Araştırma Makalesi
BibTex RIS Kaynak Göster

COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES

Yıl 2025, Cilt: 9 Sayı: 1, 36 - 44, 30.04.2025
https://doi.org/10.46519/ij3dptdi.1490522

Öz

In this study, the compression behavior of the body-centered cubic with exterior and interior vertical struts (BCCZZ) lattice structure produced with Polylactic Acid (PLA) has been investigated using experimental, numerical, and machine-learning algorithms. When comparing digital image correlation and the ANSYS Static Structural numerical module, the measurements of deformation in the -Y direction taken from the top-right, top-left, middle-right, and middle-left points of the lattice structure are closely matched, with differences of 3.5%, 0.66%, 22.3%, and 12.69%, respectively. However, measurements from the bottom-left and bottom-right points show discrepancies of 49.17% and 58.91%, respectively. The lack of agreement between numerical and digital image correlation (DIC) analyses at the bottom-left and bottom-right points of the lattice structure is attributed to deformation in the lower section observed in the experimental study. The numerical study, modeling only elastic deformation, fails to account for broken regions' deformation adequately. Furthermore, the elastic deformation region has been comparatively investigated using experimental, numerical, and multilinear regression (MLR) models. Despite the MLR algorithm being trained with data from the compression test and achieving an R2 value of 0.97, numerical modeling is closer to the experimental results. Thus, for the first time in the literature, the compression behavior of the BCCZZ lattice structure made from PLA+ has been comparatively investigated using experimental, numerical, and machine learning methods.

Kaynakça

  • 1. Hirschberg, C., Larsen, M.S., Bøtker, J.P.,Rantanen, J., "Additive manufacturing of prototype elements with process interfaces for continuously operating manufacturing lines", Asian journal of pharmaceutical sciences, Vol. 13, Issue 6, Pages 575-583, 2018.
  • 2. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.,Hui, D., "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Composites Part B: Engineering, Vol. 143, Pages 172-196, 2018.
  • 3. Wang, Y., Zhou, Y., Lin, L., Corker, J.,Fan, M., "Overview of 3D additive manufacturing (AM) and corresponding AM composites", Composites Part A: Applied Science and Manufacturing, Vol. 139, Pages 106114, 2020.
  • 4. Hanzl, P., Zetek, M., Bakša, T.,Kroupa, T., "The influence of processing parameters on the mechanical properties of SLM parts", Procedia Engineering, Vol. 100, Pages 1405-1413, 2015.
  • 5. Ning, F., Cong, W., Qiu, J., Wei, J.,Wang, S., "Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling", Composites Part B: Engineering. Vol. 80, Pages 369-378, 2015.
  • 6. Seabra, M., Azevedo, J., Araújo, A., Reis, L., Pinto, E., Alves, N., Santos, R.,Mortágua, J.P., "Selective laser melting (SLM) and topology optimization for lighter aerospace componentes", Procedia Structural Integrity, Vol. 1, Pages 289-296, 2016.
  • 7. Yuan, L., Ding, S.,Wen, C., "Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review", Bioactive materials, Vol. 4, Pages 56-70, 2019.
  • 8. Karayel, E.,Bozkurt, Y., "Additive manufacturing method and different welding applications", Journal of Materials Research and Technology, Vol. 9, Issue 5, Pages 11424-11438, 2020.
  • 9. Delic, M.,Eyers, D.R., "The effect of additive manufacturing adoption on supply chain flexibility and performance: An empirical analysis from the automotive industry", International Journal of Production Economics, Vol. 228, Pages 107689, 2020.
  • 10. Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S.,Hao, W., "Effect of process parameters on mechanical properties of 3D printed PLA lattice structures", Composites Part C: Open Access. Vol. 3, Pages 100076, 2020.
  • 11. Luo, J., Luo, Q., Zhang, G., Li, Q.,Sun, G., "On strain rate and temperature dependent mechanical properties and constitutive models for additively manufactured polylactic acid (PLA) materials", Thin-Walled Structures. Vol. 179, Pages 109624, 2022.
  • 12. Samykano, M., "Mechanical property and prediction model for FDM-3D printed polylactic acid (PLA)", Arabian Journal for Science and Engineering, Vol. 46, Pages 7875-7892, 2021.
  • 13. Singhvi, M., Zinjarde, S.,Gokhale, D., "Polylactic acid: Synthesis and biomedical applications", Journal of applied microbiology. Vol. 127, Issue 6, Pages 1612-1626, 2019.
  • 14. Sharma, D.,Hiremath, S.S., "Experimental and FEM study on the in-plane and out-plane loaded reversible dual-material bio-inspired lattice structures with improved energy absorption performance", Composite Structures, Vol. 303, Pages 116353, 2023.
  • 15. Takaichi, A., Kajima, Y., Kittikundecha, N., Htat, H.L., Cho, H.H.W., Hanawa, T., Yoneyama, T.,Wakabayashi, N., "Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co–Cr–Mo alloys produced by selective laser melting", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 102, Pages 103496, 2020.
  • 16. Babamiri, B.B., Barnes, B., Soltani-Tehrani, A., Shamsaei, N.,Hazeli, K., "Designing additively manufactured lattice structures based on deformation mechanisms", Additive Manufacturing, Vol. 46, Pages 102143, 2021.
  • 17. Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O.,Brandt, M., "SLM lattice structures: Properties, performance, applications and challenges", Materials & Design, Vol. 183, Pages 108137, 2019.
  • 18. Wu, W., Xia, R., Qian, G., Liu, Z., Razavi, N., Berto, F.,Gao, H., "Mechanostructures: Rational mechanical design, fabrication, performance evaluation, and industrial application of advanced structures", Progress in Materials Science, Vol. 131, Pages 101021, 2023.
  • 19. Köhnen, P., Haase, C., Bültmann, J., Ziegler, S., Schleifenbaum, J.H.,Bleck, W., "Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel", Materials & Design, Vol. 145, Pages 205-217, 2018.
  • 20. Mines, R., Tsopanos, S., Shen, Y., Hasan, R.,McKown, S., "Drop weight impact behaviour of sandwich panels with metallic micro lattice cores", International Journal of Impact Engineering, Vol. 60, Pages 120-132, 2013.
  • 21. Wang, W., Wang, T.Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F.,Liu, X., "Cost-effective printing of 3D objects with skin-frame structures", ACM Transactions on Graphics (ToG), Vol. 32, Issue 6, Pages 1-10, 2013.
  • 22. Zhou, X., Qu, C., Luo, Y., Heise, R.,Bao, G., "Compression behavior and impact energy absorption characteristics of 3D printed polymer lattices and their hybrid sandwich structures", Journal of Materials Engineering and Performance, Vol. 30, Pages 8763-8770, 2021.
  • 23. Seremet, H.,Babacan, N., "Compressive properties of AlSi10Mg lattice structures with novel BCCZZ and FCCZZ configurations fabricated by selective laser melting", Rapid Prototyping Journal, Vol. 30, Issue 4, Pages 770-781, 2024.
  • 24. Ramos, H., Pickering, E., AlMahri, S., Krishnan, K., Oyebanji, J., Guan, Z., Langdon, G.,Santiago, R., "Experimental evaluation of hybrid lattice structures subjected to blast loading". Additive Manufacturing. Vol. 76, Pages 103751, 2023.
  • 25. Araghi, M., Rokhgireh, H.,Nayebi, A., "Experimental and FEM investigation of BCC lattice structure under compression test by using continuum damage mechanics with micro-defect closure effect". Materials & Design. Vol. 232, Pages 112125, 2023.
  • 26. Gonabadi, H., Yadav, A.,Bull, S., "The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer", The International Journal of Advanced Manufacturing Technology, Vol. 111, Pages 695-709, 2020.
  • 27. Song, J., Wang, Y., Zhou, W., Fan, R., Yu, B., Lu, Y.,Li, L., "Topology optimization-guided lattice composites and their mechanical characterizations", Composites Part B: Engineering, Vol. 160, Pages 402-411, 2019.
  • 28. Drücker, S., Lüdeker, J.K., Blecken, M., Kurt, A., Betz, K., Kriegesmann, B.,Fiedler, B., "Probabilistic analysis of additively manufactured polymer lattice structures", Materials & Design, Vol. 213, Pages 110300, 2022.
  • 29. Kolken, H., Garcia, A.F., Du Plessis, A., Meynen, A., Rans, C., Scheys, L., Mirzaali, M.,Zadpoor, A., "Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials", Acta biomaterialia, Vol. 138, Pages 398-409, 2022.
  • 30. Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M.,Zadpoor, A., "Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells", Applied Mathematical Modelling, Vol. 46, Pages 408-422, 2017.
  • 31. Yavas, D., Liu, Q., Zhang, Z.,Wu, D., "Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption", Materials & Design, Vol. 217, Pages 110613, 2022.
  • 32. Liu, C., Lertthanasarn, J.,Pham, M.-S., "The origin of the boundary strengthening in polycrystal-inspired architected materials". Nature Communications, Vol. 12, Issue 1, Pages 4600, 2021.
  • 33. Mostafa, K.G., Momesso, G.A., Li, X., Nobes, D.S.,Qureshi, A.J., "Dual graded lattice structures: generation framework and mechanical properties characterization", Polymers, Vol. 13, Issue 9, Pages 1528, 2021.
  • 34. Saleh, M., Anwar, S., Al-Ahmari, A.M.,Alfaify, A., "Compression performance and failure analysis of 3D-printed carbon fiber/PLA composite TPMS lattice structures", Polymers, Vol. 14, Issue 21, Pages 4595, 2022.
  • 35. eSUN PLA+ filament, https://www.esun3d.com/pla-pro-product/, May 5, 2024.
  • 36. Hauswirth, S.M., Bierkens, M.F., Beijk, V.,Wanders, N., "The potential of data driven approaches for quantifying hydrological extremes", Advances in Water Resources, Vol. 155, Pages 104017, 2021.
  • 37. Zhao, X., Zhang, R., Chen, F., Maisupova, B., Kirillov, V., Mambetov, B., Yu, S., He, Q., Dosmanbetov, D.,Kelgenbayev, N., "Reconstructed summertime (June–July) streamflow dating back to 1788 CE in the Kazakh Uplands as inferred from tree rings", Journal of Hydrology: Regional Studies, Vol. 40, Pages 101007, 2022.
  • 38. Ren, X., Mi, Z.,Georgopoulos, P.G., "Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States". Environment international, Vol. 142, Pages 105827, 2020.
  • 39. Xie, X., Wu, T., Zhu, M., Jiang, G., Xu, Y., Wang, X.,Pu, L., "Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land", Ecological Indicators, Vol. 120, Pages 106925, 2021.
  • 40. Baechle-Clayton, M., Loos, E., Taheri, M.,Taheri, H., "Failures and flaws in fused deposition modeling (FDM) additively manufactured polymers and composites", Journal of Composites Science, Vol. 6, Issue 7, Pages 202, 2022.
  • 41. Moradi, M., Karami Moghadam, M., Shamsborhan, M.,Bodaghi, M., "The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites", Journal of Composites Science, Vol. 4, Issue 1, Pages 17, 2020.
  • 42. Khosravani, M.R., Božić, Ž., Zolfagharian, A.,Reinicke, T., "Failure analysis of 3D-printed PLA components: Impact of manufacturing defects and thermal ageing", Engineering Failure Analysis, Vol. 136, Pages 106214, 2022.
  • 43. Bhagia, S., Bornani, K., Agrawal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., Bhagia, M., Yoo, C.G., Zhao, X.,Kunc, V., "Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries", Applied Materials Today, Vol. 24, Pages 101078, 2021.
  • 44. Swetham, T., Reddy, K.M.M., Huggi, A.,Kumar, M.N., "A Critical Review on of 3D Printing Materials and Details of Materials used in FDM", Int. J. Sci. Res. Sci. Eng. Technol., Vol. 3, Issue 2, Pages 353-361, 2017.
  • 45. Triyono, J., Sukanto, H., Saputra, R.M.,Smaradhana, D.F., "The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material", Open Engineering. Vol. 10, Issue 1, Pages 762-768, 2020.

COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES

Yıl 2025, Cilt: 9 Sayı: 1, 36 - 44, 30.04.2025
https://doi.org/10.46519/ij3dptdi.1490522

Öz

In this study, the compression behavior of the body-centered cubic with exterior and interior vertical struts (BCCZZ) lattice structure produced with Polylactic Acid (PLA) has been investigated using experimental, numerical, and machine-learning algorithms. When comparing digital image correlation and the ANSYS Static Structural numerical module, the measurements of deformation in the -Y direction taken from the top-right, top-left, middle-right, and middle-left points of the lattice structure are closely matched, with differences of 3.5%, 0.66%, 22.3%, and 12.69%, respectively. However, measurements from the bottom-left and bottom-right points show discrepancies of 49.17% and 58.91%, respectively. The lack of agreement between numerical and digital image correlation (DIC) analyses at the bottom-left and bottom-right points of the lattice structure is attributed to deformation in the lower section observed in the experimental study. The numerical study, modeling only elastic deformation, fails to account for broken regions' deformation adequately. Furthermore, the elastic deformation region has been comparatively investigated using experimental, numerical, and multilinear regression (MLR) models. Despite the MLR algorithm being trained with data from the compression test and achieving an R2 value of 0.97, numerical modeling is closer to the experimental results. Thus, for the first time in the literature, the compression behavior of the BCCZZ lattice structure made from PLA+ has been comparatively investigated using experimental, numerical, and machine learning methods.

Kaynakça

  • 1. Hirschberg, C., Larsen, M.S., Bøtker, J.P.,Rantanen, J., "Additive manufacturing of prototype elements with process interfaces for continuously operating manufacturing lines", Asian journal of pharmaceutical sciences, Vol. 13, Issue 6, Pages 575-583, 2018.
  • 2. Ngo, T.D., Kashani, A., Imbalzano, G., Nguyen, K.T.,Hui, D., "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges", Composites Part B: Engineering, Vol. 143, Pages 172-196, 2018.
  • 3. Wang, Y., Zhou, Y., Lin, L., Corker, J.,Fan, M., "Overview of 3D additive manufacturing (AM) and corresponding AM composites", Composites Part A: Applied Science and Manufacturing, Vol. 139, Pages 106114, 2020.
  • 4. Hanzl, P., Zetek, M., Bakša, T.,Kroupa, T., "The influence of processing parameters on the mechanical properties of SLM parts", Procedia Engineering, Vol. 100, Pages 1405-1413, 2015.
  • 5. Ning, F., Cong, W., Qiu, J., Wei, J.,Wang, S., "Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling", Composites Part B: Engineering. Vol. 80, Pages 369-378, 2015.
  • 6. Seabra, M., Azevedo, J., Araújo, A., Reis, L., Pinto, E., Alves, N., Santos, R.,Mortágua, J.P., "Selective laser melting (SLM) and topology optimization for lighter aerospace componentes", Procedia Structural Integrity, Vol. 1, Pages 289-296, 2016.
  • 7. Yuan, L., Ding, S.,Wen, C., "Additive manufacturing technology for porous metal implant applications and triple minimal surface structures: A review", Bioactive materials, Vol. 4, Pages 56-70, 2019.
  • 8. Karayel, E.,Bozkurt, Y., "Additive manufacturing method and different welding applications", Journal of Materials Research and Technology, Vol. 9, Issue 5, Pages 11424-11438, 2020.
  • 9. Delic, M.,Eyers, D.R., "The effect of additive manufacturing adoption on supply chain flexibility and performance: An empirical analysis from the automotive industry", International Journal of Production Economics, Vol. 228, Pages 107689, 2020.
  • 10. Tang, C., Liu, J., Yang, Y., Liu, Y., Jiang, S.,Hao, W., "Effect of process parameters on mechanical properties of 3D printed PLA lattice structures", Composites Part C: Open Access. Vol. 3, Pages 100076, 2020.
  • 11. Luo, J., Luo, Q., Zhang, G., Li, Q.,Sun, G., "On strain rate and temperature dependent mechanical properties and constitutive models for additively manufactured polylactic acid (PLA) materials", Thin-Walled Structures. Vol. 179, Pages 109624, 2022.
  • 12. Samykano, M., "Mechanical property and prediction model for FDM-3D printed polylactic acid (PLA)", Arabian Journal for Science and Engineering, Vol. 46, Pages 7875-7892, 2021.
  • 13. Singhvi, M., Zinjarde, S.,Gokhale, D., "Polylactic acid: Synthesis and biomedical applications", Journal of applied microbiology. Vol. 127, Issue 6, Pages 1612-1626, 2019.
  • 14. Sharma, D.,Hiremath, S.S., "Experimental and FEM study on the in-plane and out-plane loaded reversible dual-material bio-inspired lattice structures with improved energy absorption performance", Composite Structures, Vol. 303, Pages 116353, 2023.
  • 15. Takaichi, A., Kajima, Y., Kittikundecha, N., Htat, H.L., Cho, H.H.W., Hanawa, T., Yoneyama, T.,Wakabayashi, N., "Effect of heat treatment on the anisotropic microstructural and mechanical properties of Co–Cr–Mo alloys produced by selective laser melting", Journal of the Mechanical Behavior of Biomedical Materials, Vol. 102, Pages 103496, 2020.
  • 16. Babamiri, B.B., Barnes, B., Soltani-Tehrani, A., Shamsaei, N.,Hazeli, K., "Designing additively manufactured lattice structures based on deformation mechanisms", Additive Manufacturing, Vol. 46, Pages 102143, 2021.
  • 17. Maconachie, T., Leary, M., Lozanovski, B., Zhang, X., Qian, M., Faruque, O.,Brandt, M., "SLM lattice structures: Properties, performance, applications and challenges", Materials & Design, Vol. 183, Pages 108137, 2019.
  • 18. Wu, W., Xia, R., Qian, G., Liu, Z., Razavi, N., Berto, F.,Gao, H., "Mechanostructures: Rational mechanical design, fabrication, performance evaluation, and industrial application of advanced structures", Progress in Materials Science, Vol. 131, Pages 101021, 2023.
  • 19. Köhnen, P., Haase, C., Bültmann, J., Ziegler, S., Schleifenbaum, J.H.,Bleck, W., "Mechanical properties and deformation behavior of additively manufactured lattice structures of stainless steel", Materials & Design, Vol. 145, Pages 205-217, 2018.
  • 20. Mines, R., Tsopanos, S., Shen, Y., Hasan, R.,McKown, S., "Drop weight impact behaviour of sandwich panels with metallic micro lattice cores", International Journal of Impact Engineering, Vol. 60, Pages 120-132, 2013.
  • 21. Wang, W., Wang, T.Y., Yang, Z., Liu, L., Tong, X., Tong, W., Deng, J., Chen, F.,Liu, X., "Cost-effective printing of 3D objects with skin-frame structures", ACM Transactions on Graphics (ToG), Vol. 32, Issue 6, Pages 1-10, 2013.
  • 22. Zhou, X., Qu, C., Luo, Y., Heise, R.,Bao, G., "Compression behavior and impact energy absorption characteristics of 3D printed polymer lattices and their hybrid sandwich structures", Journal of Materials Engineering and Performance, Vol. 30, Pages 8763-8770, 2021.
  • 23. Seremet, H.,Babacan, N., "Compressive properties of AlSi10Mg lattice structures with novel BCCZZ and FCCZZ configurations fabricated by selective laser melting", Rapid Prototyping Journal, Vol. 30, Issue 4, Pages 770-781, 2024.
  • 24. Ramos, H., Pickering, E., AlMahri, S., Krishnan, K., Oyebanji, J., Guan, Z., Langdon, G.,Santiago, R., "Experimental evaluation of hybrid lattice structures subjected to blast loading". Additive Manufacturing. Vol. 76, Pages 103751, 2023.
  • 25. Araghi, M., Rokhgireh, H.,Nayebi, A., "Experimental and FEM investigation of BCC lattice structure under compression test by using continuum damage mechanics with micro-defect closure effect". Materials & Design. Vol. 232, Pages 112125, 2023.
  • 26. Gonabadi, H., Yadav, A.,Bull, S., "The effect of processing parameters on the mechanical characteristics of PLA produced by a 3D FFF printer", The International Journal of Advanced Manufacturing Technology, Vol. 111, Pages 695-709, 2020.
  • 27. Song, J., Wang, Y., Zhou, W., Fan, R., Yu, B., Lu, Y.,Li, L., "Topology optimization-guided lattice composites and their mechanical characterizations", Composites Part B: Engineering, Vol. 160, Pages 402-411, 2019.
  • 28. Drücker, S., Lüdeker, J.K., Blecken, M., Kurt, A., Betz, K., Kriegesmann, B.,Fiedler, B., "Probabilistic analysis of additively manufactured polymer lattice structures", Materials & Design, Vol. 213, Pages 110300, 2022.
  • 29. Kolken, H., Garcia, A.F., Du Plessis, A., Meynen, A., Rans, C., Scheys, L., Mirzaali, M.,Zadpoor, A., "Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials", Acta biomaterialia, Vol. 138, Pages 398-409, 2022.
  • 30. Hedayati, R., Sadighi, M., Mohammadi-Aghdam, M.,Zadpoor, A., "Analytical relationships for the mechanical properties of additively manufactured porous biomaterials based on octahedral unit cells", Applied Mathematical Modelling, Vol. 46, Pages 408-422, 2017.
  • 31. Yavas, D., Liu, Q., Zhang, Z.,Wu, D., "Design and fabrication of architected multi-material lattices with tunable stiffness, strength, and energy absorption", Materials & Design, Vol. 217, Pages 110613, 2022.
  • 32. Liu, C., Lertthanasarn, J.,Pham, M.-S., "The origin of the boundary strengthening in polycrystal-inspired architected materials". Nature Communications, Vol. 12, Issue 1, Pages 4600, 2021.
  • 33. Mostafa, K.G., Momesso, G.A., Li, X., Nobes, D.S.,Qureshi, A.J., "Dual graded lattice structures: generation framework and mechanical properties characterization", Polymers, Vol. 13, Issue 9, Pages 1528, 2021.
  • 34. Saleh, M., Anwar, S., Al-Ahmari, A.M.,Alfaify, A., "Compression performance and failure analysis of 3D-printed carbon fiber/PLA composite TPMS lattice structures", Polymers, Vol. 14, Issue 21, Pages 4595, 2022.
  • 35. eSUN PLA+ filament, https://www.esun3d.com/pla-pro-product/, May 5, 2024.
  • 36. Hauswirth, S.M., Bierkens, M.F., Beijk, V.,Wanders, N., "The potential of data driven approaches for quantifying hydrological extremes", Advances in Water Resources, Vol. 155, Pages 104017, 2021.
  • 37. Zhao, X., Zhang, R., Chen, F., Maisupova, B., Kirillov, V., Mambetov, B., Yu, S., He, Q., Dosmanbetov, D.,Kelgenbayev, N., "Reconstructed summertime (June–July) streamflow dating back to 1788 CE in the Kazakh Uplands as inferred from tree rings", Journal of Hydrology: Regional Studies, Vol. 40, Pages 101007, 2022.
  • 38. Ren, X., Mi, Z.,Georgopoulos, P.G., "Comparison of Machine Learning and Land Use Regression for fine scale spatiotemporal estimation of ambient air pollution: Modeling ozone concentrations across the contiguous United States". Environment international, Vol. 142, Pages 105827, 2020.
  • 39. Xie, X., Wu, T., Zhu, M., Jiang, G., Xu, Y., Wang, X.,Pu, L., "Comparison of random forest and multiple linear regression models for estimation of soil extracellular enzyme activities in agricultural reclaimed coastal saline land", Ecological Indicators, Vol. 120, Pages 106925, 2021.
  • 40. Baechle-Clayton, M., Loos, E., Taheri, M.,Taheri, H., "Failures and flaws in fused deposition modeling (FDM) additively manufactured polymers and composites", Journal of Composites Science, Vol. 6, Issue 7, Pages 202, 2022.
  • 41. Moradi, M., Karami Moghadam, M., Shamsborhan, M.,Bodaghi, M., "The synergic effects of FDM 3D printing parameters on mechanical behaviors of bronze poly lactic acid composites", Journal of Composites Science, Vol. 4, Issue 1, Pages 17, 2020.
  • 42. Khosravani, M.R., Božić, Ž., Zolfagharian, A.,Reinicke, T., "Failure analysis of 3D-printed PLA components: Impact of manufacturing defects and thermal ageing", Engineering Failure Analysis, Vol. 136, Pages 106214, 2022.
  • 43. Bhagia, S., Bornani, K., Agrawal, R., Satlewal, A., Ďurkovič, J., Lagaňa, R., Bhagia, M., Yoo, C.G., Zhao, X.,Kunc, V., "Critical review of FDM 3D printing of PLA biocomposites filled with biomass resources, characterization, biodegradability, upcycling and opportunities for biorefineries", Applied Materials Today, Vol. 24, Pages 101078, 2021.
  • 44. Swetham, T., Reddy, K.M.M., Huggi, A.,Kumar, M.N., "A Critical Review on of 3D Printing Materials and Details of Materials used in FDM", Int. J. Sci. Res. Sci. Eng. Technol., Vol. 3, Issue 2, Pages 353-361, 2017.
  • 45. Triyono, J., Sukanto, H., Saputra, R.M.,Smaradhana, D.F., "The effect of nozzle hole diameter of 3D printing on porosity and tensile strength parts using polylactic acid material", Open Engineering. Vol. 10, Issue 1, Pages 762-768, 2020.
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Deniz Aktürk 0000-0002-1058-1211

Muhammed Taha Yildiz 0000-0002-0940-4242

Nazım Babacan 0000-0003-2173-8656

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 27 Mayıs 2024
Kabul Tarihi 12 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Aktürk, D., Yildiz, M. T., & Babacan, N. (2025). COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES. International Journal of 3D Printing Technologies and Digital Industry, 9(1), 36-44. https://doi.org/10.46519/ij3dptdi.1490522
AMA Aktürk D, Yildiz MT, Babacan N. COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES. IJ3DPTDI. Nisan 2025;9(1):36-44. doi:10.46519/ij3dptdi.1490522
Chicago Aktürk, Deniz, Muhammed Taha Yildiz, ve Nazım Babacan. “COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES”. International Journal of 3D Printing Technologies and Digital Industry 9, sy. 1 (Nisan 2025): 36-44. https://doi.org/10.46519/ij3dptdi.1490522.
EndNote Aktürk D, Yildiz MT, Babacan N (01 Nisan 2025) COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES. International Journal of 3D Printing Technologies and Digital Industry 9 1 36–44.
IEEE D. Aktürk, M. T. Yildiz, ve N. Babacan, “COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES”, IJ3DPTDI, c. 9, sy. 1, ss. 36–44, 2025, doi: 10.46519/ij3dptdi.1490522.
ISNAD Aktürk, Deniz vd. “COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES”. International Journal of 3D Printing Technologies and Digital Industry 9/1 (Nisan 2025), 36-44. https://doi.org/10.46519/ij3dptdi.1490522.
JAMA Aktürk D, Yildiz MT, Babacan N. COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES. IJ3DPTDI. 2025;9:36–44.
MLA Aktürk, Deniz vd. “COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES”. International Journal of 3D Printing Technologies and Digital Industry, c. 9, sy. 1, 2025, ss. 36-44, doi:10.46519/ij3dptdi.1490522.
Vancouver Aktürk D, Yildiz MT, Babacan N. COMPARATIVE ANALYSIS OF BCCZZ LATTICE STRUCTURE COMPRESSION BEHAVIOR: EXPERIMENTAL, NUMERICAL, AND MACHINE LEARNING APPROACHES. IJ3DPTDI. 2025;9(1):36-44.

 download

Uluslararası 3B Yazıcı Teknolojileri ve Dijital Endüstri Dergisi Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.