Araştırma Makalesi
BibTex RIS Kaynak Göster

Simple Rotational Surfaces in Euclidean 4-Space with Generalized 1-Type Gauss Map

Yıl 2025, Cilt: 18 Sayı: 1, 48 - 59, 24.04.2025

Öz

In this paper, we consider simple rotational surfaces in the Euclidean 4-space $\mathbb E^4$ with the profile curve contained in a 2-plane. In terms of having generalized 1-type Gauss map, we obtain some classification results of minimal surfaces, flat simple rotational surfaces and simple rotational surfaces with constant Gaussian curvature.

Kaynakça

  • Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. US Government printing office. Washington (2006).
  • Arslan, K., Bayram, B. K., Bulca, B., Kim, Y. H., Murathan, C., Öztürk, G.: Rotational embeddings in $\mathbb{E}^{4}$ with pointwise 1-type Gauss map, Turk. J. Math., 35 (3), 493–499 (2011).
  • Baikoussis, C., Chen, B. Y., Verstraelen, L.: Surfaces with finite type Gauss map, Geometry and Topology of submanifolds, 4, 214–216 (1992).
  • Bektaş, B., Canfes, E. Ö., Dursun, U.: On rotational surfaces in pseudo-Euclidean space $\mathbb{E}^{4}_t$ with pointwise 1-type Gauss map, Acta Universitatis Apulensis, 45, 43–59 (2016).
  • Chen, B. Y.: Total Mean Curvature and Submanifold of Finite Type. Academic Press. London (1984).
  • Chen, B. Y., Choi,M., Kim, Y. H.: Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42 (4), 447–455 (2005).
  • Chen, B. Y., Piccinni, P.: Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (2), 161–186 (1987).
  • Choi, M. K., Kim, D. S., Kim, Y. H.: Helicoidal surfaces with pointwise 1-type Gauss map. J. Korean Math. Soc. 46 (1), 215–223 (2009).
  • Choi, M. K., Kim, Y. H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bulletin of the Korean Mathematical Society, 38 (4), 753–761 (2001).
  • Cole, F. N.: On rotations in space of four dimensions, Amer. J. Math., 12 (2), 191–210 (1890).
  • Dursun, U., Arsan, G. G.: Surfaces in the Euclidean space $\mathbb{E}^{4}$ with pointwise 1-type Gauss map, Hacettepe Journal of Mathematics and Statistics, 40 (5), 617–625 (2011).
  • Dursun, U., Bektaş, B.: Spacelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space $\mathbb{E}^{4}_1$ with Pointwise 1-Type Gauss Map, Mathematical Physics, Analysis and Geometry, 17, 247–263 (2014).
  • Dursun, U., Turgay, N. C.: General rotational surfaces in Euclidean space $\mathbb{E}^{4}$ with pointwise 1-type Gauss map, Mathematical Communications, 17 (1), 71–81 (2012).
  • Dursun, U., Yeğin, R.: Hyperbolic submanifolds with finite type hyperbolic Gauss map, International Journal of Mathematics, 26 (2), 1550014 (2015).
  • Moore, C. L. E.: Surfaces of rotation in a space of four dimensions, Annals. of Math., 21 (2), 81–93 (1919).
  • Ki, U. H., Kim, D. S., Kim, Y. H., Roh, Y. M.: Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math., 13 (1), 317–338 (2009).
  • Kim, Y. H., Yoon, D. W.: Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc., 41 (2), 379–396 (2004).
  • Kim, Y. H., Yoon, D. W.: Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (3-4), 191–205 (2000).
  • Niang, A.: Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc., 42 (1), 23–27 (2005).
  • Qian, J. H., Su, M. F., Kim, Y. H.: Canal surfaces with generalized 1-type Gauss map, Rev. Union Mat. Argent, 62, 199–211 (2021).
  • Şen, R. Y., Dursun, U.: On Submanifolds with 2-Type Pseudo-Hyperbolic Gauss Map in Pseudo-Hyperbolic Space, Mediterranean Journal of Mathematics, 14, 1–20 (2017).
  • Turgay, N. C.: Euclıd ve Yarı-Euclıd Uzaylarının Noktasal 1-tipinden Gauss Tasvirine Sahip Alt Manifoldları. Ph.D. thesis. ˙Istanbul Technical University (2013).
  • Yeğin, R., Dursun, U.: On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map, J. Math. Phys. Anal. 12 (4), 315–337 (2016).
  • Yoon, D. W.: Rotation surfaces with finite type Gauss Map in $\mathbb{E}^{4}$, Indian J. Pure. Appl. Math., 32 (5), 1803–1808 (2001).
  • Yoon, D. W.: Some properties of the Clifford Torus as rotation surface, Indian J. Pure. Appl. Math., 34 (3), 907–915 (2004).
  • Yoon, D. W., Kim, D. S., Kim, Y. H., Lee, J. W.: Hypersurfaces with generalized 1-type Gauss maps, Mathematics, 6 (8), 130 (2018)
Yıl 2025, Cilt: 18 Sayı: 1, 48 - 59, 24.04.2025

Öz

Kaynakça

  • Abramowitz, M., Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. US Government printing office. Washington (2006).
  • Arslan, K., Bayram, B. K., Bulca, B., Kim, Y. H., Murathan, C., Öztürk, G.: Rotational embeddings in $\mathbb{E}^{4}$ with pointwise 1-type Gauss map, Turk. J. Math., 35 (3), 493–499 (2011).
  • Baikoussis, C., Chen, B. Y., Verstraelen, L.: Surfaces with finite type Gauss map, Geometry and Topology of submanifolds, 4, 214–216 (1992).
  • Bektaş, B., Canfes, E. Ö., Dursun, U.: On rotational surfaces in pseudo-Euclidean space $\mathbb{E}^{4}_t$ with pointwise 1-type Gauss map, Acta Universitatis Apulensis, 45, 43–59 (2016).
  • Chen, B. Y.: Total Mean Curvature and Submanifold of Finite Type. Academic Press. London (1984).
  • Chen, B. Y., Choi,M., Kim, Y. H.: Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42 (4), 447–455 (2005).
  • Chen, B. Y., Piccinni, P.: Submanifolds with finite type Gauss map, Bull. Austral. Math. Soc., 35 (2), 161–186 (1987).
  • Choi, M. K., Kim, D. S., Kim, Y. H.: Helicoidal surfaces with pointwise 1-type Gauss map. J. Korean Math. Soc. 46 (1), 215–223 (2009).
  • Choi, M. K., Kim, Y. H.: Characterization of the helicoid as ruled surfaces with pointwise 1-type Gauss map, Bulletin of the Korean Mathematical Society, 38 (4), 753–761 (2001).
  • Cole, F. N.: On rotations in space of four dimensions, Amer. J. Math., 12 (2), 191–210 (1890).
  • Dursun, U., Arsan, G. G.: Surfaces in the Euclidean space $\mathbb{E}^{4}$ with pointwise 1-type Gauss map, Hacettepe Journal of Mathematics and Statistics, 40 (5), 617–625 (2011).
  • Dursun, U., Bektaş, B.: Spacelike Rotational Surfaces of Elliptic, Hyperbolic and Parabolic Types in Minkowski Space $\mathbb{E}^{4}_1$ with Pointwise 1-Type Gauss Map, Mathematical Physics, Analysis and Geometry, 17, 247–263 (2014).
  • Dursun, U., Turgay, N. C.: General rotational surfaces in Euclidean space $\mathbb{E}^{4}$ with pointwise 1-type Gauss map, Mathematical Communications, 17 (1), 71–81 (2012).
  • Dursun, U., Yeğin, R.: Hyperbolic submanifolds with finite type hyperbolic Gauss map, International Journal of Mathematics, 26 (2), 1550014 (2015).
  • Moore, C. L. E.: Surfaces of rotation in a space of four dimensions, Annals. of Math., 21 (2), 81–93 (1919).
  • Ki, U. H., Kim, D. S., Kim, Y. H., Roh, Y. M.: Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math., 13 (1), 317–338 (2009).
  • Kim, Y. H., Yoon, D. W.: Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math. Soc., 41 (2), 379–396 (2004).
  • Kim, Y. H., Yoon, D. W.: Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys. 34 (3-4), 191–205 (2000).
  • Niang, A.: Rotation surfaces with 1-type Gauss map, Bull. Korean Math. Soc., 42 (1), 23–27 (2005).
  • Qian, J. H., Su, M. F., Kim, Y. H.: Canal surfaces with generalized 1-type Gauss map, Rev. Union Mat. Argent, 62, 199–211 (2021).
  • Şen, R. Y., Dursun, U.: On Submanifolds with 2-Type Pseudo-Hyperbolic Gauss Map in Pseudo-Hyperbolic Space, Mediterranean Journal of Mathematics, 14, 1–20 (2017).
  • Turgay, N. C.: Euclıd ve Yarı-Euclıd Uzaylarının Noktasal 1-tipinden Gauss Tasvirine Sahip Alt Manifoldları. Ph.D. thesis. ˙Istanbul Technical University (2013).
  • Yeğin, R., Dursun, U.: On submanifolds of pseudo-hyperbolic space with 1-type pseudo-hyperbolic Gauss map, J. Math. Phys. Anal. 12 (4), 315–337 (2016).
  • Yoon, D. W.: Rotation surfaces with finite type Gauss Map in $\mathbb{E}^{4}$, Indian J. Pure. Appl. Math., 32 (5), 1803–1808 (2001).
  • Yoon, D. W.: Some properties of the Clifford Torus as rotation surface, Indian J. Pure. Appl. Math., 34 (3), 907–915 (2004).
  • Yoon, D. W., Kim, D. S., Kim, Y. H., Lee, J. W.: Hypersurfaces with generalized 1-type Gauss maps, Mathematics, 6 (8), 130 (2018)
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Araştırma Makalesi
Yazarlar

Nurettin Cenk Turgay 0000-0002-0171-3876

Mustafa Sağdiç 0000-0002-0993-6281

Erol Kılıç 0000-0001-7536-0404

Erken Görünüm Tarihi 20 Nisan 2025
Yayımlanma Tarihi 24 Nisan 2025
Gönderilme Tarihi 12 Mayıs 2024
Kabul Tarihi 22 Kasım 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 18 Sayı: 1

Kaynak Göster

APA Turgay, N. C., Sağdiç, M., & Kılıç, E. (2025). Simple Rotational Surfaces in Euclidean 4-Space with Generalized 1-Type Gauss Map. International Electronic Journal of Geometry, 18(1), 48-59.
AMA Turgay NC, Sağdiç M, Kılıç E. Simple Rotational Surfaces in Euclidean 4-Space with Generalized 1-Type Gauss Map. Int. Electron. J. Geom. Nisan 2025;18(1):48-59.
Chicago Turgay, Nurettin Cenk, Mustafa Sağdiç, ve Erol Kılıç. “Simple Rotational Surfaces in Euclidean 4-Space With Generalized 1-Type Gauss Map”. International Electronic Journal of Geometry 18, sy. 1 (Nisan 2025): 48-59.
EndNote Turgay NC, Sağdiç M, Kılıç E (01 Nisan 2025) Simple Rotational Surfaces in Euclidean 4-Space with Generalized 1-Type Gauss Map. International Electronic Journal of Geometry 18 1 48–59.
IEEE N. C. Turgay, M. Sağdiç, ve E. Kılıç, “Simple Rotational Surfaces in Euclidean 4-Space with Generalized 1-Type Gauss Map”, Int. Electron. J. Geom., c. 18, sy. 1, ss. 48–59, 2025.
ISNAD Turgay, Nurettin Cenk vd. “Simple Rotational Surfaces in Euclidean 4-Space With Generalized 1-Type Gauss Map”. International Electronic Journal of Geometry 18/1 (Nisan 2025), 48-59.
JAMA Turgay NC, Sağdiç M, Kılıç E. Simple Rotational Surfaces in Euclidean 4-Space with Generalized 1-Type Gauss Map. Int. Electron. J. Geom. 2025;18:48–59.
MLA Turgay, Nurettin Cenk vd. “Simple Rotational Surfaces in Euclidean 4-Space With Generalized 1-Type Gauss Map”. International Electronic Journal of Geometry, c. 18, sy. 1, 2025, ss. 48-59.
Vancouver Turgay NC, Sağdiç M, Kılıç E. Simple Rotational Surfaces in Euclidean 4-Space with Generalized 1-Type Gauss Map. Int. Electron. J. Geom. 2025;18(1):48-59.