Araştırma Makalesi
BibTex RIS Kaynak Göster

Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature

Yıl 2009, Cilt: 2 Sayı: 2, 63 - 70, 30.10.2009

Öz


Kaynakça

  • [1] Shima, H., Hessian manifolds of constant Hessian sectional curvature, J. Math. Soc. Japan, Vol 47, No.4, (1995), 735-753.
  • [2] Shima, H., Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble),30-3, (1980), 91-128.
  • [3] Shima, H., Vanishing theorems for compact Hessian manifolds, Ann. Inst. Fourier (Greno- ble),36-3, (1986), 183-205.
  • [4] Shima, H., Yagi, K., Geometry of Hessian manifolds, Diff. Geo. and Its Appl. 7 (1997), 277-290.
  • [5] Bektas, M, Yildirim, M., Kulahci, M., On hypersurfaces of Hessian manifolds with constant Hessian sectional curvature, Journal of Math. Statistics, 1 (2) ,(2005), 115-118.
  • [6] Bektas, M., Yildirim, M., Integral inequalities for submanifolds of Hessian Manifolds with constant Hessian sectional curvature, Iranian Journal of Sci. and Tech. Trans. A , Vol.30, No.A2, (2006), 235-239.
  • [7] Yildirim Yilmaz, M. Bektas, M., A survey on curvatures of Hessian manifolds, Chaos, Solitons and Fractals, vol.38, 3, (2008),620-630.
  • [8] Simons, J., Minimal variety in Riemannian manifolds, Ann. of Math. 88,(1968), 62-105.
  • [9] Chern, S. S., Do Cormo M., Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, Funct. Analysis and Related fields, Springer-Verlag, (1970),59-75.
  • [10] Nomizu, K., Smyth, B., A formula of Simons type and hypersurfaces with constant mean curvature, J. Diff. Geo. 3,(1969), 367-377.
  • [11] Nakagawa, H., Yokote, I., On hypersurfaces with constant scalar curvature in a Riemannian manifold of constant curvature, Kodai Math. Sem. Rep., 24, (1972), 471-481.
  • [12] Omachi, E., Hypersurfaces with harmonic curvature in a space of constant curvature, Kodai Math. J. 9, (1986), 170-174.
Yıl 2009, Cilt: 2 Sayı: 2, 63 - 70, 30.10.2009

Öz

Kaynakça

  • [1] Shima, H., Hessian manifolds of constant Hessian sectional curvature, J. Math. Soc. Japan, Vol 47, No.4, (1995), 735-753.
  • [2] Shima, H., Homogeneous Hessian manifolds, Ann. Inst. Fourier (Grenoble),30-3, (1980), 91-128.
  • [3] Shima, H., Vanishing theorems for compact Hessian manifolds, Ann. Inst. Fourier (Greno- ble),36-3, (1986), 183-205.
  • [4] Shima, H., Yagi, K., Geometry of Hessian manifolds, Diff. Geo. and Its Appl. 7 (1997), 277-290.
  • [5] Bektas, M, Yildirim, M., Kulahci, M., On hypersurfaces of Hessian manifolds with constant Hessian sectional curvature, Journal of Math. Statistics, 1 (2) ,(2005), 115-118.
  • [6] Bektas, M., Yildirim, M., Integral inequalities for submanifolds of Hessian Manifolds with constant Hessian sectional curvature, Iranian Journal of Sci. and Tech. Trans. A , Vol.30, No.A2, (2006), 235-239.
  • [7] Yildirim Yilmaz, M. Bektas, M., A survey on curvatures of Hessian manifolds, Chaos, Solitons and Fractals, vol.38, 3, (2008),620-630.
  • [8] Simons, J., Minimal variety in Riemannian manifolds, Ann. of Math. 88,(1968), 62-105.
  • [9] Chern, S. S., Do Cormo M., Kobayashi, S., Minimal submanifolds of a sphere with second fundamental form of constant length, Funct. Analysis and Related fields, Springer-Verlag, (1970),59-75.
  • [10] Nomizu, K., Smyth, B., A formula of Simons type and hypersurfaces with constant mean curvature, J. Diff. Geo. 3,(1969), 367-377.
  • [11] Nakagawa, H., Yokote, I., On hypersurfaces with constant scalar curvature in a Riemannian manifold of constant curvature, Kodai Math. Sem. Rep., 24, (1972), 471-481.
  • [12] Omachi, E., Hypersurfaces with harmonic curvature in a space of constant curvature, Kodai Math. J. 9, (1986), 170-174.
Toplam 12 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makalesi
Yazarlar

Münevver Y. Yılmaz

Mehmet Bektaş

Mahmut Ergüt

Yayımlanma Tarihi 30 Ekim 2009
Yayımlandığı Sayı Yıl 2009 Cilt: 2 Sayı: 2

Kaynak Göster

APA Y. Yılmaz, M., Bektaş, M., & Ergüt, M. (2009). Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. International Electronic Journal of Geometry, 2(2), 63-70.
AMA Y. Yılmaz M, Bektaş M, Ergüt M. Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. Int. Electron. J. Geom. Ekim 2009;2(2):63-70.
Chicago Y. Yılmaz, Münevver, Mehmet Bektaş, ve Mahmut Ergüt. “Riemannian Hypersurfaces With Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature”. International Electronic Journal of Geometry 2, sy. 2 (Ekim 2009): 63-70.
EndNote Y. Yılmaz M, Bektaş M, Ergüt M (01 Ekim 2009) Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. International Electronic Journal of Geometry 2 2 63–70.
IEEE M. Y. Yılmaz, M. Bektaş, ve M. Ergüt, “Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature”, Int. Electron. J. Geom., c. 2, sy. 2, ss. 63–70, 2009.
ISNAD Y. Yılmaz, Münevver vd. “Riemannian Hypersurfaces With Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature”. International Electronic Journal of Geometry 2/2 (Ekim 2009), 63-70.
JAMA Y. Yılmaz M, Bektaş M, Ergüt M. Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. Int. Electron. J. Geom. 2009;2:63–70.
MLA Y. Yılmaz, Münevver vd. “Riemannian Hypersurfaces With Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature”. International Electronic Journal of Geometry, c. 2, sy. 2, 2009, ss. 63-70.
Vancouver Y. Yılmaz M, Bektaş M, Ergüt M. Riemannian Hypersurfaces with Constant Scalar Curvature In a Hessian Manifolds of Constant Curvature. Int. Electron. J. Geom. 2009;2(2):63-70.