Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2016, Cilt: 9 Sayı: 1, 1 - 8, 30.04.2016
https://doi.org/10.36890/iejg.591878

Öz

Kaynakça

  • [1] Bejancu, Aurel and Farran, Hani Reda, Foliations and Geometric Structures, Springer Verlag, Berlin, 2006.
  • [2] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s), J. Differential Geometry 4 (1970), 155–167.
  • [3] Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Progr. Math., 203, Birkhäuser Boston, Boston, MA, 2002.
  • [4] Brunetti, L. and Pastore, A.M., Curvature of a class of indefinite globally framed f -manifolds, Bull. Math. Soc. Sci. Math. Roumanie 51 99 (2008), no.3, 183–204.
  • [5] Brunetti, L. and Pastore, A.M., Examples of indefinite globally framed f -structures on compact Lie groups, Publ. Math. Debrecen 80 1-2 (2012), 215–234.
  • [6] Brunetti, L. and Pastore, A.M., On the classification of Lorentzian Sasaki space forms, Publications de l’Institut Mathématique Nouvelle série 94 (2013), no.108, 163-168.
  • [7] Cappelletti Montano, B. and Di Terlizzi L., D-homothetic transformations for a generalization of contact metric manifolds, Bull. Belg.Math. Soc. 14 (2007), 277–289.
  • [8] Di Terlizzi, L. and Pastore, A.M., K-manifolds locally described by Sasaki manifolds, An. St. Univ. Ovidius Constanta 21 (2013), no.3, 269–287.
  • [9] Di Terlizzi, L. and Konderak, J.J., Examples of a generalization of contact metric structures on fibre bundles, J. of Geometry 87 (2007), 31–49.
  • [10] Duggal, Krishan L. and Bejancu, Aurel, Lightlike submanifolds of semi-Riemannian manifolds and applications. Kluwer Acad. Publ., Dordrecht, 1996.
  • [11] Goldberg, S.I. and Yano, K., On normal globally framed f -manifolds, Tôhoku Math. J., 22 (1970), 362–370.
  • [12] Goldberg, S.I., On the existence of manifolds with an f -structure, Tensor, N. S. 26 (1972), 323-329.
  • [13] Guediri, M. and Lafontaine, J., Sur la complétude des varietés pseudoriemanniennes, J. Geom. Phys. 15 (1995), 150–158.
  • [14] Kobayashi,S. and Nomizu,K., Foundations of Differential Geometry, Vol. I, II Interscience Publish., New York, 1963,1969.
  • [15] Kobayashi, M., and Tsuhiya, S., Invariant submanifolds of an f -manifold with complemented frames, Kodai Math. Semin. Rep. 24 (1972), 430–450.
  • [16] O’Neill, B., Semi-Riemannian geometry. Academic Press, New York, 1983.
  • [17] Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J. 21 (1969), no.2, 271–290.
  • [18] Tanno, S., The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700–717.
  • [19] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), no.3, 501–507.
  • [20] Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying f 3 + f = 0, Tensor (N.S.) 14 (1963), 99–109.
  • [21] Wu, H., On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291–311.

S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems

Yıl 2016, Cilt: 9 Sayı: 1, 1 - 8, 30.04.2016
https://doi.org/10.36890/iejg.591878

Öz

To any globally framed f-manifold carrying a structure of S-manifold we associate several
indefinite S-manifolds. We determine the links between the corresponding Levi-Civita
connections and sectional curvatures. We state some local semi-Riemannian decomposition
theorems.

Kaynakça

  • [1] Bejancu, Aurel and Farran, Hani Reda, Foliations and Geometric Structures, Springer Verlag, Berlin, 2006.
  • [2] Blair, D.E., Geometry of manifolds with structural group U (n) × O(s), J. Differential Geometry 4 (1970), 155–167.
  • [3] Blair, D.E., Riemannian geometry of contact and symplectic manifolds, Progr. Math., 203, Birkhäuser Boston, Boston, MA, 2002.
  • [4] Brunetti, L. and Pastore, A.M., Curvature of a class of indefinite globally framed f -manifolds, Bull. Math. Soc. Sci. Math. Roumanie 51 99 (2008), no.3, 183–204.
  • [5] Brunetti, L. and Pastore, A.M., Examples of indefinite globally framed f -structures on compact Lie groups, Publ. Math. Debrecen 80 1-2 (2012), 215–234.
  • [6] Brunetti, L. and Pastore, A.M., On the classification of Lorentzian Sasaki space forms, Publications de l’Institut Mathématique Nouvelle série 94 (2013), no.108, 163-168.
  • [7] Cappelletti Montano, B. and Di Terlizzi L., D-homothetic transformations for a generalization of contact metric manifolds, Bull. Belg.Math. Soc. 14 (2007), 277–289.
  • [8] Di Terlizzi, L. and Pastore, A.M., K-manifolds locally described by Sasaki manifolds, An. St. Univ. Ovidius Constanta 21 (2013), no.3, 269–287.
  • [9] Di Terlizzi, L. and Konderak, J.J., Examples of a generalization of contact metric structures on fibre bundles, J. of Geometry 87 (2007), 31–49.
  • [10] Duggal, Krishan L. and Bejancu, Aurel, Lightlike submanifolds of semi-Riemannian manifolds and applications. Kluwer Acad. Publ., Dordrecht, 1996.
  • [11] Goldberg, S.I. and Yano, K., On normal globally framed f -manifolds, Tôhoku Math. J., 22 (1970), 362–370.
  • [12] Goldberg, S.I., On the existence of manifolds with an f -structure, Tensor, N. S. 26 (1972), 323-329.
  • [13] Guediri, M. and Lafontaine, J., Sur la complétude des varietés pseudoriemanniennes, J. Geom. Phys. 15 (1995), 150–158.
  • [14] Kobayashi,S. and Nomizu,K., Foundations of Differential Geometry, Vol. I, II Interscience Publish., New York, 1963,1969.
  • [15] Kobayashi, M., and Tsuhiya, S., Invariant submanifolds of an f -manifold with complemented frames, Kodai Math. Semin. Rep. 24 (1972), 430–450.
  • [16] O’Neill, B., Semi-Riemannian geometry. Academic Press, New York, 1983.
  • [17] Takahashi, T., Sasakian manifold with pseudo-Riemannian metric, Tôhoku Math. J. 21 (1969), no.2, 271–290.
  • [18] Tanno, S., The topology of contact Riemannian manifolds, Illinois J. Math. 12 (1968), 700–717.
  • [19] Tanno, S., Sasakian manifolds with constant ϕ-holomorphic sectional curvature, Tôhoku Math. J. 21 (1969), no.3, 501–507.
  • [20] Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying f 3 + f = 0, Tensor (N.S.) 14 (1963), 99–109.
  • [21] Wu, H., On the de Rham decomposition theorem, Illinois J. Math. 8 (1964), 291–311.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Letizia Brunetti

Anna Maria Pastore

Yayımlanma Tarihi 30 Nisan 2016
Yayımlandığı Sayı Yıl 2016 Cilt: 9 Sayı: 1

Kaynak Göster

APA Brunetti, L., & Pastore, A. M. (2016). S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. International Electronic Journal of Geometry, 9(1), 1-8. https://doi.org/10.36890/iejg.591878
AMA Brunetti L, Pastore AM. S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. Int. Electron. J. Geom. Nisan 2016;9(1):1-8. doi:10.36890/iejg.591878
Chicago Brunetti, Letizia, ve Anna Maria Pastore. “S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems”. International Electronic Journal of Geometry 9, sy. 1 (Nisan 2016): 1-8. https://doi.org/10.36890/iejg.591878.
EndNote Brunetti L, Pastore AM (01 Nisan 2016) S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. International Electronic Journal of Geometry 9 1 1–8.
IEEE L. Brunetti ve A. M. Pastore, “S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems”, Int. Electron. J. Geom., c. 9, sy. 1, ss. 1–8, 2016, doi: 10.36890/iejg.591878.
ISNAD Brunetti, Letizia - Pastore, Anna Maria. “S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems”. International Electronic Journal of Geometry 9/1 (Nisan 2016), 1-8. https://doi.org/10.36890/iejg.591878.
JAMA Brunetti L, Pastore AM. S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. Int. Electron. J. Geom. 2016;9:1–8.
MLA Brunetti, Letizia ve Anna Maria Pastore. “S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems”. International Electronic Journal of Geometry, c. 9, sy. 1, 2016, ss. 1-8, doi:10.36890/iejg.591878.
Vancouver Brunetti L, Pastore AM. S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems. Int. Electron. J. Geom. 2016;9(1):1-8.