BibTex RIS Kaynak Göster

MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION

Yıl 2015, Cilt: 7 Sayı: 1, 1 - 11, 01.03.2015
https://doi.org/10.24107/ijeas.251238

Öz

Modal analysis of tapered piles embedded in elastic foundations is investigated. The pile is modeled via Bernoulli-Euler beam theory and discrete singular convolution is used for modeling. Some parametric results have been presented for tapered pile in elastic foundation

Kaynakça

  • [1] Zhaohua, F., Cook, R.D., Beams elements on two-parameter elastic foundations. ASCE Journal of Engineering Mechanics, 109, 1390-1401, 1983.
  • [2] Yankelevsky, D.Z., Eisenberger, M., Analysis of a beam-column on elastic foundations. Computers and Structures, 23, 351-56, 1986.
  • [3] Doyle, P.F., Pavlovic, M.N., Vibration of beams on partial elastic foundations. Earthquake Engineering and Structural Dynamics, 10, 663-674, 1982.
  • [4] Yokoyama, T., Vibrations of Timoshenko beam-columns on two-parameter elastic foundations. Earthquake Engineering and Structural Dynamics, 20, 355-370, 1991.
  • [5] Valsangkar, A.J., Pradhanang, R., Vibrations of beam-columns on two-parameter elastic foundations. Earthquake Engineering and Structural Dynamics, 16, 217-225, 1988.
  • [6] De Rosa, M.A., Maurizi, M.J., Dynamic analysis of multistep piles on Pasternak soil subjected to axial tip forces. Journal of Sound and Vibration, 219, 771-783, 1999.
  • [7] Halabe, U.B., Jain, S.K., Lateral free vibration of a single pile with or without an axial load. Journal of Sound and Vibration, 195, 531-544, 1996.
  • [8] West, H.H., Mafi, M., Eigenvalues for beam-columns on elastic supports, ASCE Journal of Structural Engineering, 110, 1305-1320, 1984.
  • [9] Matsunaga, H., Vibration and buckling of deep beam-columns on two parameter elastic foundations, Journal of Sound and Vibration, 228, 359-376, 1999.
  • [10] Kameswara Rao, N.S.V., Das, Y.C., Anandakrishnan, M., Dynamic response of beams on generalized elastic foundation. International Journal of Solids and Structures, 11, 255-73, 1975.
  • [11] Wei, G.W., A new algorithm for solving some mechanical problems, Computer Methods in Applied Mechanics and Engineering, 190, 2017-2030, 2001.
  • [12] Wei, G.W., Vibration analysis by discrete singular convolution, Journal of Sound and Vibration, 244, 535-553, 2001.
  • [13] Wei, G.W., Discrete singular convolution for beam analysis, Engineering Structures, 23, 1045-1053, 2001.
  • [14] Wei, G.W., Zhao, Y.B., Xiang, Y., Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm, International Journal for Numerical Methods in Engineering, 55, 913-946, 2002.
  • [15] Wei, G.W., Zhao, Y.B., Xiang, Y., A novel approach for the analysis of high-frequency vibrations, Journal of Sound and Vibration, 257, 207-246, 2002.
  • [16] Zhao, Y.B., Wei, G.W., Xiang, Y., Discrete singular convolution for the prediction of high frequency vibration of plates, International Journal of Solids and Structures, 39, 65-88, 2002.
  • [17] Zhao, Y.B., Wei, G.W., Xiang, Y., Plate vibration under irregular internal supports, International Journal of Solids and Structures, 39, 1361-1383, 2002.
  • [18] Zhao, Y.B., Wei, G.W., DSC analysis of rectangular plates with non-uniform boundary conditions, Journal of Sound and Vibration, 255, 203-228, 2002.
  • [19] Civalek, Ö., An efficient method for free vibration analysis of rotating truncated conical shells, International Journal of Pressure Vessels and Piping, 83, 1-12, 2006.
  • [20] Civalek, Ö., The determination of frequencies of laminated conical shells via the discrete singular convolution method, Journal of Mechanics of Materials and Structures, 1, 165- 192, 2006.
  • [21] Civalek, Ö., Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods, Applied Mathematical Modelling, 31, 606-624, 2007.
  • [22] Civalek, Ö., Free vibration analysis of composite conical shells using the discrete singular convolution algorithm, Steel and Composite Structures, 6, 353-366, 2006.
  • [23] Civalek, Ö., Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method, International Journal of Mechanical Sciences, 49, 752-765, 2007
Yıl 2015, Cilt: 7 Sayı: 1, 1 - 11, 01.03.2015
https://doi.org/10.24107/ijeas.251238

Öz

Kaynakça

  • [1] Zhaohua, F., Cook, R.D., Beams elements on two-parameter elastic foundations. ASCE Journal of Engineering Mechanics, 109, 1390-1401, 1983.
  • [2] Yankelevsky, D.Z., Eisenberger, M., Analysis of a beam-column on elastic foundations. Computers and Structures, 23, 351-56, 1986.
  • [3] Doyle, P.F., Pavlovic, M.N., Vibration of beams on partial elastic foundations. Earthquake Engineering and Structural Dynamics, 10, 663-674, 1982.
  • [4] Yokoyama, T., Vibrations of Timoshenko beam-columns on two-parameter elastic foundations. Earthquake Engineering and Structural Dynamics, 20, 355-370, 1991.
  • [5] Valsangkar, A.J., Pradhanang, R., Vibrations of beam-columns on two-parameter elastic foundations. Earthquake Engineering and Structural Dynamics, 16, 217-225, 1988.
  • [6] De Rosa, M.A., Maurizi, M.J., Dynamic analysis of multistep piles on Pasternak soil subjected to axial tip forces. Journal of Sound and Vibration, 219, 771-783, 1999.
  • [7] Halabe, U.B., Jain, S.K., Lateral free vibration of a single pile with or without an axial load. Journal of Sound and Vibration, 195, 531-544, 1996.
  • [8] West, H.H., Mafi, M., Eigenvalues for beam-columns on elastic supports, ASCE Journal of Structural Engineering, 110, 1305-1320, 1984.
  • [9] Matsunaga, H., Vibration and buckling of deep beam-columns on two parameter elastic foundations, Journal of Sound and Vibration, 228, 359-376, 1999.
  • [10] Kameswara Rao, N.S.V., Das, Y.C., Anandakrishnan, M., Dynamic response of beams on generalized elastic foundation. International Journal of Solids and Structures, 11, 255-73, 1975.
  • [11] Wei, G.W., A new algorithm for solving some mechanical problems, Computer Methods in Applied Mechanics and Engineering, 190, 2017-2030, 2001.
  • [12] Wei, G.W., Vibration analysis by discrete singular convolution, Journal of Sound and Vibration, 244, 535-553, 2001.
  • [13] Wei, G.W., Discrete singular convolution for beam analysis, Engineering Structures, 23, 1045-1053, 2001.
  • [14] Wei, G.W., Zhao, Y.B., Xiang, Y., Discrete singular convolution and its application to the analysis of plates with internal supports. Part 1: Theory and algorithm, International Journal for Numerical Methods in Engineering, 55, 913-946, 2002.
  • [15] Wei, G.W., Zhao, Y.B., Xiang, Y., A novel approach for the analysis of high-frequency vibrations, Journal of Sound and Vibration, 257, 207-246, 2002.
  • [16] Zhao, Y.B., Wei, G.W., Xiang, Y., Discrete singular convolution for the prediction of high frequency vibration of plates, International Journal of Solids and Structures, 39, 65-88, 2002.
  • [17] Zhao, Y.B., Wei, G.W., Xiang, Y., Plate vibration under irregular internal supports, International Journal of Solids and Structures, 39, 1361-1383, 2002.
  • [18] Zhao, Y.B., Wei, G.W., DSC analysis of rectangular plates with non-uniform boundary conditions, Journal of Sound and Vibration, 255, 203-228, 2002.
  • [19] Civalek, Ö., An efficient method for free vibration analysis of rotating truncated conical shells, International Journal of Pressure Vessels and Piping, 83, 1-12, 2006.
  • [20] Civalek, Ö., The determination of frequencies of laminated conical shells via the discrete singular convolution method, Journal of Mechanics of Materials and Structures, 1, 165- 192, 2006.
  • [21] Civalek, Ö., Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods, Applied Mathematical Modelling, 31, 606-624, 2007.
  • [22] Civalek, Ö., Free vibration analysis of composite conical shells using the discrete singular convolution algorithm, Steel and Composite Structures, 6, 353-366, 2006.
  • [23] Civalek, Ö., Three-dimensional vibration, buckling and bending analyses of thick rectangular plates based on discrete singular convolution method, International Journal of Mechanical Sciences, 49, 752-765, 2007
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Diğer ID JA66DK57MV
Bölüm Makaleler
Yazarlar

Engin Emsen

Kadir Mercan

Bekir Akgöz

Ömer Civalek

Yayımlanma Tarihi 1 Mart 2015
Yayımlandığı Sayı Yıl 2015 Cilt: 7 Sayı: 1

Kaynak Göster

APA Emsen, E., Mercan, K., Akgöz, B., Civalek, Ö. (2015). MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION. International Journal of Engineering and Applied Sciences, 7(1), 1-11. https://doi.org/10.24107/ijeas.251238
AMA Emsen E, Mercan K, Akgöz B, Civalek Ö. MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION. IJEAS. Mart 2015;7(1):1-11. doi:10.24107/ijeas.251238
Chicago Emsen, Engin, Kadir Mercan, Bekir Akgöz, ve Ömer Civalek. “MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION”. International Journal of Engineering and Applied Sciences 7, sy. 1 (Mart 2015): 1-11. https://doi.org/10.24107/ijeas.251238.
EndNote Emsen E, Mercan K, Akgöz B, Civalek Ö (01 Mart 2015) MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION. International Journal of Engineering and Applied Sciences 7 1 1–11.
IEEE E. Emsen, K. Mercan, B. Akgöz, ve Ö. Civalek, “MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION”, IJEAS, c. 7, sy. 1, ss. 1–11, 2015, doi: 10.24107/ijeas.251238.
ISNAD Emsen, Engin vd. “MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION”. International Journal of Engineering and Applied Sciences 7/1 (Mart 2015), 1-11. https://doi.org/10.24107/ijeas.251238.
JAMA Emsen E, Mercan K, Akgöz B, Civalek Ö. MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION. IJEAS. 2015;7:1–11.
MLA Emsen, Engin vd. “MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION”. International Journal of Engineering and Applied Sciences, c. 7, sy. 1, 2015, ss. 1-11, doi:10.24107/ijeas.251238.
Vancouver Emsen E, Mercan K, Akgöz B, Civalek Ö. MODAL ANALYSIS OF TAPERED BEAM-COLUMN EMBEDDED IN WINKLER ELASTIC FOUNDATION. IJEAS. 2015;7(1):1-11.

21357