Derleme
BibTex RIS Kaynak Göster

A Review on Occurrence, Risk Assessment and Removal of Pharmaceuticals in Hospital Effluents

Yıl 2025, Cilt: 12 Sayı: 1, 79 - 94, 31.03.2025

Öz

Hospital effluents contribute to pharmaceutical contamination in the environment, a global issue of grave concern because of the hazards it poses to organisms. Insights about the occurrence, risk and remediation of such contaminants will set the stage to combat this menace. This paper therefore provides review on the occurrence of pharmaceuticals in hospital effluents, the environmental risks they pose, and their remediation. It highlights the occurrence and fate of pharmaceuticals in hospital effluents, analytical determination of pharmaceuticals in effluents samples and the removal of pharmaceuticals in hospital effluents as proposed in 120 scholarly sites and databases within the years 2013 to 2024 using keywords like hospital effluents, pharmaceuticals, analytical determination, environmental risk assessment and treatment. The pathways of pharmaceuticals to and fro hospital effluents have been established. There are diverse and evolving methods for determination of pharmaceuticals in effluents; the choice depends on objective for analysis and availability. The concentrations of pharmaceuticals in hospital effluents are minute and depend on their properties, season and ecological processes. Risk levels of pharmaceuticals and depend on type of effluent, seasonal variation, organism and its use. Certain single secondary or tertiary treatment options or their combination are capable of removing pharmaceuticals in hospital effluents. Non-conventional treatment options are cost effective, eco-friendly and sustainable. Studies to ascertain the risk posed by pharmaceuticals in hospital effluents are required to inform policies necessary to regulate the management of hospital effluents.

Destekleyen Kurum

Jospong Group of Companies, Ghana

Kaynakça

  • Abdulrahman, S.A.M., Algethami, F.K., Qarah, N.A.S., Basavaiah, K., El-Maaiden, E. (2021). Development of non-aqueous titrimetric and spectrophotometric methods for the determination of valganciclovir hydrochloride in bulk drug and tablets. Annales Pharmaceutiques Françaises, 79(5), 489-499.
  • Abdulrahman, S.A.M., Devi, O.Z., Basavaiah, K., Vinay, K.B. (2016). Use of picric acid and iodine as electron acceptors for spectrophotometric determination of lansoprazole through a charge-transfer complexation reaction. Journal of Taibah University for Science, 10, 80-91.
  • Afsa, S., Hamden, K., Martin, P.A.L., Mansour, H.B. (2020). Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environmental Science and Pollution Research 27, 1941–1955.
  • Ågerstrand, M., Berg, C., Björlenius, B., Breitholtz, M., Brunström, B., Fick, J., Gunnarsson, L., Larsson, D.G.J., Sumpter, J.P., Tysklind, M., Rudén, C. (2015). Improving environmental risk assessment of human pharmaceuticals. Environmental Science and Technology, 49(9), 5336-5345.
  • Agilent Technologies, Inc. (2013). Sample preparation fundamentals for chromatography. Canada 5991-3326EN. Retrieved January 25 2022 from https://www.agilent.com/cs/library/primers/Public/5991-3326EN_SPHB.pdf.
  • Akin, B.S. (2016). Contaminant properties of hospital clinical laboratory wastewater: A physiochemical and microbiological assessment. Journal of Environmental Protection, 7, 635-642.
  • Al Aukidy, M., Al Chalabi, S., Verlicchi, P. (2017). Hospital wastewater treatments adopted in Asia, Africa, and Australia. In: Verlicchi, P. (Eds.), Hospital Wastewaters. The Handbook of Environmental Chemistry vol 60. SpringerCham.
  • Al Aukidy, M., Verlicchi, P., Voulvoulis, N. (2014). A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Science of the Total Environment, 493, 54-64.
  • Alfonso-Muniozguren, P., Serna-Galvis, E.A., Bussemaker, M., Torres-Palma, R.A., Lee, J. (2021). A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrasonics Sonochemistry, 76, 105656. https://doi.org/10.1016/j.ultsonch.2021.105656.
  • Alkahtani, M.Q., Morabet, R.E., Khan, R.A., Khan, A.R. (2024). Pharmaceuticals removal from hospital wastewater by fluidized aerobic bioreactor in combination with tubesettler. Scientific Reports 14, 24052.
  • Almuktar, S., Abed S.N., Scholz, M. (2018). Wetlands of wastewater and subsequent recycling of treated effluent: A review. Environmental Science and Pollution Research, 25, 23595-23623.
  • Al Qarni, H., Collier, P., O’Keeffe, J., Akunna J. (2016). Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. Environmental Science and Pollution Research, 23, 13003–13014.
  • Amouei, A., Asgharnia, H., Fallah, H., Faraji, H., Barari, R., Naghipour, D. (2015). Characteristics of effluent wastewater in hospitals of Babol University of Medical Sciences, Babol, Iran. Health Scope, 4(2), e23222.
  • AOS Treatment Solutions (2018). Tertiary treatment of wastewater – methods and process. Retrieved 12 January 2022 from https://aosts.com.
  • Arvaniti, O.S., Arvaniti, E.S., Gyparakis, S., Sabathianakis, I., Karagiannis, E., Pettas, E., Gkotsis, G., Nika, M.C., Thomaidis, N.S., Manios, T., Fountoulakis, M.S., Stasinakis, A.S. (2023). Occurrence of pharmaceuticals in the wastewater of a Greek hospital: Combining consumption data collection and LC-QTOF-MS analysis. Science of the Total Environment, 858, Part 3, 60153.
  • Ashfaq, M., Khan, K.N., Rehman, M.S.U., Mustafa, G., Nazar, M.F., Sun, Q., Iqbal, J., Mulla, S.I., Yu, C.P. (2017). Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicology and Environmental Safety, 136, 31-39.
  • Ashfaq, M., Noor, N., Saif Ur Rehman, M., Sun, Q., Mustafa, G., Nazar, M., Yu, C. (2017). Determination of commonly used pharmaceuticals in hospital waste and their ecological risk assessment. CLEAN - Soil Air Water, 45.
  • Aydin, S., Aydin, M.E., Ulvi, A., Kilic, H. (2018). Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environmental Science and Pollution Research (2019), 26, 544–558.
  • Azuma, T., Arima, N., Tsukada, A., Hirami S., Matsuoka, R., Moriwake, R., Ishiuchi, H., Inoyama, T., Teranishi, Y., Yamoako, M., Mino, Y., Hayasshi, T., Fujita, Y., Masada, M. (2016). Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. Science of the Total Environment, 548-549,189-197.
  • Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Guruge, K.S., Subedi, B. (2017). A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicology and Environmental Safety, 137, 113-120.
  • Bardsley, J. (2016). HPLC Winter Webinars Part 2: Sample preparation for HPLC. Thermo Fisher Scientific, Runcorn, UK. Retrieved 3 February 2022 from https://tools.thermofisher.com/content/sfs/brochures/WS-72217.
  • Basavaiah, K., Qarah, N.A.S., Abdulrahman, S.A.M. (2016). Application of cerium (IV) as an oxidimetric agent for the determination of ethionamide in pharmaceutical formulations. Journal of Pharmaceutic, 2016.
  • Basicmedicalkey (2016). Titrimetric and chemical analysis methods. Retrieved 15 February 2022 from https://basicmedicalkey.com.
  • Beek, T. aus der, Weber, F.A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823-835. Berkner, S., Schwirn, K., Voelker, D. (2016). Nanopharmaceuticals: Tiny challenges for the environmental risk assessment of pharmaceuticals. Environmental Toxicology and Chemistry, 35(4), 780-787.
  • Bernardo-Bermejo, S., Sánchez-López, E., Castro-Puyana, M., Marina, M.L. (2020). Chiral capillary electrophoresis. Trends in Analytical Chemistry, 124, 115807.
  • Bhangare, D., Rajput, N., Jadav, T., Sahu, A.K., Takade, R.K., Sengupta, P. (2022). Systematic strategies for degradation kinetic study of pharmaceuticals: an issue of utmost importance concerning current stability analysis practices. Journal of Analytical Science and Technology, 13, 7(2022).
  • Biancolillo, A., Marini, F. (2018). Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis. Frontier Chemistry, 6, 576.
  • Boulard, L., Dierkes, G., Ternes, T. (2018). Utilization of large volume zwitterionic hydrophilic interaction liquid chromatography for the analysis of polar pharmaceuticals in aqueous environmental samples: Benefits and limitations. Journal of Chromatography A, 1535, 27-43.
  • BUND (2020). Position paper: Pharmaceuticals in the environment. Bund für Umwelt und Naturschutz Deutschland e.V. (BUND), Friends of the Earth Germany. Retrieved 3 June 2024 from https://www.bund.net/fileadmin/user_upload_bund/publikationen/bund/position
  • Caban, M., Kumirska, J., Białk-Bielińska, A., Stepnowski, P. (2015). Analytical techniques for determining pharmaceutical residues in drinking water – State of art and future prospects. Current Analytical Chemistry, 12(999), 1-1.
  • Carmona, E., Andreu, V., Picó, Y. (2014). Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Science of the Total Environment, 484, 53-63.
  • Carraro, E., Bonetta, S., Bertine, C., Lorenzi, E., Bonetta, S., Gilli, G. (2016). Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management, 168, 185-199.
  • Carvalho, R.N., Arukwe, A., Ait-Aissa, S., Bado-Nilles, A., Balzamo, S., Baun, A., Belkin, S., Blaha, L., Brion, F., Conti, D., Creusot, N., Essig, Y., Ferrero, V.E.V., Flander-Putrle, V., Fürhacker, M., Grillari-Voglauer, R., Hogstrand, C., Jonáš, A., Kharlyngdoh, J.B., Loos, R., Lundebye, A., Modig, C., Olsson, P., Pillai, S., Polak, N., Potalivo, M., Sanchez, W., Schifferli, A., Schirmer, K., Sforzini, S., Stürzenbaum, S.R., Søfteland, L., Turk, V., Viarengo, A., Werner, I., Yagur-Kroll, S., Zounková, R., Lettieri, T. (2014). Mixtures of chemical pollutants at European Legislation Safety Concentrations: How safe are they? Toxicological Sciences, 141(1), 218–233.
  • Cedergreen, N. (2014). Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS One 9(5), e96580.
  • Chisvert, A., Benedé, J.L., Salvador, A. (2018). Current trends on the determination of UV filters in environmental water samples based on microextraction techniques – A review. Analytica Chimica Acta, 1034, 22-38. https://doi.org/10.1016/j.aca.2018.05.059.
  • Chonova, T., Keck, F., Labanowski, J., Montuelle, B., Rimet, F., Bouchez, A. (2016). Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities. Science of the Total Environment, 542, 965-975.
  • Claessens, M., Vanhaecke, L., Wille, K., Janssen, C.R. (2013). Emerging contaminants in Belgian marine waters: single toxicant and mixture risks of pharmaceuticals. Marine Pollution Bulletin, 71(1-2), 41–50.
  • Crini, G., Lichtfouse, E. (2018). Wastewater treatment: An overview. In: Crini G., Lichtfouse E. (ed.) Green adsorbents for pollutant removal. Environmental Chemistry for a Sustainable World, 18. Springer, Cham. Deryal, G., Korkmaz, N. E., Aksu, A., Başar, E., Balkıs, N. Ç., Gazioğlu, C., Özsoy, B. (2024). Presence of Pharmaceutical Residues in the Seawater of Arctic Archipelago: Assessing the Potential Routes of the Pharmaceutical Pollution. Turkish Journal of Fisheries and Aquatic Sciences, 24(12).
  • Deryal, G., Korkmaz, N.E., Aksu, A., Timuçin, K., Gazioğlu, C., Çağlar Balkıs. (2025). Presence and Environmental Risk Assessment of Fluoxetine and Serotonin Hormone in the Istanbul Strait, Türkiye. Int J Environ Res 19, 86, https://doi.org/10.1007/s41742-025-00760-4
  • Dires, S., Birhanuc, T., Ambelu, A., Sahilua, G. (2018). Antibiotic resistant bacteria removal of subsurface flow constructed wetlands from hospital wastewater. Journal of Environmental Chemical Engineering 6(4). DrugBank, (2006). DrugBank Online: Comprehensive drug database. Retrieved January 22, 2025, from https://go.drugbank.com/.
  • Eapen J.V., Thomas S., Antony S., George P., Antony J. (2024). A review of the effects of pharmaceutical pollutants on humans and aquatic ecosystem. Exploration of Drug Science, 2, 484–507.
  • Elimam, M.M., Shantier, S.W., Gadkariem, E.A., Mohamed, M.A. (2015). Derivative spectrophotometric methods for the analysis and stability studies of colistin sulphate, Journal of Chemistry, 2015.
  • Ensano, B.M.B., Borea, L., Naddeo, V., Belgiorno, V., De Luna, M.D.G., Ballesteros, F.C. (2017). Removal of pharmaceuticals from wastewater by intermittent electrocoagulation. Water, 9(2), 85.
  • Esseku, Y.Y. (2016). Ecopharmacovigilance in practice: Design of an intervention – The drug disposal flow diagram. (MPhil thesis). Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. European Commission (2019). Surface water: Supporting surface water ecosystems and protecting EU surface waters from chemical pollution. Retrieved 3 June 2024 from https://environment.ec.europa.eu/topics/water/
  • European Medicines Agency (2024). Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. EMEA/CHMP/SWP/4447/00 Rev. 1- Corr.* Committee for Medicinal Products for Human Use (CHMP) Retrieved 28 January 2025 from https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-revision-1_en.pdf. European Medicines Agency, (2015). Environmental risk-assessment of medicines. Retrieved 14 November 2021 from www.ema.europa.eu
  • Fahad, A., Mohamed, R.M.S.R., Saphira, M., Radhi, B., Al-Sahari, M. (2019). Wastewater and its treatment techniques: An ample review. Indian Journal of Science and Technology, 12(25), 13.
  • Fatimazahra, S., Latifa, M., Laila, S., Monsif, K. (2023). Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance. Environmental Monitoring and Assessment, 195, 393.
  • Fedaku, S., Alemayehu, E., Dewil, R., Van der Bruggen, B. (2019). Pharmaceuticals in freshwater aquatic environments. In: A comparison of the African and European challenge. Science of the Total Environment, 654, 324-337.
  • Gangaraju, G., Balakrishn, K., Uma, R.D., Shah, K.J. (2021). Introduction to conventional wastewater treatment technologies: Limitations and recent advances. In book: Advances in Wastewater Treatment I (pp.1-36), DOI:10.21741/9781644901144-1, Materials Research Foundations.
  • García, J., García-Galán, M.J., Day, J.W., Boopathy, R., White, J., Wallace, S., Hunter, R.G. (2020). A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technology, 307, 123228.
  • Gencer Balkis, B., Aksu, A., Ersoy Korkmaz, N., Taskin, O. S., Celen, C., Caglar Balkis, N. (2024). Synthesis of silica-chitosan nanocomposite for the removal of pharmaceuticals from the aqueous solution. International Journal of Environmental Science and Technology.
  • Ghime, D., Ghosh, P. (2020). Advanced oxidation processes. In book: A powerful treatment option for the removal of recalcitrant organic compounds. Retrieved 9 January 2022 from https://doi.org/10.5772/interchopen.90192.
  • Guerra, P., Kim, M., Shah, A., Alaee, M., Smyth, S.A. (2014). Occurrence and fate of antibiotics, analgesics/anti-inflammatory and antifungal compounds in five wastewater treatment processes. Science of the Total Environment, 473-474, 235-243.
  • Gunnarsson, L., Snape, J. R., Verbruggen, B., Owen, S.F., Kristiansson, E., Margiotta-Casaluci, L., Österlund, T., Hutchinson, K., Leverett, D., Marks, B., Tyler, C. (2019). Pharmacology beyond the patient – the environmental risks of human drugs. Environment International, 129, 320-332.
  • Gyesi, J.N., Nyaaba, B.A., Darko, G., Mills-Robertson, F.C., Miezah, K., Acheampong, N.A., Frimpong, F., Gyimah, G., Quansah, B., Borquaye, L.S. (2022). Occurrence of pharmaceutical residues and antibiotic-resistant bacteria in water and sediments from major reservoirs (Owabi and Barekese Dams) in Ghana. Journal of Chemistry, 2022, 1802204.
  • He, K., Borthwick, A.G., Lin, Y., Li, Y., Fu, J., Wong, Y., Liu, W. (2020). Sale-based estimation of pharmaceutical concentrations and associated environmental risk in the Japanese wastewater system. Environment International, 139, 105690.
  • Health Care Without Harm Europe (2021). Pharmaceutical residues in hospital wastewater: Five case studies from European hospitals. Retrieved 5 October 2023 from https://noharm-europe.org/sites/default/files Hernández-Tenorio, R., Guzmán-Mar, J.L., Hinojosa-Reyes, L., Ramos-Delgado, N., Hernández-Ramírez, A. (2021). Determination of pharmaceuticals discharged in wastewater from a public hospital using LC-MS/MS technique. Journal of the Mexican Chemical Society, 65(1), 94-108.
  • Hoi, B.V., Vu, C., Phung-Thi, L., Nguyen, T.T., Nguyen, P.T., Mai, H., Le, P., Nguyen, T., Duong, D.T., Thi, H.N., Le-Van, D., Chu, D.B. (2020). Determination of pharmaceutical residues by UPLC-MS/MS method: Validation and application on surface water and hospital wastewater. Journal of Analytical Methods in Chemistry, 2021. https://doi.org/10.1155/2021/6628285.
  • ICH (2015). Harmonised Tripartite Guideline. (2014). Validation of analytical procedure: Text and methodology Q2(R1). International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html Kaklamanos, G., Aprea, E., Theodoridis, G. (2020). 11 -Mass spectrometry: principles and instrumentation. In: Chemical Analysis of Food (Second Edition) Techniques and Applications, 525-552.
  • Kanakaraju, D., Glass, B.D., Oelgemöller, M. (2018). Advanced oxidation process – mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189-207.
  • Khan, A.H., Aziz, H.A., Khan, N.A., Ahmed, S., Mehtab, M.S., Vambol, S., Vambol, V., Changani, F., Islam, S. (2023). Pharmaceuticals of emerging concern in hospital wastewater: removal of ibuprofen and ofloxacin drugs using MBBR method. International Journal of Environmental Analytical Chemistry, 103(1), 140-154.
  • Kies, F.K., Boutchebak, S., Bendaida, N. (2019). Soil contamination by pharmaceutical pollutants: Adsorption of an antibiotic (amoxicillin) on an agricultural land. Proceedings 30(1):60.
  • Kim, C., Ryu, H.D., Chung, E.G., Kim, Y., Lee, J. (2018). A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry. Journal of Environmental Management 217, 629-645.
  • Kim, C., Ryu, H.D., Chung, E.G., Kim, Y. (2018). Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction. Journal of Chromatography B, 1084, 158-165.
  • Kosma, C.I., Kapsi, M.G., Konstas, P.G., Trantopoulos, E.P., Boti, V.I., Konstantinou, I.K., Albanis, T.A. (2020). Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. Environmental Research, 191, 110152.
  • Kosma, C.I., Lambropoulou, D.A., Albanis, T.A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Science of the Total Environment, 466-467, 421-38.
  • Kumari, A., Maurya, N.S., Tiwari, B. (2020). 15 - Hospital wastewater treatment scenario around the globe. Current Developments in Biotechnology and Bioengineering, 15, 549-570.
  • Kusturica, M.P., Jevtic, M., Ristovski, J.T. (2022). Minimizing the environmental impact of unused pharmaceuticals: Review focused on prevention. Frontiers in Environmental Science, 10.
  • Lee, D., Choi, K. (2019). Comparison of regulatory frameworks of environmental risk assessment s of human pharmaceuticals in EU, USA and Canada. Science of the Total Environment, 671, 1026-1035.
  • Li, Y., Gan, Z., Liu, Y., Chen, S., Su, S., Ding, S., Tran, N.H., Chen, X., Long, Z. (2020). Determination of 19 anthelmintics in environmental water and sediment using an optimized PLE and SPE method coupled with UHPLC-MS/MS. Science of the Total Environment, 719, 137516.
  • Lumbaque, E.C., Wilde, M.L., Lopes, F.A., Duarte, E.S.A., Tiburtius, E.R.L., Rodrigues, M.B., Sirtori, C. (2020). Degradation of a mixture of pharmaceuticals in hospital wastewater by a zero-valent scrap iron (ZVSI) combined reduction-oxidation process. Journal of Water Process Engineering, 37, 101410. https://doi.org/10.1016/j.jwpe.2020.101410.
  • Maghear, A. (2018). The Safer Pharma campaign to eliminate pharmaceuticals in the environment. Health Europa quarterly. Retrieved 15 February 2022 from https://www.healtheuropa.eu
  • Mahtab, M.S., Farooqi, I.H. (2022). An overview of occurrence and removal of pharmaceuticals from sewage/wastewater. IntechOpen. doi: 10.5772/intechopen.100352.
  • Majors, R.E. (2015). Trends in sample preparation. Special Issues, 33(11), 52–59. https://www.chromatographyonline.com/view/trends-sample-preparation-3.
  • Majumder, A., Gupta, A.K., Ghosai, P.S., Varma, M. (2021). A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms and SARS-CoV-2. Journal of Environment and Chemical Engineering, 9(2), 104812.
  • Mansouri, F., Chouchene, K., Roche, N., Ksibi, M. (2021). Removal of Pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Applied Sciences, 11(14), 6659.
  • Marin, E., Rusănescu, C.O. (2023). Agricultural use of urban sewage sludge from the wastewater station in the Municipality of Alexandria in Romania. Water, 15(3), 458.
  • MedlinePlus. (2021). Drugs, herbs, and supplements. U.S. National Library of Medicine. Retrieved January 22, 2025, from https://medlineplus.gov/.
  • Mendoza, A., Aceña, J., Pérez, S., De Alda, L.M., Barceló, D., Gil, A., Valcárcel, Y. (2015). Pharmaceuticals and iodated contrast medium in a hospital wastewater: A case study to analyse their presence and characterize their environmental risk and hazard. Environmental Research, 140, 225-241.
  • Modebrlu, U., Baby, B. (2019). Analytical techniques in pharmaceutical analysis for samples separation, characterization, determination and its handling. Journal of Drug Delivery and Therapeutics, 9(4), 607-622.
  • Montaseri, H., Forbes, P.B.C. (2018). Analytical techniques for the determination of acetaminophen: A review. Trends in Analytical Chemistry, 108, 122-134.
  • Moratalla, Á., Cotillas, S., Lacasa, E., Fernández-Marchante, C.M., Ruiz, S., Valladolid, A., Cañizares, P., Rodrigo, M.A., Sáez, C. (2022). Occurrence and toxicity impact of pharmaceuticals in hospital effluents: Simulation based on a case of study. Process Safety and Environmental Protection, 168, 10-21.
  • Mouele, E.S.M., Tijani, J.O., Badmus, K.O., Pereao, O., Babajide, O., Zhang, C., Shao, T., Sosnin, E., Tarasenko, V., Fatoba, O.O., Laatikainen, K., Petrik, L.F. (2021). Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods-A Review. International Journal of Environmental Research and Public Health, 18(4), 1683.
  • Munzhelele, E.P., Mudzielwana, R., Ayinde, W.B., Gitari, W.M. (2024). Pharmaceutical contaminants in wastewater and receiving water bodies of South Africa: A review of sources, pathways, occurrence, effects, and geographical distribution. Water, 16(6), 796.
  • Nasri, E., de la Vega, A.C.S., Martí, C.B., Mansour, H.B., Diaz-Cruz, M.S. (2024). Pharmaceuticals and personal care products in Tunisian hospital wastewater: occurrence and environmental risk. Environmental Science and Pollution Research 31, 2716–2731.
  • Nguyen, M.D., Thomas, M., Surapaneni, A., Moon, E.M., Milne, N.A. (2022). Beneficial reuse of water treatment sludge in the context of circular economy. Environmental Technology & Innovation, 28, 102651.
  • Niemi, L., Taggart, M., Boyd, K., Zhang, Z., Gaffney, P.P.J., Pfleger, S., Gibb, S. (2020). Assessing hospital impact on pharmaceutical levels in a rural ‘source-to-sink’ water system. Science of the Total Environment, 737, 139618.
  • OECD, (2019). Pharmaceutical Residues in Freshwater: Hazards and Policy Responses. OECD Studies on Water, OECD Publishing, Paris. Retieved 3 June 2024 from https://doi.org/10.1787/c936f42d-en
  • Oelkers, K., Floeter, C. (2019). The accessibility of data on environmental risk assessment of pharmaceuticals: Is the marketing authorization procedure in conflict with the international right of access to environmental information? Environmental Science Europe, 31(58).
  • Olvera-Néstor, C.G., Morales-Avila, E., Gómez-Olivan, L.M., Galár-Martínez, M., García-Medina, S., Neri-Cruz, N. (2016). Biomarkers of cytotoxic, genotoxic and apoptotic effects in Cyprinus carpio exposed to complex mixture of contaminants from hospital effluents. Bulletin of Environmental Contamination and Toxicology. 96, 326-332.
  • Oliveira, T.S., Al Aukidy, M., Verlicchi, P. (2017). Occurrence of common pollutants and pharmaceuticals in hospital effluents. Hospital Wastewaters 60:17-32 In book: The Handbook of Environmental Chemistry HEC.vol 60. 1SBN: n978-3-319-62177-7.
  • Orias, F. (2015). Contribution to the evaluation of the ecotoxicological risks of hospital effluents: bioconcentration, bioaccumulation and biomagnification of pharmaceutical residues. Ecotoxicologie. École Nationalle des Travaux Publics de l’État [ENTPE], Vaulx-en-Velin France.
  • Orias, F., Perrodin., Y. (2014). Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere 115, 31-39.
  • O’Sullivan-Carroll, E., Howlett, S., Pyne, C., Downing, P., Rafael, A., Lynch, M., Hogan, A.M., Moore, E.J. (2022). Determination of pharmaceuticals in surface and wastewater by capillary electrophoresis (CE): A Minireview. Analytical Letters, 55(3), 495-504.
  • Paíga, P., Correia, M., Fernandes, M.J., Silva, A., Carvalho, M., Vieira, J., Jorge, S., Silva, J.G., Freire, C., Delerue-Matos, C. (2019). Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Science of the Total Environment, 648, 582-600.
  • Papageorgiou, M., Zioris, I., Danis, T., Bikiaris, D., Lambropoulou, D. (2019). Comprehensive investigation of wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Science of the Total Environment, 694, 133565.
  • Paulus, G.K., Hornstra, L.M., Alygizakis, N., Slobodnik, J., Thomaidis, N., Medema, G. (2019). The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. International Journal for Hygiene and Environmental Health 222(4), 635-644.
  • Pereira, A.M.P.T., Silva, L.J.G., Lino, C.M., Meisel, L.M., Pena, A. (2017). A critical evaluation of different parameters for estimating pharmaceutical exposure seeking an improved environmental risk assessment. Science of the Total Environment, 603-604,226-236.
  • Pérez-Lemus, N., López-Serna, R., Pérez-Elvira, S.I., Barrado, E. (2019). Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Analytica Chimica Acta, 1083, 19-40. https://doi.org/10.1016/j.aca.2019.06.044.
  • Poole, C., Mester, Z., Miró, M., Pedersen-Bjergaard, S. Pawliszyn, J. (2017). Extraction for Analytical Scale Sample Preparation (IUPAC Technical Report). Pure and Applied Chemistry, 88. https://doi.org/10.1515/iupac.88.0365.
  • Prabhasnkar, V.P., Joshua, D.I., Balakrishna, K., Siddiqui, I.F., Taniyasu, S., Yamashita, N., Kannan, K., Akiba, M., Praveenkumarreddy, Y., Guruge, K.S. (2016). Removal rates of antibiotics in four sewage treatment plants in South India. Environmental Science and Pollution Research International, 23(9), 8679-8685.
  • Qarah, N., El-Maaiden, E. (2023). Spectrophotometric/Titrimetric Drug Analysis. IntechOpen. doi: 10.5772/intechopen.109364.
  • Qarah, N.A.S., Abdulrahman, S.A.M., Algethami, F.K., Basavaiah, K., El-Maaiden, E. (2020). New applications for amoxicillin determination in pure form and pharmaceuticals based on iodateiodide mixture: Titrimetry and spectroscopy studies. Quimica Nova, 43, 44-49.
  • Qarah, N.A.S., Basavaiah, K., Swamy, N. (2016). Ion-pair extractive spectrophotometric assay of terbinafine hydrochloride in pharmaceuticals and spiked urine using bromocresol purple. Journal of Applied Spectroscopy, 83, 694-702.
  • Qarah, N.A.S., Kanakapura, B., Nagaraju, S., Udigere, C. (2015). Assay of terbinafine hydrochloride by extractive-spectrophotometry with alizarin red SA modified approach. Eurasian Journal of Analytical Chemistry, 10(1), 34-45.
  • Reis, E.O., Foureaux, A.F.S., Rodrigues, J.S., Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S., Amaral, M.C.S., Lange, L.C. (2019). Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environmental Pollution, 250, 773-781.
  • Rodríguez-Llorente, D., Hernández, E., Gutiérrez-Sánchez, P., Navarro, P., Águeda, V.I., Álvarez-Torrellas, S., García, J., Larriba, M. (2023). Extraction of pharmaceuticals from hospital wastewater with eutectic solvents and terpenoids: Computational, experimental, and simulation studies. Chemical Engineering Journal, 451, Part 1.
  • Rodríguez-Serin, H., Gamez-Jara, A., De La Cruz-Noriega, M., Rojas-Flores, S., Rodriguez-Yupanqui, M., Gallozzo-Cardenas, M., Cruz-Monzon, J. (2022). Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater. International Journal of Environmental Research and Public Health, 19(20), 13105.
  • Rozman, D., Hrkal, Z., Eckardt, P., Novotná, E., Boukalová, Z. (2015). Pharmaceuticals in groundwaters: A case study of the psychiatric hospital at HorníBeřkovice, Czech Republic. Environmental Earth Sciences 73(7):3775-3784.
  • Sadutto, D., Picó, Y. (2020). Sample preparation to determine pharmaceutical and personal care products in an all-water matrix: Solid phase extraction. Molecules, 25, 5204. http://creativecommons.org/licenses/by/4.0/.
  • Santos, L.H.M.L.M., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., Montenegro, M.C.B.S.M. (2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Science of the Total Environment, 461–462, 302-316.
  • Selim, M.I., Shawky, M., Wooten, A., Rushing B. (2016). Comparison of LC–MS and GC–MS for the analysis of pharmaceuticals and personal care products in surface water and treated wastewaters. Spectrometry solutions for materials, Special Issues-07-01-2016, 14(3), 8–14. Retrieved 24 September 2023 from https://www.spectroscopyonline.com
  • Serna-Galvis, E.A., Botero-Coy, A.M., Rosero-Moreano, M, Lee J, Hernández F, Torres-Palma R.A. (2022). An initial approach to the presence of pharmaceuticals in wastewater from hospitals in Colombia and their environmental risk. Water. 2022; 14(6):950.
  • Shahid, M.K., Kashif, A., Fuwad, A., Choi, Y. (2021). Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coordination Chemistry Reviews, 442, 213993. Shantier, W.S. (2020). Drug Analysis. IntechOpen. doi: 10.5772/intechopen.88739.
  • Shantier, S.W., Gadkariem, E.A. (2014). Colorimetric determination of cefquinome sulphate in bulk and dosage form using ammonium molybdate. American Journal of Applied Sciences, 11(2), 202-206.
  • Shantier, S.W., Gadkriem, E.A. (2014). Differential spectrophotometric method for determination of cefquinome sulphate. British Journal of Pharmaceutical Research, 4(5), 617-625.
  • Siddiqui, M.R., AlOthman, Z.A., Rahman, N. (2017). Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry, 10(1), S1409-S1421.
  • Simazaki, D., Kubota, R., Suzuki, T., Akiba, M., Nishimura, T., Kunikane, S. (2015). Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Research, 76, 187-200.
  • Souza, F.S., Féris, L.A. (2016). Hospital and Municipal Wastewater: Identification of Relevant Pharmaceutical Compounds. Water Environment Research, 88(9), 871–877.
  • Spilsbury, F., Kisielius, V., Bester, K., Backhaus, T. (2024). Ecotoxicological mixture risk assessment of 35 pharmaceuticals in wastewater effluents following post-treatment with ozone and/or granulated activated carbon. Science of the Total Environment, 906, 167440.
  • Stanbury, P.F., Whitaker, A., Hall, S.J. (2017). Effluent treatment. In book: Principles of fermentation technology 3rd edn. Chapter 11, 687-723 ISBN 978-0-08-099953-1.00011-9.
  • Stenuick, J.Y. (2021). Pharmaceutical residues in hospital wastewater: Five case studies from European hospitals. Health Care Without Harm. Retrieved 3 June 2024 from https://noharm-europe.org/sites/default/files/documents
  • Thakur, P., Thakur, U., Kaushal, P., Ankalgi, A.D., Kumar, P., Kapoor, A., Ashawat, M.S. (2021). A Review on GC-MS Hyphenated Technique. Asian Journal of Pharmaceutical Analysis, 11(4), 285-2.
  • Timraz, K., Xiong, Y., Al Qarni, H., Hong, P.Y. (2017). Removal of bacterial cells, antibiotic resistance genes and integrase genes by on-site hospital wastewater treatment plants: surveillance of treated hospital effluent quality. Environmental Science: Water Research and Technology, 3(2), 293-303.
  • Tobolkina, E., Rudaz, S. (2021). Capillary electrophoresis instruments for medical applications and falsified drug analysis/quality control in developing countries. Analytical Chemistry, 93(23), 8107-8115.
  • Ulvi, A., Aydın, S., Aydın, M.E. (2022). Fate of selected pharmaceuticals in hospital and municipal wastewater effluent: occurrence, removal, and environmental risk assessment. Environmental Science and Pollution Research, 29, 75609–75625.
  • United States Environmental Protection Agency, (2018). What is a wetland? Wetlands Protection and Restoration, US EPA. Retrieved 27 October 2021 from www.epa.gov
  • Vaudreuil, M.A., Duy, S.V., Munoz, G., Sauvé, S. (2022). Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. Science of the Total Environment, 846, 157353.
  • Verlicchi, P. (2016). Pharmaceutical concentrations and loads in hospital effluents: Is a predictive model or direct measurement the most accurate approach? In: Verlicchi, P. (eds) Hospital Wastewaters. The Handbook of Environmental Chemistry, vol 60. Springer, Cham.
  • Verlicchi, P., Al Aukidy, M., Zambello, E. (2015). What have we learned from worldwide experiences on the management and treatment of hospital wastewater? – An overview. Science of the Total Environment, 514, 467-491.
  • Vieira, Y., Pereira, H.A., Leichtweis, J., Mistura, C.M., Foletto, E.L., Oliveira, L.F.S., Dotto, G.L. (2021). Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation. Science of the Total Environment, 783, 146991.
  • Voeten, R.L.C., Ventouri, I.K., Haselberg, R., Somsen, G.W. (2018). Capillary electrophoresis: Trends and recent advances. Analytical Chemistry 90(3), 1464-1481.
  • Vumazonke, S., Khamanga, S.M., Ngqwala, N.P. (2020). Detection of Pharmaceutical Residues in Surface Waters of the Eastern Cape Province. International Journal of Environmental Research and Public Health, 17(11), 4067.
  • Walter, S., Mitkidis, K. (2018). The risk assessment of pharmaceuticals in environment: EU and US Regulatory Approach. European Journal of Risk Regulation 9(3):527-547.
  • Wang, M. (2023). The development of pharmaceutical analysis: Improving drug safety and development. Journal of Analytical and Bioanalytical Techniques 14, 526.
  • Wiafe, S., Nooni, I.K., Appiah Boateng, K., Nlasia, M.S., Fianko, S.K. (2016). Clinical liquid waste management in three Ghanaian healthcare facilities – A case study of Sunyani Municipality. British Journal of Environmental Sciences 4(1), 11-34.
  • Wiest, L., Chonova, T., Bergé, A., Baudot, R., Bessueille-Barbier, F., Ayouni-Derouich, L., Vulliet, E. (2018). Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environmental Science and Pollution Research, 25 (10), 9207-9218.
  • Wu, D., Sui, Q., Yu, X., Zhao, W., Li, Q., Fatta-Kassinos, D., Lyu, S. (2021). Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China. Science of the Total Environment, 753, 141653.
  • Wu, M., Xiang, J., Que, C., Chen, F., Xu, G. (2015). Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China. Chemosphere 138, 486-493.
  • Yadav, B., Pandey, A.K., Kumar, L.R., Kaur, R., Yellapu, S.K., Sellamuthu, B., Tyagi, R.D., Drogui, P. (2020) 1 – Introduction to wastewater microbiology: special emphasis on hospital wastewater. Current Developments in Biotechnology and Bioengineering, 2020, 1-41.
  • Youssef, S.H., Mohamed, D., Hegazy, M., Badawey, A. (2019). Analytical methods for the determination of paracetamol, pseudoephedrine and brompheniramine in Comtrex tablets. BMC Chemistry, 13(1), 78.
  • Zhu, X., Jiang, L., Wang, Y., Ji, X., Zhang, D., Xu, G., Wu, D., Li, A., Xie, X. (2022). Validation and application of diffusive gradient in thin-film (DGT) equipped novel cyclodextrin polymer gels for monitoring endocrine disrupting chemicals (EDCs) and environmental risk assessment in the Taihu lake basin. Environmental Research, 212, Part D, 113391.
  • Zhu, Y., Snape, J., Jones, K., Sweetman, A. (2019). Spatially explicit large-scale environmental risk assessment of pharmaceuticals in surface water in China. Environmental Science and Technology 53(5), 2559-2569.
Yıl 2025, Cilt: 12 Sayı: 1, 79 - 94, 31.03.2025

Öz

Kaynakça

  • Abdulrahman, S.A.M., Algethami, F.K., Qarah, N.A.S., Basavaiah, K., El-Maaiden, E. (2021). Development of non-aqueous titrimetric and spectrophotometric methods for the determination of valganciclovir hydrochloride in bulk drug and tablets. Annales Pharmaceutiques Françaises, 79(5), 489-499.
  • Abdulrahman, S.A.M., Devi, O.Z., Basavaiah, K., Vinay, K.B. (2016). Use of picric acid and iodine as electron acceptors for spectrophotometric determination of lansoprazole through a charge-transfer complexation reaction. Journal of Taibah University for Science, 10, 80-91.
  • Afsa, S., Hamden, K., Martin, P.A.L., Mansour, H.B. (2020). Occurrence of 40 pharmaceutically active compounds in hospital and urban wastewaters and their contribution to Mahdia coastal seawater contamination. Environmental Science and Pollution Research 27, 1941–1955.
  • Ågerstrand, M., Berg, C., Björlenius, B., Breitholtz, M., Brunström, B., Fick, J., Gunnarsson, L., Larsson, D.G.J., Sumpter, J.P., Tysklind, M., Rudén, C. (2015). Improving environmental risk assessment of human pharmaceuticals. Environmental Science and Technology, 49(9), 5336-5345.
  • Agilent Technologies, Inc. (2013). Sample preparation fundamentals for chromatography. Canada 5991-3326EN. Retrieved January 25 2022 from https://www.agilent.com/cs/library/primers/Public/5991-3326EN_SPHB.pdf.
  • Akin, B.S. (2016). Contaminant properties of hospital clinical laboratory wastewater: A physiochemical and microbiological assessment. Journal of Environmental Protection, 7, 635-642.
  • Al Aukidy, M., Al Chalabi, S., Verlicchi, P. (2017). Hospital wastewater treatments adopted in Asia, Africa, and Australia. In: Verlicchi, P. (Eds.), Hospital Wastewaters. The Handbook of Environmental Chemistry vol 60. SpringerCham.
  • Al Aukidy, M., Verlicchi, P., Voulvoulis, N. (2014). A framework for the assessment of the environmental risk posed by pharmaceuticals originating from hospital effluents. Science of the Total Environment, 493, 54-64.
  • Alfonso-Muniozguren, P., Serna-Galvis, E.A., Bussemaker, M., Torres-Palma, R.A., Lee, J. (2021). A review on pharmaceuticals removal from waters by single and combined biological, membrane filtration and ultrasound systems. Ultrasonics Sonochemistry, 76, 105656. https://doi.org/10.1016/j.ultsonch.2021.105656.
  • Alkahtani, M.Q., Morabet, R.E., Khan, R.A., Khan, A.R. (2024). Pharmaceuticals removal from hospital wastewater by fluidized aerobic bioreactor in combination with tubesettler. Scientific Reports 14, 24052.
  • Almuktar, S., Abed S.N., Scholz, M. (2018). Wetlands of wastewater and subsequent recycling of treated effluent: A review. Environmental Science and Pollution Research, 25, 23595-23623.
  • Al Qarni, H., Collier, P., O’Keeffe, J., Akunna J. (2016). Investigating the removal of some pharmaceutical compounds in hospital wastewater treatment plants operating in Saudi Arabia. Environmental Science and Pollution Research, 23, 13003–13014.
  • Amouei, A., Asgharnia, H., Fallah, H., Faraji, H., Barari, R., Naghipour, D. (2015). Characteristics of effluent wastewater in hospitals of Babol University of Medical Sciences, Babol, Iran. Health Scope, 4(2), e23222.
  • AOS Treatment Solutions (2018). Tertiary treatment of wastewater – methods and process. Retrieved 12 January 2022 from https://aosts.com.
  • Arvaniti, O.S., Arvaniti, E.S., Gyparakis, S., Sabathianakis, I., Karagiannis, E., Pettas, E., Gkotsis, G., Nika, M.C., Thomaidis, N.S., Manios, T., Fountoulakis, M.S., Stasinakis, A.S. (2023). Occurrence of pharmaceuticals in the wastewater of a Greek hospital: Combining consumption data collection and LC-QTOF-MS analysis. Science of the Total Environment, 858, Part 3, 60153.
  • Ashfaq, M., Khan, K.N., Rehman, M.S.U., Mustafa, G., Nazar, M.F., Sun, Q., Iqbal, J., Mulla, S.I., Yu, C.P. (2017). Ecological risk assessment of pharmaceuticals in the receiving environment of pharmaceutical wastewater in Pakistan. Ecotoxicology and Environmental Safety, 136, 31-39.
  • Ashfaq, M., Noor, N., Saif Ur Rehman, M., Sun, Q., Mustafa, G., Nazar, M., Yu, C. (2017). Determination of commonly used pharmaceuticals in hospital waste and their ecological risk assessment. CLEAN - Soil Air Water, 45.
  • Aydin, S., Aydin, M.E., Ulvi, A., Kilic, H. (2018). Antibiotics in hospital effluents: occurrence, contribution to urban wastewater, removal in a wastewater treatment plant, and environmental risk assessment. Environmental Science and Pollution Research (2019), 26, 544–558.
  • Azuma, T., Arima, N., Tsukada, A., Hirami S., Matsuoka, R., Moriwake, R., Ishiuchi, H., Inoyama, T., Teranishi, Y., Yamoako, M., Mino, Y., Hayasshi, T., Fujita, Y., Masada, M. (2016). Detection of pharmaceuticals and phytochemicals together with their metabolites in hospital effluents in Japan, and their contribution to sewage treatment plant influents. Science of the Total Environment, 548-549,189-197.
  • Balakrishna, K., Rath, A., Praveenkumarreddy, Y., Guruge, K.S., Subedi, B. (2017). A review of the occurrence of pharmaceuticals and personal care products in Indian water bodies. Ecotoxicology and Environmental Safety, 137, 113-120.
  • Bardsley, J. (2016). HPLC Winter Webinars Part 2: Sample preparation for HPLC. Thermo Fisher Scientific, Runcorn, UK. Retrieved 3 February 2022 from https://tools.thermofisher.com/content/sfs/brochures/WS-72217.
  • Basavaiah, K., Qarah, N.A.S., Abdulrahman, S.A.M. (2016). Application of cerium (IV) as an oxidimetric agent for the determination of ethionamide in pharmaceutical formulations. Journal of Pharmaceutic, 2016.
  • Basicmedicalkey (2016). Titrimetric and chemical analysis methods. Retrieved 15 February 2022 from https://basicmedicalkey.com.
  • Beek, T. aus der, Weber, F.A., Bergmann, A., Hickmann, S., Ebert, I., Hein, A., Küster, A. (2016). Pharmaceuticals in the environment—Global occurrences and perspectives. Environmental Toxicology and Chemistry, 35(4), 823-835. Berkner, S., Schwirn, K., Voelker, D. (2016). Nanopharmaceuticals: Tiny challenges for the environmental risk assessment of pharmaceuticals. Environmental Toxicology and Chemistry, 35(4), 780-787.
  • Bernardo-Bermejo, S., Sánchez-López, E., Castro-Puyana, M., Marina, M.L. (2020). Chiral capillary electrophoresis. Trends in Analytical Chemistry, 124, 115807.
  • Bhangare, D., Rajput, N., Jadav, T., Sahu, A.K., Takade, R.K., Sengupta, P. (2022). Systematic strategies for degradation kinetic study of pharmaceuticals: an issue of utmost importance concerning current stability analysis practices. Journal of Analytical Science and Technology, 13, 7(2022).
  • Biancolillo, A., Marini, F. (2018). Chemometric Methods for Spectroscopy-Based Pharmaceutical Analysis. Frontier Chemistry, 6, 576.
  • Boulard, L., Dierkes, G., Ternes, T. (2018). Utilization of large volume zwitterionic hydrophilic interaction liquid chromatography for the analysis of polar pharmaceuticals in aqueous environmental samples: Benefits and limitations. Journal of Chromatography A, 1535, 27-43.
  • BUND (2020). Position paper: Pharmaceuticals in the environment. Bund für Umwelt und Naturschutz Deutschland e.V. (BUND), Friends of the Earth Germany. Retrieved 3 June 2024 from https://www.bund.net/fileadmin/user_upload_bund/publikationen/bund/position
  • Caban, M., Kumirska, J., Białk-Bielińska, A., Stepnowski, P. (2015). Analytical techniques for determining pharmaceutical residues in drinking water – State of art and future prospects. Current Analytical Chemistry, 12(999), 1-1.
  • Carmona, E., Andreu, V., Picó, Y. (2014). Occurrence of acidic pharmaceuticals and personal care products in Turia River Basin: From waste to drinking water. Science of the Total Environment, 484, 53-63.
  • Carraro, E., Bonetta, S., Bertine, C., Lorenzi, E., Bonetta, S., Gilli, G. (2016). Hospital effluents management: chemical, physical, microbiological risks and legislation in different countries. Journal of Environmental Management, 168, 185-199.
  • Carvalho, R.N., Arukwe, A., Ait-Aissa, S., Bado-Nilles, A., Balzamo, S., Baun, A., Belkin, S., Blaha, L., Brion, F., Conti, D., Creusot, N., Essig, Y., Ferrero, V.E.V., Flander-Putrle, V., Fürhacker, M., Grillari-Voglauer, R., Hogstrand, C., Jonáš, A., Kharlyngdoh, J.B., Loos, R., Lundebye, A., Modig, C., Olsson, P., Pillai, S., Polak, N., Potalivo, M., Sanchez, W., Schifferli, A., Schirmer, K., Sforzini, S., Stürzenbaum, S.R., Søfteland, L., Turk, V., Viarengo, A., Werner, I., Yagur-Kroll, S., Zounková, R., Lettieri, T. (2014). Mixtures of chemical pollutants at European Legislation Safety Concentrations: How safe are they? Toxicological Sciences, 141(1), 218–233.
  • Cedergreen, N. (2014). Quantifying synergy: A systematic review of mixture toxicity studies within environmental toxicology. PLoS One 9(5), e96580.
  • Chisvert, A., Benedé, J.L., Salvador, A. (2018). Current trends on the determination of UV filters in environmental water samples based on microextraction techniques – A review. Analytica Chimica Acta, 1034, 22-38. https://doi.org/10.1016/j.aca.2018.05.059.
  • Chonova, T., Keck, F., Labanowski, J., Montuelle, B., Rimet, F., Bouchez, A. (2016). Separate treatment of hospital and urban wastewaters: A real scale comparison of effluents and their effect on microbial communities. Science of the Total Environment, 542, 965-975.
  • Claessens, M., Vanhaecke, L., Wille, K., Janssen, C.R. (2013). Emerging contaminants in Belgian marine waters: single toxicant and mixture risks of pharmaceuticals. Marine Pollution Bulletin, 71(1-2), 41–50.
  • Crini, G., Lichtfouse, E. (2018). Wastewater treatment: An overview. In: Crini G., Lichtfouse E. (ed.) Green adsorbents for pollutant removal. Environmental Chemistry for a Sustainable World, 18. Springer, Cham. Deryal, G., Korkmaz, N. E., Aksu, A., Başar, E., Balkıs, N. Ç., Gazioğlu, C., Özsoy, B. (2024). Presence of Pharmaceutical Residues in the Seawater of Arctic Archipelago: Assessing the Potential Routes of the Pharmaceutical Pollution. Turkish Journal of Fisheries and Aquatic Sciences, 24(12).
  • Deryal, G., Korkmaz, N.E., Aksu, A., Timuçin, K., Gazioğlu, C., Çağlar Balkıs. (2025). Presence and Environmental Risk Assessment of Fluoxetine and Serotonin Hormone in the Istanbul Strait, Türkiye. Int J Environ Res 19, 86, https://doi.org/10.1007/s41742-025-00760-4
  • Dires, S., Birhanuc, T., Ambelu, A., Sahilua, G. (2018). Antibiotic resistant bacteria removal of subsurface flow constructed wetlands from hospital wastewater. Journal of Environmental Chemical Engineering 6(4). DrugBank, (2006). DrugBank Online: Comprehensive drug database. Retrieved January 22, 2025, from https://go.drugbank.com/.
  • Eapen J.V., Thomas S., Antony S., George P., Antony J. (2024). A review of the effects of pharmaceutical pollutants on humans and aquatic ecosystem. Exploration of Drug Science, 2, 484–507.
  • Elimam, M.M., Shantier, S.W., Gadkariem, E.A., Mohamed, M.A. (2015). Derivative spectrophotometric methods for the analysis and stability studies of colistin sulphate, Journal of Chemistry, 2015.
  • Ensano, B.M.B., Borea, L., Naddeo, V., Belgiorno, V., De Luna, M.D.G., Ballesteros, F.C. (2017). Removal of pharmaceuticals from wastewater by intermittent electrocoagulation. Water, 9(2), 85.
  • Esseku, Y.Y. (2016). Ecopharmacovigilance in practice: Design of an intervention – The drug disposal flow diagram. (MPhil thesis). Kwame Nkrumah University of Science and Technology, Kumasi, Ghana. European Commission (2019). Surface water: Supporting surface water ecosystems and protecting EU surface waters from chemical pollution. Retrieved 3 June 2024 from https://environment.ec.europa.eu/topics/water/
  • European Medicines Agency (2024). Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use. EMEA/CHMP/SWP/4447/00 Rev. 1- Corr.* Committee for Medicinal Products for Human Use (CHMP) Retrieved 28 January 2025 from https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-environmental-risk-assessment-medicinal-products-human-use-revision-1_en.pdf. European Medicines Agency, (2015). Environmental risk-assessment of medicines. Retrieved 14 November 2021 from www.ema.europa.eu
  • Fahad, A., Mohamed, R.M.S.R., Saphira, M., Radhi, B., Al-Sahari, M. (2019). Wastewater and its treatment techniques: An ample review. Indian Journal of Science and Technology, 12(25), 13.
  • Fatimazahra, S., Latifa, M., Laila, S., Monsif, K. (2023). Review of hospital effluents: special emphasis on characterization, impact, and treatment of pollutants and antibiotic resistance. Environmental Monitoring and Assessment, 195, 393.
  • Fedaku, S., Alemayehu, E., Dewil, R., Van der Bruggen, B. (2019). Pharmaceuticals in freshwater aquatic environments. In: A comparison of the African and European challenge. Science of the Total Environment, 654, 324-337.
  • Gangaraju, G., Balakrishn, K., Uma, R.D., Shah, K.J. (2021). Introduction to conventional wastewater treatment technologies: Limitations and recent advances. In book: Advances in Wastewater Treatment I (pp.1-36), DOI:10.21741/9781644901144-1, Materials Research Foundations.
  • García, J., García-Galán, M.J., Day, J.W., Boopathy, R., White, J., Wallace, S., Hunter, R.G. (2020). A review of emerging organic contaminants (EOCs), antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) in the environment: Increasing removal with wetlands and reducing environmental impacts. Bioresource Technology, 307, 123228.
  • Gencer Balkis, B., Aksu, A., Ersoy Korkmaz, N., Taskin, O. S., Celen, C., Caglar Balkis, N. (2024). Synthesis of silica-chitosan nanocomposite for the removal of pharmaceuticals from the aqueous solution. International Journal of Environmental Science and Technology.
  • Ghime, D., Ghosh, P. (2020). Advanced oxidation processes. In book: A powerful treatment option for the removal of recalcitrant organic compounds. Retrieved 9 January 2022 from https://doi.org/10.5772/interchopen.90192.
  • Guerra, P., Kim, M., Shah, A., Alaee, M., Smyth, S.A. (2014). Occurrence and fate of antibiotics, analgesics/anti-inflammatory and antifungal compounds in five wastewater treatment processes. Science of the Total Environment, 473-474, 235-243.
  • Gunnarsson, L., Snape, J. R., Verbruggen, B., Owen, S.F., Kristiansson, E., Margiotta-Casaluci, L., Österlund, T., Hutchinson, K., Leverett, D., Marks, B., Tyler, C. (2019). Pharmacology beyond the patient – the environmental risks of human drugs. Environment International, 129, 320-332.
  • Gyesi, J.N., Nyaaba, B.A., Darko, G., Mills-Robertson, F.C., Miezah, K., Acheampong, N.A., Frimpong, F., Gyimah, G., Quansah, B., Borquaye, L.S. (2022). Occurrence of pharmaceutical residues and antibiotic-resistant bacteria in water and sediments from major reservoirs (Owabi and Barekese Dams) in Ghana. Journal of Chemistry, 2022, 1802204.
  • He, K., Borthwick, A.G., Lin, Y., Li, Y., Fu, J., Wong, Y., Liu, W. (2020). Sale-based estimation of pharmaceutical concentrations and associated environmental risk in the Japanese wastewater system. Environment International, 139, 105690.
  • Health Care Without Harm Europe (2021). Pharmaceutical residues in hospital wastewater: Five case studies from European hospitals. Retrieved 5 October 2023 from https://noharm-europe.org/sites/default/files Hernández-Tenorio, R., Guzmán-Mar, J.L., Hinojosa-Reyes, L., Ramos-Delgado, N., Hernández-Ramírez, A. (2021). Determination of pharmaceuticals discharged in wastewater from a public hospital using LC-MS/MS technique. Journal of the Mexican Chemical Society, 65(1), 94-108.
  • Hoi, B.V., Vu, C., Phung-Thi, L., Nguyen, T.T., Nguyen, P.T., Mai, H., Le, P., Nguyen, T., Duong, D.T., Thi, H.N., Le-Van, D., Chu, D.B. (2020). Determination of pharmaceutical residues by UPLC-MS/MS method: Validation and application on surface water and hospital wastewater. Journal of Analytical Methods in Chemistry, 2021. https://doi.org/10.1155/2021/6628285.
  • ICH (2015). Harmonised Tripartite Guideline. (2014). Validation of analytical procedure: Text and methodology Q2(R1). International conference on harmonization of technical requirements for registration of pharmaceuticals for human use. http://www.ich.org/products/guidelines/quality/article/quality-guidelines.html Kaklamanos, G., Aprea, E., Theodoridis, G. (2020). 11 -Mass spectrometry: principles and instrumentation. In: Chemical Analysis of Food (Second Edition) Techniques and Applications, 525-552.
  • Kanakaraju, D., Glass, B.D., Oelgemöller, M. (2018). Advanced oxidation process – mediated removal of pharmaceuticals from water: A review. Journal of Environmental Management, 219, 189-207.
  • Khan, A.H., Aziz, H.A., Khan, N.A., Ahmed, S., Mehtab, M.S., Vambol, S., Vambol, V., Changani, F., Islam, S. (2023). Pharmaceuticals of emerging concern in hospital wastewater: removal of ibuprofen and ofloxacin drugs using MBBR method. International Journal of Environmental Analytical Chemistry, 103(1), 140-154.
  • Kies, F.K., Boutchebak, S., Bendaida, N. (2019). Soil contamination by pharmaceutical pollutants: Adsorption of an antibiotic (amoxicillin) on an agricultural land. Proceedings 30(1):60.
  • Kim, C., Ryu, H.D., Chung, E.G., Kim, Y., Lee, J. (2018). A review of analytical procedures for the simultaneous determination of medically important veterinary antibiotics in environmental water: Sample preparation, liquid chromatography, and mass spectrometry. Journal of Environmental Management 217, 629-645.
  • Kim, C., Ryu, H.D., Chung, E.G., Kim, Y. (2018). Determination of 18 veterinary antibiotics in environmental water using high-performance liquid chromatography-q-orbitrap combined with on-line solid-phase extraction. Journal of Chromatography B, 1084, 158-165.
  • Kosma, C.I., Kapsi, M.G., Konstas, P.G., Trantopoulos, E.P., Boti, V.I., Konstantinou, I.K., Albanis, T.A. (2020). Assessment of multiclass pharmaceutical active compounds (PhACs) in hospital WWTP influent and effluent samples by UHPLC-Orbitrap MS: Temporal variation, removals and environmental risk assessment. Environmental Research, 191, 110152.
  • Kosma, C.I., Lambropoulou, D.A., Albanis, T.A. (2014). Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Science of the Total Environment, 466-467, 421-38.
  • Kumari, A., Maurya, N.S., Tiwari, B. (2020). 15 - Hospital wastewater treatment scenario around the globe. Current Developments in Biotechnology and Bioengineering, 15, 549-570.
  • Kusturica, M.P., Jevtic, M., Ristovski, J.T. (2022). Minimizing the environmental impact of unused pharmaceuticals: Review focused on prevention. Frontiers in Environmental Science, 10.
  • Lee, D., Choi, K. (2019). Comparison of regulatory frameworks of environmental risk assessment s of human pharmaceuticals in EU, USA and Canada. Science of the Total Environment, 671, 1026-1035.
  • Li, Y., Gan, Z., Liu, Y., Chen, S., Su, S., Ding, S., Tran, N.H., Chen, X., Long, Z. (2020). Determination of 19 anthelmintics in environmental water and sediment using an optimized PLE and SPE method coupled with UHPLC-MS/MS. Science of the Total Environment, 719, 137516.
  • Lumbaque, E.C., Wilde, M.L., Lopes, F.A., Duarte, E.S.A., Tiburtius, E.R.L., Rodrigues, M.B., Sirtori, C. (2020). Degradation of a mixture of pharmaceuticals in hospital wastewater by a zero-valent scrap iron (ZVSI) combined reduction-oxidation process. Journal of Water Process Engineering, 37, 101410. https://doi.org/10.1016/j.jwpe.2020.101410.
  • Maghear, A. (2018). The Safer Pharma campaign to eliminate pharmaceuticals in the environment. Health Europa quarterly. Retrieved 15 February 2022 from https://www.healtheuropa.eu
  • Mahtab, M.S., Farooqi, I.H. (2022). An overview of occurrence and removal of pharmaceuticals from sewage/wastewater. IntechOpen. doi: 10.5772/intechopen.100352.
  • Majors, R.E. (2015). Trends in sample preparation. Special Issues, 33(11), 52–59. https://www.chromatographyonline.com/view/trends-sample-preparation-3.
  • Majumder, A., Gupta, A.K., Ghosai, P.S., Varma, M. (2021). A review on hospital wastewater treatment: A special emphasis on occurrence and removal of pharmaceutically active compounds, resistant microorganisms and SARS-CoV-2. Journal of Environment and Chemical Engineering, 9(2), 104812.
  • Mansouri, F., Chouchene, K., Roche, N., Ksibi, M. (2021). Removal of Pharmaceuticals from water by adsorption and advanced oxidation processes: State of the art and trends. Applied Sciences, 11(14), 6659.
  • Marin, E., Rusănescu, C.O. (2023). Agricultural use of urban sewage sludge from the wastewater station in the Municipality of Alexandria in Romania. Water, 15(3), 458.
  • MedlinePlus. (2021). Drugs, herbs, and supplements. U.S. National Library of Medicine. Retrieved January 22, 2025, from https://medlineplus.gov/.
  • Mendoza, A., Aceña, J., Pérez, S., De Alda, L.M., Barceló, D., Gil, A., Valcárcel, Y. (2015). Pharmaceuticals and iodated contrast medium in a hospital wastewater: A case study to analyse their presence and characterize their environmental risk and hazard. Environmental Research, 140, 225-241.
  • Modebrlu, U., Baby, B. (2019). Analytical techniques in pharmaceutical analysis for samples separation, characterization, determination and its handling. Journal of Drug Delivery and Therapeutics, 9(4), 607-622.
  • Montaseri, H., Forbes, P.B.C. (2018). Analytical techniques for the determination of acetaminophen: A review. Trends in Analytical Chemistry, 108, 122-134.
  • Moratalla, Á., Cotillas, S., Lacasa, E., Fernández-Marchante, C.M., Ruiz, S., Valladolid, A., Cañizares, P., Rodrigo, M.A., Sáez, C. (2022). Occurrence and toxicity impact of pharmaceuticals in hospital effluents: Simulation based on a case of study. Process Safety and Environmental Protection, 168, 10-21.
  • Mouele, E.S.M., Tijani, J.O., Badmus, K.O., Pereao, O., Babajide, O., Zhang, C., Shao, T., Sosnin, E., Tarasenko, V., Fatoba, O.O., Laatikainen, K., Petrik, L.F. (2021). Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods-A Review. International Journal of Environmental Research and Public Health, 18(4), 1683.
  • Munzhelele, E.P., Mudzielwana, R., Ayinde, W.B., Gitari, W.M. (2024). Pharmaceutical contaminants in wastewater and receiving water bodies of South Africa: A review of sources, pathways, occurrence, effects, and geographical distribution. Water, 16(6), 796.
  • Nasri, E., de la Vega, A.C.S., Martí, C.B., Mansour, H.B., Diaz-Cruz, M.S. (2024). Pharmaceuticals and personal care products in Tunisian hospital wastewater: occurrence and environmental risk. Environmental Science and Pollution Research 31, 2716–2731.
  • Nguyen, M.D., Thomas, M., Surapaneni, A., Moon, E.M., Milne, N.A. (2022). Beneficial reuse of water treatment sludge in the context of circular economy. Environmental Technology & Innovation, 28, 102651.
  • Niemi, L., Taggart, M., Boyd, K., Zhang, Z., Gaffney, P.P.J., Pfleger, S., Gibb, S. (2020). Assessing hospital impact on pharmaceutical levels in a rural ‘source-to-sink’ water system. Science of the Total Environment, 737, 139618.
  • OECD, (2019). Pharmaceutical Residues in Freshwater: Hazards and Policy Responses. OECD Studies on Water, OECD Publishing, Paris. Retieved 3 June 2024 from https://doi.org/10.1787/c936f42d-en
  • Oelkers, K., Floeter, C. (2019). The accessibility of data on environmental risk assessment of pharmaceuticals: Is the marketing authorization procedure in conflict with the international right of access to environmental information? Environmental Science Europe, 31(58).
  • Olvera-Néstor, C.G., Morales-Avila, E., Gómez-Olivan, L.M., Galár-Martínez, M., García-Medina, S., Neri-Cruz, N. (2016). Biomarkers of cytotoxic, genotoxic and apoptotic effects in Cyprinus carpio exposed to complex mixture of contaminants from hospital effluents. Bulletin of Environmental Contamination and Toxicology. 96, 326-332.
  • Oliveira, T.S., Al Aukidy, M., Verlicchi, P. (2017). Occurrence of common pollutants and pharmaceuticals in hospital effluents. Hospital Wastewaters 60:17-32 In book: The Handbook of Environmental Chemistry HEC.vol 60. 1SBN: n978-3-319-62177-7.
  • Orias, F. (2015). Contribution to the evaluation of the ecotoxicological risks of hospital effluents: bioconcentration, bioaccumulation and biomagnification of pharmaceutical residues. Ecotoxicologie. École Nationalle des Travaux Publics de l’État [ENTPE], Vaulx-en-Velin France.
  • Orias, F., Perrodin., Y. (2014). Pharmaceuticals in hospital wastewater: Their ecotoxicity and contribution to the environmental hazard of the effluent. Chemosphere 115, 31-39.
  • O’Sullivan-Carroll, E., Howlett, S., Pyne, C., Downing, P., Rafael, A., Lynch, M., Hogan, A.M., Moore, E.J. (2022). Determination of pharmaceuticals in surface and wastewater by capillary electrophoresis (CE): A Minireview. Analytical Letters, 55(3), 495-504.
  • Paíga, P., Correia, M., Fernandes, M.J., Silva, A., Carvalho, M., Vieira, J., Jorge, S., Silva, J.G., Freire, C., Delerue-Matos, C. (2019). Assessment of 83 pharmaceuticals in WWTP influent and effluent samples by UHPLC-MS/MS: Hourly variation. Science of the Total Environment, 648, 582-600.
  • Papageorgiou, M., Zioris, I., Danis, T., Bikiaris, D., Lambropoulou, D. (2019). Comprehensive investigation of wide range of pharmaceuticals and personal care products in urban and hospital wastewaters in Greece. Science of the Total Environment, 694, 133565.
  • Paulus, G.K., Hornstra, L.M., Alygizakis, N., Slobodnik, J., Thomaidis, N., Medema, G. (2019). The impact of on-site hospital wastewater treatment on the downstream communal wastewater system in terms of antibiotics and antibiotic resistance genes. International Journal for Hygiene and Environmental Health 222(4), 635-644.
  • Pereira, A.M.P.T., Silva, L.J.G., Lino, C.M., Meisel, L.M., Pena, A. (2017). A critical evaluation of different parameters for estimating pharmaceutical exposure seeking an improved environmental risk assessment. Science of the Total Environment, 603-604,226-236.
  • Pérez-Lemus, N., López-Serna, R., Pérez-Elvira, S.I., Barrado, E. (2019). Analytical methodologies for the determination of pharmaceuticals and personal care products (PPCPs) in sewage sludge: A critical review. Analytica Chimica Acta, 1083, 19-40. https://doi.org/10.1016/j.aca.2019.06.044.
  • Poole, C., Mester, Z., Miró, M., Pedersen-Bjergaard, S. Pawliszyn, J. (2017). Extraction for Analytical Scale Sample Preparation (IUPAC Technical Report). Pure and Applied Chemistry, 88. https://doi.org/10.1515/iupac.88.0365.
  • Prabhasnkar, V.P., Joshua, D.I., Balakrishna, K., Siddiqui, I.F., Taniyasu, S., Yamashita, N., Kannan, K., Akiba, M., Praveenkumarreddy, Y., Guruge, K.S. (2016). Removal rates of antibiotics in four sewage treatment plants in South India. Environmental Science and Pollution Research International, 23(9), 8679-8685.
  • Qarah, N., El-Maaiden, E. (2023). Spectrophotometric/Titrimetric Drug Analysis. IntechOpen. doi: 10.5772/intechopen.109364.
  • Qarah, N.A.S., Abdulrahman, S.A.M., Algethami, F.K., Basavaiah, K., El-Maaiden, E. (2020). New applications for amoxicillin determination in pure form and pharmaceuticals based on iodateiodide mixture: Titrimetry and spectroscopy studies. Quimica Nova, 43, 44-49.
  • Qarah, N.A.S., Basavaiah, K., Swamy, N. (2016). Ion-pair extractive spectrophotometric assay of terbinafine hydrochloride in pharmaceuticals and spiked urine using bromocresol purple. Journal of Applied Spectroscopy, 83, 694-702.
  • Qarah, N.A.S., Kanakapura, B., Nagaraju, S., Udigere, C. (2015). Assay of terbinafine hydrochloride by extractive-spectrophotometry with alizarin red SA modified approach. Eurasian Journal of Analytical Chemistry, 10(1), 34-45.
  • Reis, E.O., Foureaux, A.F.S., Rodrigues, J.S., Moreira, V.R., Lebron, Y.A.R., Santos, L.V.S., Amaral, M.C.S., Lange, L.C. (2019). Occurrence, removal and seasonal variation of pharmaceuticals in Brasilian drinking water treatment plants. Environmental Pollution, 250, 773-781.
  • Rodríguez-Llorente, D., Hernández, E., Gutiérrez-Sánchez, P., Navarro, P., Águeda, V.I., Álvarez-Torrellas, S., García, J., Larriba, M. (2023). Extraction of pharmaceuticals from hospital wastewater with eutectic solvents and terpenoids: Computational, experimental, and simulation studies. Chemical Engineering Journal, 451, Part 1.
  • Rodríguez-Serin, H., Gamez-Jara, A., De La Cruz-Noriega, M., Rojas-Flores, S., Rodriguez-Yupanqui, M., Gallozzo-Cardenas, M., Cruz-Monzon, J. (2022). Literature Review: Evaluation of Drug Removal Techniques in Municipal and Hospital Wastewater. International Journal of Environmental Research and Public Health, 19(20), 13105.
  • Rozman, D., Hrkal, Z., Eckardt, P., Novotná, E., Boukalová, Z. (2015). Pharmaceuticals in groundwaters: A case study of the psychiatric hospital at HorníBeřkovice, Czech Republic. Environmental Earth Sciences 73(7):3775-3784.
  • Sadutto, D., Picó, Y. (2020). Sample preparation to determine pharmaceutical and personal care products in an all-water matrix: Solid phase extraction. Molecules, 25, 5204. http://creativecommons.org/licenses/by/4.0/.
  • Santos, L.H.M.L.M., Gros, M., Rodriguez-Mozaz, S., Delerue-Matos, C., Pena, A., Barceló, D., Montenegro, M.C.B.S.M. (2013). Contribution of hospital effluents to the load of pharmaceuticals in urban wastewaters: Identification of ecologically relevant pharmaceuticals. Science of the Total Environment, 461–462, 302-316.
  • Selim, M.I., Shawky, M., Wooten, A., Rushing B. (2016). Comparison of LC–MS and GC–MS for the analysis of pharmaceuticals and personal care products in surface water and treated wastewaters. Spectrometry solutions for materials, Special Issues-07-01-2016, 14(3), 8–14. Retrieved 24 September 2023 from https://www.spectroscopyonline.com
  • Serna-Galvis, E.A., Botero-Coy, A.M., Rosero-Moreano, M, Lee J, Hernández F, Torres-Palma R.A. (2022). An initial approach to the presence of pharmaceuticals in wastewater from hospitals in Colombia and their environmental risk. Water. 2022; 14(6):950.
  • Shahid, M.K., Kashif, A., Fuwad, A., Choi, Y. (2021). Current advances in treatment technologies for removal of emerging contaminants from water – A critical review. Coordination Chemistry Reviews, 442, 213993. Shantier, W.S. (2020). Drug Analysis. IntechOpen. doi: 10.5772/intechopen.88739.
  • Shantier, S.W., Gadkariem, E.A. (2014). Colorimetric determination of cefquinome sulphate in bulk and dosage form using ammonium molybdate. American Journal of Applied Sciences, 11(2), 202-206.
  • Shantier, S.W., Gadkriem, E.A. (2014). Differential spectrophotometric method for determination of cefquinome sulphate. British Journal of Pharmaceutical Research, 4(5), 617-625.
  • Siddiqui, M.R., AlOthman, Z.A., Rahman, N. (2017). Analytical techniques in pharmaceutical analysis: A review. Arabian Journal of Chemistry, 10(1), S1409-S1421.
  • Simazaki, D., Kubota, R., Suzuki, T., Akiba, M., Nishimura, T., Kunikane, S. (2015). Occurrence of selected pharmaceuticals at drinking water purification plants in Japan and implications for human health. Water Research, 76, 187-200.
  • Souza, F.S., Féris, L.A. (2016). Hospital and Municipal Wastewater: Identification of Relevant Pharmaceutical Compounds. Water Environment Research, 88(9), 871–877.
  • Spilsbury, F., Kisielius, V., Bester, K., Backhaus, T. (2024). Ecotoxicological mixture risk assessment of 35 pharmaceuticals in wastewater effluents following post-treatment with ozone and/or granulated activated carbon. Science of the Total Environment, 906, 167440.
  • Stanbury, P.F., Whitaker, A., Hall, S.J. (2017). Effluent treatment. In book: Principles of fermentation technology 3rd edn. Chapter 11, 687-723 ISBN 978-0-08-099953-1.00011-9.
  • Stenuick, J.Y. (2021). Pharmaceutical residues in hospital wastewater: Five case studies from European hospitals. Health Care Without Harm. Retrieved 3 June 2024 from https://noharm-europe.org/sites/default/files/documents
  • Thakur, P., Thakur, U., Kaushal, P., Ankalgi, A.D., Kumar, P., Kapoor, A., Ashawat, M.S. (2021). A Review on GC-MS Hyphenated Technique. Asian Journal of Pharmaceutical Analysis, 11(4), 285-2.
  • Timraz, K., Xiong, Y., Al Qarni, H., Hong, P.Y. (2017). Removal of bacterial cells, antibiotic resistance genes and integrase genes by on-site hospital wastewater treatment plants: surveillance of treated hospital effluent quality. Environmental Science: Water Research and Technology, 3(2), 293-303.
  • Tobolkina, E., Rudaz, S. (2021). Capillary electrophoresis instruments for medical applications and falsified drug analysis/quality control in developing countries. Analytical Chemistry, 93(23), 8107-8115.
  • Ulvi, A., Aydın, S., Aydın, M.E. (2022). Fate of selected pharmaceuticals in hospital and municipal wastewater effluent: occurrence, removal, and environmental risk assessment. Environmental Science and Pollution Research, 29, 75609–75625.
  • United States Environmental Protection Agency, (2018). What is a wetland? Wetlands Protection and Restoration, US EPA. Retrieved 27 October 2021 from www.epa.gov
  • Vaudreuil, M.A., Duy, S.V., Munoz, G., Sauvé, S. (2022). Pharmaceutical pollution of hospital effluents and municipal wastewaters of Eastern Canada. Science of the Total Environment, 846, 157353.
  • Verlicchi, P. (2016). Pharmaceutical concentrations and loads in hospital effluents: Is a predictive model or direct measurement the most accurate approach? In: Verlicchi, P. (eds) Hospital Wastewaters. The Handbook of Environmental Chemistry, vol 60. Springer, Cham.
  • Verlicchi, P., Al Aukidy, M., Zambello, E. (2015). What have we learned from worldwide experiences on the management and treatment of hospital wastewater? – An overview. Science of the Total Environment, 514, 467-491.
  • Vieira, Y., Pereira, H.A., Leichtweis, J., Mistura, C.M., Foletto, E.L., Oliveira, L.F.S., Dotto, G.L. (2021). Effective treatment of hospital wastewater with high-concentration diclofenac and ibuprofen using a promising technology based on degradation reaction catalyzed by Fe0 under microwave irradiation. Science of the Total Environment, 783, 146991.
  • Voeten, R.L.C., Ventouri, I.K., Haselberg, R., Somsen, G.W. (2018). Capillary electrophoresis: Trends and recent advances. Analytical Chemistry 90(3), 1464-1481.
  • Vumazonke, S., Khamanga, S.M., Ngqwala, N.P. (2020). Detection of Pharmaceutical Residues in Surface Waters of the Eastern Cape Province. International Journal of Environmental Research and Public Health, 17(11), 4067.
  • Walter, S., Mitkidis, K. (2018). The risk assessment of pharmaceuticals in environment: EU and US Regulatory Approach. European Journal of Risk Regulation 9(3):527-547.
  • Wang, M. (2023). The development of pharmaceutical analysis: Improving drug safety and development. Journal of Analytical and Bioanalytical Techniques 14, 526.
  • Wiafe, S., Nooni, I.K., Appiah Boateng, K., Nlasia, M.S., Fianko, S.K. (2016). Clinical liquid waste management in three Ghanaian healthcare facilities – A case study of Sunyani Municipality. British Journal of Environmental Sciences 4(1), 11-34.
  • Wiest, L., Chonova, T., Bergé, A., Baudot, R., Bessueille-Barbier, F., Ayouni-Derouich, L., Vulliet, E. (2018). Two-year survey of specific hospital wastewater treatment and its impact on pharmaceutical discharges. Environmental Science and Pollution Research, 25 (10), 9207-9218.
  • Wu, D., Sui, Q., Yu, X., Zhao, W., Li, Q., Fatta-Kassinos, D., Lyu, S. (2021). Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta, China. Science of the Total Environment, 753, 141653.
  • Wu, M., Xiang, J., Que, C., Chen, F., Xu, G. (2015). Occurrence and fate of psychiatric pharmaceuticals in the urban water system of Shanghai, China. Chemosphere 138, 486-493.
  • Yadav, B., Pandey, A.K., Kumar, L.R., Kaur, R., Yellapu, S.K., Sellamuthu, B., Tyagi, R.D., Drogui, P. (2020) 1 – Introduction to wastewater microbiology: special emphasis on hospital wastewater. Current Developments in Biotechnology and Bioengineering, 2020, 1-41.
  • Youssef, S.H., Mohamed, D., Hegazy, M., Badawey, A. (2019). Analytical methods for the determination of paracetamol, pseudoephedrine and brompheniramine in Comtrex tablets. BMC Chemistry, 13(1), 78.
  • Zhu, X., Jiang, L., Wang, Y., Ji, X., Zhang, D., Xu, G., Wu, D., Li, A., Xie, X. (2022). Validation and application of diffusive gradient in thin-film (DGT) equipped novel cyclodextrin polymer gels for monitoring endocrine disrupting chemicals (EDCs) and environmental risk assessment in the Taihu lake basin. Environmental Research, 212, Part D, 113391.
  • Zhu, Y., Snape, J., Jones, K., Sweetman, A. (2019). Spatially explicit large-scale environmental risk assessment of pharmaceuticals in surface water in China. Environmental Science and Technology 53(5), 2559-2569.
Toplam 143 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Su Kaynakları ve Su Yapıları
Bölüm Review Articles
Yazarlar

Emma Nsafoah 0009-0001-2986-0472

Bernard Fei-baffoe 0000-0002-0200-3198

Alhassan Sulemana 0000-0001-9679-675X

Kodwo Mıezah 0000-0002-3050-6489

Kofi Sekyere Boateng 0000-0002-4689-5087

David Azanu 0000-0002-1003-9270

Kwame Ohene Buabeng 0000-0001-7944-2255

Yayımlanma Tarihi 31 Mart 2025
Gönderilme Tarihi 18 Ekim 2024
Kabul Tarihi 3 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 12 Sayı: 1

Kaynak Göster

APA Nsafoah, E., Fei-baffoe, B., Sulemana, A., Mıezah, K., vd. (2025). A Review on Occurrence, Risk Assessment and Removal of Pharmaceuticals in Hospital Effluents. International Journal of Environment and Geoinformatics, 12(1), 79-94.