INVESTIGATION TO THE V-I CHARACTERISTICS OF ROGOWSKI COILS WITH MAGNETIC FILAMENTS BY REGRESSION ANALYSIS
Yıl 2025,
Cilt: 9 Sayı: 1, 122 - 128, 30.04.2025
Gizem Merve Aydin
,
Gülsüm Yıldırız
,
Emin Yıldırız
Öz
The efficiency and magnetic saturation performances of the 3D printed magnetic composite cores are currently a bit far from competing with silicon steel in traditional motor topologies and transformer applications. However, the flexibility provided in 3D design and the rapid advancement in the production technologies are rapidly reducing the gap between these performances. Linear V-I characteristics can be obtained in the 3D printing magnetic cores using the filaments produced by mixing magnetic powders such as Iron, Nickel, Cobalt with polymer in different ratios. This makes them suitable for the Rogowski Coil (RC) applications. RCs are required to have linear V-I characteristics in order to measure low and high currents with the same sensitivity in the defined current measurement range. In this paper, nickel-filled filaments produced by mixing nickel and polymer in different ratios were used for the production of flexible RC cores. The V-I characteristics of RCs produced using 40% and 60% nickel-filled filaments and air-core RC have been modeled using the linear regression analysis. The success of the mathematical models has also been tested with four different error analyses. The proven mathematical models of the RCs will provide new inspiration to the researchers for magnetic applications. Optimal RC designs can be investigated using the mathematical models in the Finite Element Analysis (FEA) package programs.
Kaynakça
- 1. Wang, B., Xu, Y., Xu, L., and Xin, F., “A novel PMSM with 3-dimensional magnetic circuit using SMC core”, In 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Pages 1-5, 2017.
- 2. Boomiraja, B., and Kanagaraj, R., “A novel hybrid flux machine with transverse flux stator and longitudinal flux rotor: Design and comparative analysis”, Electrical Engineering, Vol. 102, Issue 3, Pages 1413-1422, 2020.
- 3. Yıldırız, E., and Önbilgin, G., “Comparative study of new axial field permanent magnet hybrid excitation machines”, IET Electric Power Applications, Vol. 11, Issue 7, Pages 1347-1355, 2017.
- 4. Pham, T., Kwon, P., and Foster, S., “Additive manufacturing and topology optimization of magnetic materials for electrical machines—A review”, Energies, Vol. 14, Issue 2, 283, 2021.
5. Tiismus, H., Kallaste, A., Vaimann, T., and Rassõlkin, A., “State of the art of additively manufactured electromagnetic materials for topology optimized electrical machines”, Additive Manufacturing, Vol. 55, 102778, 2022.
- 6. Karabulut, Y., Meşe, E., Ayaz, M., and Aktaş, S., “Comparison study on SMC and grain-oriented laminated steel core for small-size axial flux permanent-magnet synchronous machines”, Materials Research Express, Vol. 11 Issue 10, 106102, 2024.
- 7. Tiismus, H., Kallaste, A., Naseer, M. U., Vaimann, T., and Rassõlkin, A., “Design and performance of laser additively manufactured core induction motor”, IEEE Access, Vol. 10, Pages 50137-50152, 2022.
- 8. Kim, C. W., Jang, G. H., Kim, J. M., Ahn, J. H., Baek, C. H., and Choi, J. Y., “Comparison of axial flux permanent magnet synchronous machines with electrical steel core and soft magnetic composite core”, IEEE Transactions on Magnetics, Vol. 53, Issue 11, Pages 1-4, 2017.
- 9. Bollig, L. M., Hilpisch, P. J., Mowry, G. S., and Nelson-Cheeseman, B. B., “3D printed magnetic polymer composite transformers”, Journal of Magnetism and Magnetic Materials, Vol. 442, Pages 97-101, 2017.
- 10. Nanyan, A. N., Isa, M., Hamid, H. A., Rohani, M. N. K. H., and Ismail, B., “The rogowski coil sensor in high current application: A review”, In IOP Conference Series: Materials Science and Engineering, Vol. 318, Issue 1, 012054, 2018.
- 11. Shafiq, M., Stewart, B. G., Hussain, G. A., Hassan, W., Choudhary, M., & Palo, I., “Design and applications of Rogowski coil sensors for power system measurements: A review”, Measurement, Vol. 203, 112014, 2022.
- 12. Kojovic, L. A., and Beresh, R. “Practical aspects of Rogowski coil applications to relaying”. IEEE PSRC special report, Pages 12-14, 2010.
- 13. Metwally, I. A., “Self-integrating Rogowski coil for high-impulse current measurement”, IEEE Transactions on Instrumentation and Measurement, Vol. 59 Issue 2, Pages 353-360, 2009.
14. Ward, D. A., and Exon, J. L. T., “Using Rogowski coils for transient current measurements”, Engineering science and education journal, Vol. 2, Issue 3, Pages 105-113, 1993.
15. Ramboz, J. D., Destefan, D. E., and Stant, R. S., “The verification of Rogowski coil linearity from 200 A to greater than 100 kA using ratio methods”. 19th IEEE Instrumentation and Measurement Technology Conference, Vol. 1, Pages 687-692, 2002.
16. Gu, P. Y., Chen, Q., Li, H. B., Hu, C., Gong, H., and Jiao, Y., “PCB Rogowski coils for 300 kA current measurement on a multi-split conductor”, IEEE Sensors Journal, Vol. 19, Issue 16, Pages 6786-6794, 2019.
- 17. Gu, P. Y., Chen, Q., Li, H. B., Hu, C., Gong, H., and Jiao, Y., “PCB Rogowski coils for 300 kA current measurement on a multi-split conductor”, IEEE Sensors Journal, Vol. 19, Issue 16, Pages 6786-6794, 2019.
- 18. Kang, J., Zhu, A., Chen, Y., Luo, H., Yao, L., and Xin, Z., “An online gate oxide degradation monitoring method for SiC MOSFETs with contactless PCB Rogowski coil approach”, IEEE Transactions on Power Electronics, Vol. 38, Issue 8, Pages 9673-9684, 2023.
- 19. Kabakulak, M., & Arslan, S., “An Electromagnetic Energy Harvester for Wireless Sensors from Power Lines: Modeling and Experiment Verification”, Gazi University Journal of Science, Vol. 34, Issue 3, Pages 786-806, 2021.
- 20. Zhou, Z., Xin, Z., Liu, Q., & Li, C., “A differential compensated air coil current sensor for switching current measurement of power devices”, IEEE Transactions on Industrial Electronics, Vol. 70, Issue 5, Pages 5356-5364, 2022.
- 21. Shi, Y., Xin, Z., Loh, P. C., & Blaabjerg, F., “A review of traditional helical to recent miniaturized printed circuit board Rogowski coils for power-electronic applications”, IEEE Transactions on Power Electronics, Vol. 35, Issue 11, Pages 12207-12222, 2020.
- 22. Tan, Q., Zhang, W., Tan, X., Yang, L., Ren, Y., & Hu, Y., “Design of open-ended structure wideband PCB Rogowski coil based on new winding method”, Electronics, Vol. 11, Issue 3, 381, 2022.
- 23. Marracci, M., Tellini, B., and Bertolucci, E., “Study and characterization of a Rogowski coil with superparamagnetic magnetite core”, IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pages 1-6, 2017.
- 24. Wei, C., Lin, C., Boyang, M., Yuntao, G., and Shi, Y., “Development of magnetic core framework for flexible Rogowski coil current transducer”, In IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Pages 3493-3497, 2020.
- 25. K. Doungkeaw ve J. Tungtrongpairoj, “Printability and Mechanical Properties of PLA/Iron Composites for FDM 3D Printing”, Key Eng. Mater., Vol. 978, Pages 47-51, 2024.
- 26. Sarac M.F., “In-Situ Synthesis of 3D-Printed Magnetic Nanoparticles Embedded Photopolymers” Int. J. of 3D Printing Tech. Dig. Ind., Vol. 5, Issue 2, Pages 164-170, 2021.
- 27. Günenç B., Durak E., “Eklemeli İmalat ile Demir Katkılı Filaman Üretimi İçin Ekstrüzyon Cihazının Tasarımı, İmalatı Ve Cihazın Termal Analizi” Int. J. of 3D Printing Tech. Dig. Ind., Vol. 8, Issue 3, Pages 459-467, 2024.
- 28. Chidimma, Abigail O., Chidi O. I., and Victor O., "An Optimized Approach for Improving Current Sensing In Digital Wattmeters Using Rogowski Coils." American Journal of Engineering Research, Vol. 6, Issue 4, Pages 207-222, 2017.
- 29. Lee, J. H., Lim, H. R., Shin, H. K., Cho, S. C., & Kim, J. O., “Simulation and development of Rogowski coil for lightning current measurement”, Journal of Electrical Engineering & Technology, Vol. 14, Pages 1831-1839, 2019.
- 30. Draxler, K., & Styblikova, R., “Magnetic shielding of Rogowski coils”, IEEE Transactions on Instrumentation and Measurement, Vol. 67, Issue 5, Pages 1207-1213, 2018.
- 31. Zengin, K., “Epstein Çerçevesi Kullanarak Manyetik Malzeme B-H Eğrisi Ve Kayıplarının Belirlenmesi”, Yüksek Lisans Tezi, [Determining Magnetic Material B-H Curve And Losses With Epstein Frame] [Thesis in Turkish], Kocaeli Üniversitesi, Kocaeli, 2016.
- 32. Ayvaz, M., “Eklemeli Üretim İle 400 Hz Asenkron Motor Tasarımı”, Yüksek Lisans Tezi, [Applications of Additive Magnetic Materials in 400 Hz Induction Motor Design] [Thesis in Turkish], Marmara Üniversitesi, İstanbul, 2024.
- 33. Aydın, G. M., “Nikel Alaşımlı Esnek Filament Nüveli Rogowski Bobinin Tasarımı Ve Geliştirilmesi”, Yüksek Lisans Tezi, [Design and Development Of Rogowski Coil with Nickel Alloy Flexible Filament Core] [Thesis in Turkish], Düzce Üniversitesi, Düzce, 2023.
INVESTIGATION TO THE V-I CHARACTERISTICS OF ROGOWSKI COILS WITH MAGNETIC FILAMENTS BY REGRESSION ANALYSIS
Yıl 2025,
Cilt: 9 Sayı: 1, 122 - 128, 30.04.2025
Gizem Merve Aydin
,
Gülsüm Yıldırız
,
Emin Yıldırız
Öz
The efficiency and magnetic saturation performances of the 3D printed magnetic composite cores are currently a bit far from competing with silicon steel in traditional motor topologies and transformer applications. However, the flexibility provided in 3D design and the rapid advancement in the production technologies are rapidly reducing the gap between these performances. Linear V-I characteristics can be obtained in the 3D printing magnetic cores using the filaments produced by mixing magnetic powders such as Iron, Nickel, Cobalt with polymer in different ratios. This makes them suitable for the Rogowski Coil (RC) applications. RCs are required to have linear V-I characteristics in order to measure low and high currents with the same sensitivity in the defined current measurement range. In this paper, nickel-filled filaments produced by mixing nickel and polymer in different ratios were used for the production of flexible RC cores. The V-I characteristics of RCs produced using 40% and 60% nickel-filled filaments and air-core RC have been modeled using the linear regression analysis. The success of the mathematical models has also been tested with four different error analyses. The proven mathematical models of the RCs will provide new inspiration to the researchers for magnetic applications. Optimal RC designs can be investigated using the mathematical models in the Finite Element Analysis (FEA) package programs.
Kaynakça
- 1. Wang, B., Xu, Y., Xu, L., and Xin, F., “A novel PMSM with 3-dimensional magnetic circuit using SMC core”, In 2017 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Pages 1-5, 2017.
- 2. Boomiraja, B., and Kanagaraj, R., “A novel hybrid flux machine with transverse flux stator and longitudinal flux rotor: Design and comparative analysis”, Electrical Engineering, Vol. 102, Issue 3, Pages 1413-1422, 2020.
- 3. Yıldırız, E., and Önbilgin, G., “Comparative study of new axial field permanent magnet hybrid excitation machines”, IET Electric Power Applications, Vol. 11, Issue 7, Pages 1347-1355, 2017.
- 4. Pham, T., Kwon, P., and Foster, S., “Additive manufacturing and topology optimization of magnetic materials for electrical machines—A review”, Energies, Vol. 14, Issue 2, 283, 2021.
5. Tiismus, H., Kallaste, A., Vaimann, T., and Rassõlkin, A., “State of the art of additively manufactured electromagnetic materials for topology optimized electrical machines”, Additive Manufacturing, Vol. 55, 102778, 2022.
- 6. Karabulut, Y., Meşe, E., Ayaz, M., and Aktaş, S., “Comparison study on SMC and grain-oriented laminated steel core for small-size axial flux permanent-magnet synchronous machines”, Materials Research Express, Vol. 11 Issue 10, 106102, 2024.
- 7. Tiismus, H., Kallaste, A., Naseer, M. U., Vaimann, T., and Rassõlkin, A., “Design and performance of laser additively manufactured core induction motor”, IEEE Access, Vol. 10, Pages 50137-50152, 2022.
- 8. Kim, C. W., Jang, G. H., Kim, J. M., Ahn, J. H., Baek, C. H., and Choi, J. Y., “Comparison of axial flux permanent magnet synchronous machines with electrical steel core and soft magnetic composite core”, IEEE Transactions on Magnetics, Vol. 53, Issue 11, Pages 1-4, 2017.
- 9. Bollig, L. M., Hilpisch, P. J., Mowry, G. S., and Nelson-Cheeseman, B. B., “3D printed magnetic polymer composite transformers”, Journal of Magnetism and Magnetic Materials, Vol. 442, Pages 97-101, 2017.
- 10. Nanyan, A. N., Isa, M., Hamid, H. A., Rohani, M. N. K. H., and Ismail, B., “The rogowski coil sensor in high current application: A review”, In IOP Conference Series: Materials Science and Engineering, Vol. 318, Issue 1, 012054, 2018.
- 11. Shafiq, M., Stewart, B. G., Hussain, G. A., Hassan, W., Choudhary, M., & Palo, I., “Design and applications of Rogowski coil sensors for power system measurements: A review”, Measurement, Vol. 203, 112014, 2022.
- 12. Kojovic, L. A., and Beresh, R. “Practical aspects of Rogowski coil applications to relaying”. IEEE PSRC special report, Pages 12-14, 2010.
- 13. Metwally, I. A., “Self-integrating Rogowski coil for high-impulse current measurement”, IEEE Transactions on Instrumentation and Measurement, Vol. 59 Issue 2, Pages 353-360, 2009.
14. Ward, D. A., and Exon, J. L. T., “Using Rogowski coils for transient current measurements”, Engineering science and education journal, Vol. 2, Issue 3, Pages 105-113, 1993.
15. Ramboz, J. D., Destefan, D. E., and Stant, R. S., “The verification of Rogowski coil linearity from 200 A to greater than 100 kA using ratio methods”. 19th IEEE Instrumentation and Measurement Technology Conference, Vol. 1, Pages 687-692, 2002.
16. Gu, P. Y., Chen, Q., Li, H. B., Hu, C., Gong, H., and Jiao, Y., “PCB Rogowski coils for 300 kA current measurement on a multi-split conductor”, IEEE Sensors Journal, Vol. 19, Issue 16, Pages 6786-6794, 2019.
- 17. Gu, P. Y., Chen, Q., Li, H. B., Hu, C., Gong, H., and Jiao, Y., “PCB Rogowski coils for 300 kA current measurement on a multi-split conductor”, IEEE Sensors Journal, Vol. 19, Issue 16, Pages 6786-6794, 2019.
- 18. Kang, J., Zhu, A., Chen, Y., Luo, H., Yao, L., and Xin, Z., “An online gate oxide degradation monitoring method for SiC MOSFETs with contactless PCB Rogowski coil approach”, IEEE Transactions on Power Electronics, Vol. 38, Issue 8, Pages 9673-9684, 2023.
- 19. Kabakulak, M., & Arslan, S., “An Electromagnetic Energy Harvester for Wireless Sensors from Power Lines: Modeling and Experiment Verification”, Gazi University Journal of Science, Vol. 34, Issue 3, Pages 786-806, 2021.
- 20. Zhou, Z., Xin, Z., Liu, Q., & Li, C., “A differential compensated air coil current sensor for switching current measurement of power devices”, IEEE Transactions on Industrial Electronics, Vol. 70, Issue 5, Pages 5356-5364, 2022.
- 21. Shi, Y., Xin, Z., Loh, P. C., & Blaabjerg, F., “A review of traditional helical to recent miniaturized printed circuit board Rogowski coils for power-electronic applications”, IEEE Transactions on Power Electronics, Vol. 35, Issue 11, Pages 12207-12222, 2020.
- 22. Tan, Q., Zhang, W., Tan, X., Yang, L., Ren, Y., & Hu, Y., “Design of open-ended structure wideband PCB Rogowski coil based on new winding method”, Electronics, Vol. 11, Issue 3, 381, 2022.
- 23. Marracci, M., Tellini, B., and Bertolucci, E., “Study and characterization of a Rogowski coil with superparamagnetic magnetite core”, IEEE International Instrumentation and Measurement Technology Conference (I2MTC), Pages 1-6, 2017.
- 24. Wei, C., Lin, C., Boyang, M., Yuntao, G., and Shi, Y., “Development of magnetic core framework for flexible Rogowski coil current transducer”, In IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Pages 3493-3497, 2020.
- 25. K. Doungkeaw ve J. Tungtrongpairoj, “Printability and Mechanical Properties of PLA/Iron Composites for FDM 3D Printing”, Key Eng. Mater., Vol. 978, Pages 47-51, 2024.
- 26. Sarac M.F., “In-Situ Synthesis of 3D-Printed Magnetic Nanoparticles Embedded Photopolymers” Int. J. of 3D Printing Tech. Dig. Ind., Vol. 5, Issue 2, Pages 164-170, 2021.
- 27. Günenç B., Durak E., “Eklemeli İmalat ile Demir Katkılı Filaman Üretimi İçin Ekstrüzyon Cihazının Tasarımı, İmalatı Ve Cihazın Termal Analizi” Int. J. of 3D Printing Tech. Dig. Ind., Vol. 8, Issue 3, Pages 459-467, 2024.
- 28. Chidimma, Abigail O., Chidi O. I., and Victor O., "An Optimized Approach for Improving Current Sensing In Digital Wattmeters Using Rogowski Coils." American Journal of Engineering Research, Vol. 6, Issue 4, Pages 207-222, 2017.
- 29. Lee, J. H., Lim, H. R., Shin, H. K., Cho, S. C., & Kim, J. O., “Simulation and development of Rogowski coil for lightning current measurement”, Journal of Electrical Engineering & Technology, Vol. 14, Pages 1831-1839, 2019.
- 30. Draxler, K., & Styblikova, R., “Magnetic shielding of Rogowski coils”, IEEE Transactions on Instrumentation and Measurement, Vol. 67, Issue 5, Pages 1207-1213, 2018.
- 31. Zengin, K., “Epstein Çerçevesi Kullanarak Manyetik Malzeme B-H Eğrisi Ve Kayıplarının Belirlenmesi”, Yüksek Lisans Tezi, [Determining Magnetic Material B-H Curve And Losses With Epstein Frame] [Thesis in Turkish], Kocaeli Üniversitesi, Kocaeli, 2016.
- 32. Ayvaz, M., “Eklemeli Üretim İle 400 Hz Asenkron Motor Tasarımı”, Yüksek Lisans Tezi, [Applications of Additive Magnetic Materials in 400 Hz Induction Motor Design] [Thesis in Turkish], Marmara Üniversitesi, İstanbul, 2024.
- 33. Aydın, G. M., “Nikel Alaşımlı Esnek Filament Nüveli Rogowski Bobinin Tasarımı Ve Geliştirilmesi”, Yüksek Lisans Tezi, [Design and Development Of Rogowski Coil with Nickel Alloy Flexible Filament Core] [Thesis in Turkish], Düzce Üniversitesi, Düzce, 2023.