Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 9 Sayı: 2, 241 - 248, 30.06.2025
https://doi.org/10.30939/ijastech..1624367

Öz

Kaynakça

  • [1] Gürün H, Çavuşoğlu O, Çaydaş U, Özek C, Çelik M. Investigation of springback behaviour of AA2024 alloy after V-bending. Sci Eng J Fırat Univ. 2018;30(1):1–8.
  • [2] Özek C, Taşdemir V. Experimental investigation of the effects of blank holder force and die surface angle on the warm deep drawing of AA5754-O alloy. J Fac Eng Archit Gazi Univ. 2017;32(1):193–201. http://dx.doi.org/ 10.17341/gazimmfd.300608.
  • [3] Amer M, Shazly M, Mohamed M, Hegazy AA. Ductile damage prediction of AA 5754 sheet during cold forming condition. J Mech Sci Technol. 2020;34(10):4219–28. http://dx.doi.org/10.1007/s12206-020-0914-9.
  • [4] Karaağaç İ, Kabakçı MO, Demirel MY. Experimental investigation of the effects of annealing in Al7075-T6 sheet metal material on formability and springback. J Fac Eng Archit Gazi Univ. 2021;36(3):1319–29. http://dx.doi.org/10.17341/gazimmfd.647009.
  • [5] Mohamed M, Amer M, Shazly M, Masters I. Assessment of different ductile damage models of AA5754 for cold forming. Int J Adv Manuf Technol. 2021;114(3–4):1219–31. http://dx.doi.org/10.1007/s00170-021-06836-7.
  • [6] Hirsch J. Aluminium in innovative light-weight car design. Mater Trans. 2011;52(5):818–24. http://dx.doi.org/10.2320/matertrans.L-MZ201132.
  • [7] Kaczmarek L, Kula P, Sawicki J, Armand S, Castro T, Kruszyński P, et al. New possibilities of applications aluminum alloys in transport. Arch Metall Mater. 2009;54(4):1199–205.
  • [8] Wang A, Zhong K, El Fakir O, Liu J, Sun C, Wang LL, et al. Springback analysis of AA5754 after hot stamping: experiments and FE modelling. Int J Adv Manuf Technol. 2017;89(5–8):1339–52. http://dx.doi.org/10.1007/s00170-016-9166-3.
  • [9] Chalal H, Abed-Meraim F. Determination of forming limit diagrams based on ductile damage models and necking criteria. Lat Am J Solids Struct. 2017;14(10):1872–92. http://dx.doi.org/10.1590/1679-78253481.
  • [10] Özek C, Ünal E. The effect of die / blank holder angles on limit drawing ratio and wall thickness in deep drawing of square cups. J Fac Eng Archit Gazi Univ. 2012;27(3):615–22.
  • [11] Özek C, Ünal E. Optimization and modeling of angular deep drawing process for square cups. Mater Manuf Process. 2011;26(9):1117–25. http://dx.doi.org/10.1080/10426914.2010.532526.
  • [12] Esener E, Sönmez E, Özsoy M, Firat M. Determining springback behavior of high-strength steels via channel forming process. Acta Phys Pol A. 2017;132(3):1010–2. http://dx.doi.org/10.12693/APhysPolA.132.1010.
  • [13] Lin AC, Chen CF. Computer-Aided Sequence Planning for Bending Operations of 3D Sheet Metals with Many Bends in Various Directions. J Chinese Soc Mech Eng Trans Chinese Inst Eng. 2021;42(6):571–80.
  • [14] Lee CH, Hung CH, Lee PK, Chiuhuang CK, Chen FK. A Study on Hot Stamping of Tailor Welded Blanks. J Chinese Soc Mech Eng Trans Chinese Inst Eng. 2022;43(5):431–40.
  • [15] Şen N, Çolakoğlu İ, Taşdemir V. Investigation of deep drawing of square cups using high-strength DP600 and DP800 sheets. Int J Automot Sci Technol. 2021;5(4):378–85. http://dx.doi.org/10.30939/ijastech..995381.
  • [16] Taşdemir V. Finite element analysis of the springback behavior after V bending process of sheet materials obtained by Differential Speed Rolling (DSR) method. Rev Metal. 2022;58(1):1–9. http://dx.doi.org/ 10.3989/REVMETALM.219.
  • [17] Karaağaç İ, Önel T, Uluer O. The effects of local heating on springback behaviour in v bending of galvanized DP600 sheet. Ironmak Steelmak. 2019;9233. http://dx.doi.org/10.1080/03019233.2019.1615308.
  • [18] Pourboghrat F, Chu E. Springback in plane strain stretch/draw sheet forming. Int J Mech Sci. 1995;37(3):327–41. http://dx.doi.org/10.1016/0020-7403(95)93523-9.
  • [19] Yoshida T, Sato K, Isogai E, Hashimoto K. Springback problems in forming of high-strength steel sheets and countermeasures. Nippon Steel Tech Rep. 2013;(103):4–10.
  • [20] Şen N, Taşdemir V. Experimental and numerical investigation of the springback behaviour of CP800 sheet after the V-bending process. Ironmak Steelmak. 2021;48(7):811–8. https://doi.org/10.1080/03019233.2021.1872466.
  • [21] Wang A, Zhong K, El-Fakir O, Sun C, Liu J, Wang L-L. Springback Analysis of AA5754 under Warm Stamping Conditions. Eng Sci Technol. 2019;1(1):39–53. http://dx.doi.org/10.37256/est.112020104.
  • [22] Şen N, Civek T, Seçgin Ö. Experimental, analytical and parametric evaluation of the springback behavior of MART1400 sheets. J Brazilian Soc Mech Sci Eng. 2022;44(10):1–11. https://doi.org/10.1007/s40430-022-03749-8.
  • [23] Toros S, Alkan M, Ece RE, Ozturk F. Effect of pre-straining on the springback behavior of the AA5754-0 alloy. Mater Tehnol. 2011;45(6):613–8.
  • [24] Aksen TA, sener B, Esener E, Kocabiçak Ü, Firat M. Fracture forming limit curve prediction by ductile fracture models. Procedia Struct Integr. 2024;61(2023):268–76. https://doi.org/10.1016/j.prostr.2024.06.034.
  • [25] Basak S, Panda SK. Use of uncoupled ductile damage models for fracture forming limit prediction during two-stage forming of aluminum sheet material. J Manuf Process. 2023;97(March):185–99. https://doi.org/10.1016/j.jmapro.2023.04.042.
  • [26] Dutton T, Mohamed M, Lin J. Simulation of Warm Forming of Aluminium 5754 for Automotive Panels. In: 12th International LS-DYNA® Users Conference Constitutive Modeling(2). Detroit; 2012. p. 1–10.
  • [27] Dhara S, Basak S, Panda SK, Hazra S, Shollock B, Dashwood R. Formability analysis of pre-strained AA5754-O sheet metal using Yld96 plasticity theory: Role of amount and direction of uni-axial pre-strain. J Manuf Process. 2016;24(October):270–82. https://doi.org/10.1016/j.jmapro.2016.09.014.

Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy

Yıl 2025, Cilt: 9 Sayı: 2, 241 - 248, 30.06.2025
https://doi.org/10.30939/ijastech..1624367

Öz

Damages occurring in the bending area of the bent parts and the springback that occurs after shaping are among the important factors affecting the quality of the shaped products. In this study, the formability of AA5754 sheet metal with V bending at room temperature was investigated using finite element analysis. In the study, 4 different die angles (α) (60°, 90°, 120°, 150°), 3 different punch radii (R) (2, 4, 6 mm), and 3 different bending lengths (w) (9.5 mm, 19 and 38 mm) were used. Finite element analyses were performed using 2 different ductile damage criteria (Johnson-Cook (JC) and forming limit diagram (FLD)) and without damage criteria (NDC). As a result of the analyses, considering the die angle, the greatest springback was seen in the 150° die, while the greatest bending zone damage was seen in the 60° die. The largest deformation occurred at small die angles. Again, considering the punch radius, the greatest bending zone damage was seen in R2, while the greatest springback was obtained in R6. The difference (l) between the expansion and contraction zones in the bending area is 0.256 mm in the 60° die and 0.083 mm in the 150° die. It was determined that the greatest damage occurred on the inner surface. The damage angle on the inner surface is 12.14° in the 60° die, and 1.24° in the 150° die. Considering the damage criteria used, the largest springback occurred in FLD and the smallest springback occurred in JC.

Kaynakça

  • [1] Gürün H, Çavuşoğlu O, Çaydaş U, Özek C, Çelik M. Investigation of springback behaviour of AA2024 alloy after V-bending. Sci Eng J Fırat Univ. 2018;30(1):1–8.
  • [2] Özek C, Taşdemir V. Experimental investigation of the effects of blank holder force and die surface angle on the warm deep drawing of AA5754-O alloy. J Fac Eng Archit Gazi Univ. 2017;32(1):193–201. http://dx.doi.org/ 10.17341/gazimmfd.300608.
  • [3] Amer M, Shazly M, Mohamed M, Hegazy AA. Ductile damage prediction of AA 5754 sheet during cold forming condition. J Mech Sci Technol. 2020;34(10):4219–28. http://dx.doi.org/10.1007/s12206-020-0914-9.
  • [4] Karaağaç İ, Kabakçı MO, Demirel MY. Experimental investigation of the effects of annealing in Al7075-T6 sheet metal material on formability and springback. J Fac Eng Archit Gazi Univ. 2021;36(3):1319–29. http://dx.doi.org/10.17341/gazimmfd.647009.
  • [5] Mohamed M, Amer M, Shazly M, Masters I. Assessment of different ductile damage models of AA5754 for cold forming. Int J Adv Manuf Technol. 2021;114(3–4):1219–31. http://dx.doi.org/10.1007/s00170-021-06836-7.
  • [6] Hirsch J. Aluminium in innovative light-weight car design. Mater Trans. 2011;52(5):818–24. http://dx.doi.org/10.2320/matertrans.L-MZ201132.
  • [7] Kaczmarek L, Kula P, Sawicki J, Armand S, Castro T, Kruszyński P, et al. New possibilities of applications aluminum alloys in transport. Arch Metall Mater. 2009;54(4):1199–205.
  • [8] Wang A, Zhong K, El Fakir O, Liu J, Sun C, Wang LL, et al. Springback analysis of AA5754 after hot stamping: experiments and FE modelling. Int J Adv Manuf Technol. 2017;89(5–8):1339–52. http://dx.doi.org/10.1007/s00170-016-9166-3.
  • [9] Chalal H, Abed-Meraim F. Determination of forming limit diagrams based on ductile damage models and necking criteria. Lat Am J Solids Struct. 2017;14(10):1872–92. http://dx.doi.org/10.1590/1679-78253481.
  • [10] Özek C, Ünal E. The effect of die / blank holder angles on limit drawing ratio and wall thickness in deep drawing of square cups. J Fac Eng Archit Gazi Univ. 2012;27(3):615–22.
  • [11] Özek C, Ünal E. Optimization and modeling of angular deep drawing process for square cups. Mater Manuf Process. 2011;26(9):1117–25. http://dx.doi.org/10.1080/10426914.2010.532526.
  • [12] Esener E, Sönmez E, Özsoy M, Firat M. Determining springback behavior of high-strength steels via channel forming process. Acta Phys Pol A. 2017;132(3):1010–2. http://dx.doi.org/10.12693/APhysPolA.132.1010.
  • [13] Lin AC, Chen CF. Computer-Aided Sequence Planning for Bending Operations of 3D Sheet Metals with Many Bends in Various Directions. J Chinese Soc Mech Eng Trans Chinese Inst Eng. 2021;42(6):571–80.
  • [14] Lee CH, Hung CH, Lee PK, Chiuhuang CK, Chen FK. A Study on Hot Stamping of Tailor Welded Blanks. J Chinese Soc Mech Eng Trans Chinese Inst Eng. 2022;43(5):431–40.
  • [15] Şen N, Çolakoğlu İ, Taşdemir V. Investigation of deep drawing of square cups using high-strength DP600 and DP800 sheets. Int J Automot Sci Technol. 2021;5(4):378–85. http://dx.doi.org/10.30939/ijastech..995381.
  • [16] Taşdemir V. Finite element analysis of the springback behavior after V bending process of sheet materials obtained by Differential Speed Rolling (DSR) method. Rev Metal. 2022;58(1):1–9. http://dx.doi.org/ 10.3989/REVMETALM.219.
  • [17] Karaağaç İ, Önel T, Uluer O. The effects of local heating on springback behaviour in v bending of galvanized DP600 sheet. Ironmak Steelmak. 2019;9233. http://dx.doi.org/10.1080/03019233.2019.1615308.
  • [18] Pourboghrat F, Chu E. Springback in plane strain stretch/draw sheet forming. Int J Mech Sci. 1995;37(3):327–41. http://dx.doi.org/10.1016/0020-7403(95)93523-9.
  • [19] Yoshida T, Sato K, Isogai E, Hashimoto K. Springback problems in forming of high-strength steel sheets and countermeasures. Nippon Steel Tech Rep. 2013;(103):4–10.
  • [20] Şen N, Taşdemir V. Experimental and numerical investigation of the springback behaviour of CP800 sheet after the V-bending process. Ironmak Steelmak. 2021;48(7):811–8. https://doi.org/10.1080/03019233.2021.1872466.
  • [21] Wang A, Zhong K, El-Fakir O, Sun C, Liu J, Wang L-L. Springback Analysis of AA5754 under Warm Stamping Conditions. Eng Sci Technol. 2019;1(1):39–53. http://dx.doi.org/10.37256/est.112020104.
  • [22] Şen N, Civek T, Seçgin Ö. Experimental, analytical and parametric evaluation of the springback behavior of MART1400 sheets. J Brazilian Soc Mech Sci Eng. 2022;44(10):1–11. https://doi.org/10.1007/s40430-022-03749-8.
  • [23] Toros S, Alkan M, Ece RE, Ozturk F. Effect of pre-straining on the springback behavior of the AA5754-0 alloy. Mater Tehnol. 2011;45(6):613–8.
  • [24] Aksen TA, sener B, Esener E, Kocabiçak Ü, Firat M. Fracture forming limit curve prediction by ductile fracture models. Procedia Struct Integr. 2024;61(2023):268–76. https://doi.org/10.1016/j.prostr.2024.06.034.
  • [25] Basak S, Panda SK. Use of uncoupled ductile damage models for fracture forming limit prediction during two-stage forming of aluminum sheet material. J Manuf Process. 2023;97(March):185–99. https://doi.org/10.1016/j.jmapro.2023.04.042.
  • [26] Dutton T, Mohamed M, Lin J. Simulation of Warm Forming of Aluminium 5754 for Automotive Panels. In: 12th International LS-DYNA® Users Conference Constitutive Modeling(2). Detroit; 2012. p. 1–10.
  • [27] Dhara S, Basak S, Panda SK, Hazra S, Shollock B, Dashwood R. Formability analysis of pre-strained AA5754-O sheet metal using Yld96 plasticity theory: Role of amount and direction of uni-axial pre-strain. J Manuf Process. 2016;24(October):270–82. https://doi.org/10.1016/j.jmapro.2016.09.014.
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Otomotiv Mühendisliği ve Malzemeleri
Bölüm Articles
Yazarlar

Vedat Taşdemir 0000-0002-2375-9525

Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 21 Ocak 2025
Kabul Tarihi 19 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 2

Kaynak Göster

APA Taşdemir, V. (2025). Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy. International Journal of Automotive Science And Technology, 9(2), 241-248. https://doi.org/10.30939/ijastech..1624367
AMA Taşdemir V. Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy. IJASTECH. Haziran 2025;9(2):241-248. doi:10.30939/ijastech.1624367
Chicago Taşdemir, Vedat. “Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy”. International Journal of Automotive Science And Technology 9, sy. 2 (Haziran 2025): 241-48. https://doi.org/10.30939/ijastech. 1624367.
EndNote Taşdemir V (01 Haziran 2025) Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy. International Journal of Automotive Science And Technology 9 2 241–248.
IEEE V. Taşdemir, “Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy”, IJASTECH, c. 9, sy. 2, ss. 241–248, 2025, doi: 10.30939/ijastech..1624367.
ISNAD Taşdemir, Vedat. “Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy”. International Journal of Automotive Science And Technology 9/2 (Haziran 2025), 241-248. https://doi.org/10.30939/ijastech. 1624367.
JAMA Taşdemir V. Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy. IJASTECH. 2025;9:241–248.
MLA Taşdemir, Vedat. “Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy”. International Journal of Automotive Science And Technology, c. 9, sy. 2, 2025, ss. 241-8, doi:10.30939/ijastech. 1624367.
Vancouver Taşdemir V. Finite Element Analysis of Bending Zone Damage and Springback Behavior After V Bending Process of AA5754 Alloy. IJASTECH. 2025;9(2):241-8.


International Journal of Automotive Science and Technology (IJASTECH) is published by Society of Automotive Engineers Turkey

by.png