Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 9 Sayı: 1, 37 - 46, 30.06.2025
https://doi.org/10.46460/ijiea.1564844

Öz

Proje Numarası

TEKF.21.12

Kaynakça

  • Okasha, M.; Kralev, J.; Islam, M. (2022). Design and Experimental Comparison of PID, LQR, and MPC Stabilizing Controllers for Parrot Mambo Mini-Drone, Aerospace, Vol. 9, No. 6, 298.
  • Khodja, M. A.; Tadjine, M.; Boucherit, M. S.; Benzaoui, M. (2017). Experimental dynamics identification and control of a quadcopter, 2017 6th International Conference on Systems and Control, ICSC 2017, IEEE, 498–502.
  • Sheta, A.; Braik, M.; Maddi, D. R.; Mahdy, A.; Aljahdali, S.; Turabieh, H. (2021). Optimization of PID controller to stabilize quadcopter movements using meta-heuristic search algorithms, Applied Sciences (Switzerland), Vol. 11, No. 14.
  • Derrouaoui, S. H.; Bouzid, Y.; Guiatni, M. (2021). PSO Based Optimal Gain Scheduling Backstepping Flight Controller Design for a Transformable Quadrotor, Journal of Intelligent and Robotic Systems: Theory and Applications, Vol. 102, No. 3.
  • Kapnopoulos, A.; Alexandridis, A. (2022). A cooperative particle swarm optimization approach for tuning an MPC-based quadrotor trajectory tracking scheme, Aerospace Science and Technology, Vol. 127, 107725.
  • Hermouche, B.; Zennir, Y.; Kamsu Foguem, B. (2023). Influence of meta-heuristic algorithms on the optimization of quadrotor altitude PID controller, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 45, No. 10, 1–19.
  • Sahrir, N. H.; Basri, M. A. M. (2023). PSO–PID Controller for Quadcopter UAV: Index Performance Comparison, Arabian Journal for Science and Engineering, Vol. 48, No. 11, 15241–15255.
  • Belge, E.; Altan, A.; Hacıoğlu, R. (2022). Metaheuristic Optimization-Based Path Planning and Tracking of Quadcopter for Payload Hold-Release Mission, Electronics (Switzerland), Vol. 11, No. 8.
  • Gün, A. (2023). Attitude control of a quadrotor using PID controller based on differential evolution algorithm, Expert Systems with Applications, Vol. 229, No. PB, 120518.
  • Alqudsi, Y.; Makaraci, M.; Kassem, A.; El-Bayoumi, G. (2023). A numerically-stable trajectory generation and optimization algorithm for autonomous quadrotor UAVs, Robotics and Autonomous Systems, Vol. 170, No. January 2021, 104532.
  • Meraihi, Y.; Gabis, A. B.; Ramdane-Cherif, A.; Acheli, D. (2021). A comprehensive survey of Crow Search Algorithm and its applications, Artificial Intelligence Review, Vol. 54, No. 4, 2669–2716.
  • Farzaneh, M. M.; Tavakolpour-Saleh, A. R. (2022). Stabilization of a quadrotor system using an optimal neural network controller, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44, No. 1, 1–12.
  • Chang, W.-D.; Shih, S.-P. (2010). PID controller design of nonlinear systems using an improved particle swarm optimization approach, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 11, 3632–3639.
  • Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & structures, 169, 1-12.
  • Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). ieee.
  • Chopra, N., & Ansari, M. M. (2022). Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Systems with Applications, 198, 116924.
  • Chou, J. S., & Truong, D. N. (2021). A novel metaheuristic optimizer inspired by the behavior of jellyfish in the ocean. Applied Mathematics and Computation, 389, 125535.
  • Kurnaz, M. K. (2023). Realization of image processing-based trajectory tracking algorithm on Parrot Mambo drone with MATLAB. Master's Thesis, https://tez.yok.gov.tr/.

Altitude Control of Quadrotor Based on Metaheuristic Methods

Yıl 2025, Cilt: 9 Sayı: 1, 37 - 46, 30.06.2025
https://doi.org/10.46460/ijiea.1564844

Öz

Quadrotor, which is used in many fields and is still a challenge to control, has a complex kinematic and dynamic system, and its flight performance depends on many variables that need to be controlled simultaneously. In this study, the effective determination of PID parameters for altitude control of quadrotors, which presents a complex control problem, has been tested comparatively with innovative metaheuristic approaches. Among the strong metaheuristic algorithms, Crow Search Algorithm (CSA), Particle Swarm Optimization Algorithm (PSO), Golden Jackal Optimization Algorithm (GJO), and Jellyfish Search Algorithm (JSA) were comparatively analyzed for the determination of PID parameters. The parameters obtained with CSA caused the minimum steady-state error with the value of 6.9580e-04 in the closed-loop control system. A minimum overshoot was also obtained with the parameters optimized with CSA. When these results are evaluated, it can be said that CSA performs better than other altitude control algorithms, considering the quadrotor's stable and accurate positioning performance.

Etik Beyan

This Study Does Not Need Ethics Committee Approval

Destekleyen Kurum

FUBAP

Proje Numarası

TEKF.21.12

Teşekkür

This study was derived from Master's thesis numbered 836713 of Muhammed Kıvanc KURNAZ under the supervision of Assoc. Dr. Gonca OZMEN KOCA. This study was also supported by Scientific Research Unit of Firat University (FUBAP) under the Grant Number TEKF.21.12. The authors thank to FUBAP for their supports.

Kaynakça

  • Okasha, M.; Kralev, J.; Islam, M. (2022). Design and Experimental Comparison of PID, LQR, and MPC Stabilizing Controllers for Parrot Mambo Mini-Drone, Aerospace, Vol. 9, No. 6, 298.
  • Khodja, M. A.; Tadjine, M.; Boucherit, M. S.; Benzaoui, M. (2017). Experimental dynamics identification and control of a quadcopter, 2017 6th International Conference on Systems and Control, ICSC 2017, IEEE, 498–502.
  • Sheta, A.; Braik, M.; Maddi, D. R.; Mahdy, A.; Aljahdali, S.; Turabieh, H. (2021). Optimization of PID controller to stabilize quadcopter movements using meta-heuristic search algorithms, Applied Sciences (Switzerland), Vol. 11, No. 14.
  • Derrouaoui, S. H.; Bouzid, Y.; Guiatni, M. (2021). PSO Based Optimal Gain Scheduling Backstepping Flight Controller Design for a Transformable Quadrotor, Journal of Intelligent and Robotic Systems: Theory and Applications, Vol. 102, No. 3.
  • Kapnopoulos, A.; Alexandridis, A. (2022). A cooperative particle swarm optimization approach for tuning an MPC-based quadrotor trajectory tracking scheme, Aerospace Science and Technology, Vol. 127, 107725.
  • Hermouche, B.; Zennir, Y.; Kamsu Foguem, B. (2023). Influence of meta-heuristic algorithms on the optimization of quadrotor altitude PID controller, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 45, No. 10, 1–19.
  • Sahrir, N. H.; Basri, M. A. M. (2023). PSO–PID Controller for Quadcopter UAV: Index Performance Comparison, Arabian Journal for Science and Engineering, Vol. 48, No. 11, 15241–15255.
  • Belge, E.; Altan, A.; Hacıoğlu, R. (2022). Metaheuristic Optimization-Based Path Planning and Tracking of Quadcopter for Payload Hold-Release Mission, Electronics (Switzerland), Vol. 11, No. 8.
  • Gün, A. (2023). Attitude control of a quadrotor using PID controller based on differential evolution algorithm, Expert Systems with Applications, Vol. 229, No. PB, 120518.
  • Alqudsi, Y.; Makaraci, M.; Kassem, A.; El-Bayoumi, G. (2023). A numerically-stable trajectory generation and optimization algorithm for autonomous quadrotor UAVs, Robotics and Autonomous Systems, Vol. 170, No. January 2021, 104532.
  • Meraihi, Y.; Gabis, A. B.; Ramdane-Cherif, A.; Acheli, D. (2021). A comprehensive survey of Crow Search Algorithm and its applications, Artificial Intelligence Review, Vol. 54, No. 4, 2669–2716.
  • Farzaneh, M. M.; Tavakolpour-Saleh, A. R. (2022). Stabilization of a quadrotor system using an optimal neural network controller, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol. 44, No. 1, 1–12.
  • Chang, W.-D.; Shih, S.-P. (2010). PID controller design of nonlinear systems using an improved particle swarm optimization approach, Communications in Nonlinear Science and Numerical Simulation, Vol. 15, No. 11, 3632–3639.
  • Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & structures, 169, 1-12.
  • Kennedy, J., & Eberhart, R. (1995, November). Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). ieee.
  • Chopra, N., & Ansari, M. M. (2022). Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Systems with Applications, 198, 116924.
  • Chou, J. S., & Truong, D. N. (2021). A novel metaheuristic optimizer inspired by the behavior of jellyfish in the ocean. Applied Mathematics and Computation, 389, 125535.
  • Kurnaz, M. K. (2023). Realization of image processing-based trajectory tracking algorithm on Parrot Mambo drone with MATLAB. Master's Thesis, https://tez.yok.gov.tr/.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Muhammed Kivanc Kurnaz 0000-0002-8208-0483

Yagmur Olmez 0000-0002-1615-7390

Gonca Ozmen Koca 0000-0003-1750-8479

Proje Numarası TEKF.21.12
Erken Görünüm Tarihi 30 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 14 Ekim 2024
Kabul Tarihi 24 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 9 Sayı: 1

Kaynak Göster

APA Kurnaz, M. K., Olmez, Y., & Ozmen Koca, G. (2025). Altitude Control of Quadrotor Based on Metaheuristic Methods. International Journal of Innovative Engineering Applications, 9(1), 37-46. https://doi.org/10.46460/ijiea.1564844
AMA Kurnaz MK, Olmez Y, Ozmen Koca G. Altitude Control of Quadrotor Based on Metaheuristic Methods. ijiea, IJIEA. Haziran 2025;9(1):37-46. doi:10.46460/ijiea.1564844
Chicago Kurnaz, Muhammed Kivanc, Yagmur Olmez, ve Gonca Ozmen Koca. “Altitude Control of Quadrotor Based on Metaheuristic Methods”. International Journal of Innovative Engineering Applications 9, sy. 1 (Haziran 2025): 37-46. https://doi.org/10.46460/ijiea.1564844.
EndNote Kurnaz MK, Olmez Y, Ozmen Koca G (01 Haziran 2025) Altitude Control of Quadrotor Based on Metaheuristic Methods. International Journal of Innovative Engineering Applications 9 1 37–46.
IEEE M. K. Kurnaz, Y. Olmez, ve G. Ozmen Koca, “Altitude Control of Quadrotor Based on Metaheuristic Methods”, ijiea, IJIEA, c. 9, sy. 1, ss. 37–46, 2025, doi: 10.46460/ijiea.1564844.
ISNAD Kurnaz, Muhammed Kivanc vd. “Altitude Control of Quadrotor Based on Metaheuristic Methods”. International Journal of Innovative Engineering Applications 9/1 (Haziran 2025), 37-46. https://doi.org/10.46460/ijiea.1564844.
JAMA Kurnaz MK, Olmez Y, Ozmen Koca G. Altitude Control of Quadrotor Based on Metaheuristic Methods. ijiea, IJIEA. 2025;9:37–46.
MLA Kurnaz, Muhammed Kivanc vd. “Altitude Control of Quadrotor Based on Metaheuristic Methods”. International Journal of Innovative Engineering Applications, c. 9, sy. 1, 2025, ss. 37-46, doi:10.46460/ijiea.1564844.
Vancouver Kurnaz MK, Olmez Y, Ozmen Koca G. Altitude Control of Quadrotor Based on Metaheuristic Methods. ijiea, IJIEA. 2025;9(1):37-46.

This work is licensed under CC BY-NC 4.0