacettepe Journal of Mathematics and Statistics, 54(3), 1094-1106. https://doi.org/10.15672/hujms.1605499
AMA Botani D, Kareem N, Ali T, Sedeeq B. Optimizing bandwidth parameter estimation for non-parametric regression using fixed-form threshold with Dmey and Coiflet wavelets. Hacettepe Journal of Mathematics and Statistics. Haziran 2025;54(3):1094-1106. doi:10.15672/hujms.1605499
Chicago Botani, Delshad, Nazeera Kareem, Taha Ali, ve Bekhal Sedeeq. “Optimizing Bandwidth Parameter Estimation for Non-Parametric Regression Using Fixed-Form Threshold With Dmey and Coiflet Wavelets”. Hacettepe Journal of Mathematics and Statistics 54, sy. 3 (Haziran 2025): 1094-1106. https://doi.org/10.15672/hujms.1605499.
EndNote Botani D, Kareem N, Ali T, Sedeeq B (01 Haziran 2025) Optimizing bandwidth parameter estimation for non-parametric regression using fixed-form threshold with Dmey and Coiflet wavelets. Hacettepe Journal of Mathematics and Statistics 54 3 1094–1106.
IEEE D. Botani, N. Kareem, T. Ali, ve B. Sedeeq, “Optimizing bandwidth parameter estimation for non-parametric regression using fixed-form threshold with Dmey and Coiflet wavelets”, Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, ss. 1094–1106, 2025, doi: 10.15672/hujms.1605499.
ISNAD Botani, Delshad vd. “Optimizing Bandwidth Parameter Estimation for Non-Parametric Regression Using Fixed-Form Threshold With Dmey and Coiflet Wavelets”. Hacettepe Journal of Mathematics and Statistics 54/3 (Haziran 2025), 1094-1106. https://doi.org/10.15672/hujms.1605499.
JAMA Botani D, Kareem N, Ali T, Sedeeq B. Optimizing bandwidth parameter estimation for non-parametric regression using fixed-form threshold with Dmey and Coiflet wavelets. Hacettepe Journal of Mathematics and Statistics. 2025;54:1094–1106.
MLA Botani, Delshad vd. “Optimizing Bandwidth Parameter Estimation for Non-Parametric Regression Using Fixed-Form Threshold With Dmey and Coiflet Wavelets”. Hacettepe Journal of Mathematics and Statistics, c. 54, sy. 3, 2025, ss. 1094-06, doi:10.15672/hujms.1605499.
Vancouver Botani D, Kareem N, Ali T, Sedeeq B. Optimizing bandwidth parameter estimation for non-parametric regression using fixed-form threshold with Dmey and Coiflet wavelets. Hacettepe Journal of Mathematics and Statistics. 2025;54(3):1094-106.