Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 2 Sayı: 2, 87 - 94, 31.12.2024
https://doi.org/10.26650/ijmath.2024.00019

Öz

Kaynakça

  • W. R. Spickerman, 1982, Binet’s formula for the Tribonacci Sequence, The Fibonacci Quarterly, 10, 118-120. google scholar
  • T. Komatsu, 2018, Convolution Identities for Tribonacci Numbers, Ars Combinatoria, CXXXVI, 199-210. google scholar
  • R.Frontczak, 2018, Convolutions for Generalized Tribonacci Numbers and Related Results, International Journal of Mathematical Analysis, 12(7), 307-324. google scholar
  • A. G. Shannon,1972, Iterative Formulas Associated with Generalized Third-Order Recurrence Relations. SIM J. Appl. Math., 23(3), 364-367. google scholar
  • M. Feinberg, 1963, Iterative Formulas Associated with Generalized Third-Order Recurrence Relations. The Fibonacci Quarterly, 1(1), 71-74. google scholar
  • M. Elia, 2001, Derived Sequences, The Tribonacci Recurrence and Cubic Forms. The Fibonacci Quarterly,39(2), 107-109. google scholar
  • A. C. F. Bueno, 2015, Notes on Number Theory and Discrete Mathematics,The Fibonacci Quarterly, 21, 67-69. google scholar
  • M. Catalani, 2002, Identities for Tribonacci-related sequences, Combinatorics, Available from: https://arxiv.org/pdf/math/0209179. pdfmath/0209179. google scholar
  • G. Cerda-Morales, 2017, On a Generalization for Tribonacci Quaternions, Mediterranean Journal of Mathematics, 14(239), 1-12. google scholar
  • F. T. Howard 2001, A Tribonacci Identity, The Fibonacci Quarterly, 39(4), 352-357. google scholar
  • P. Y. Lin,1988, De Moivre-Type Identities For The Tribonacci Numbers,The Fibonacci Quarterly, 26, 131—134. google scholar
  • W. Watkins,1987,Generating Function, The College Mathematics Journal, 18(3), 195-211. google scholar
  • S. Pethe,1988, Some Identities for Tribonacci sequences, The Fibonacci Quarterly, 26(2), 144—151. google scholar
  • Y. Soykan, 2019, Tribonacci and Tribonacci-Lucas Sedenions,Mathematics, 7(1), 2019), 74. arXiv:1808.09248v2. google scholar
  • C. C. Yalavigi,1972, Properties of Tribonacci numbers, The Fibonacci Quarterly, 10(3), 231-246. google scholar
  • A. G. Shannon and A. F. Horadam,1972, Some Properties of Third-Order Recurrence Relations, The Fibonacci Quarterly, 10(2), 135-145. google scholar
  • F. T. Howard and C. Cooper,1970, Some Identities for r-Fibonacci numbers, The Fibonacci Quarterly, 49(3), 231-242. google scholar
  • M. E. Waddill and L. Sacks,1967, Another Generalized Fibonacci Sequence, The Fibonacci Quarterly, 59(3), 209-222. google scholar
  • T. Komatsu and R. Li, 2017, Convolution identities for Tribonacci numbers with symmetric formulae, 5 Jan 2017, arXiv:1610.02559v2 [math.NT]. google scholar
  • Y. Soykan, I. Okumus and E. T. Taşdemir, 2020, On Genralized Tribonacci sedenions, Sarajevo Journal of Mathematics,16(29), 103-122. google scholar
  • A. Scott, T. Delaney, V. Jr, Hoggatt 1997, The Tribonacci sequence, The Fibonacci Quarterly, 15(3),193-200. google scholar
  • F. T. Howard, 1999, Generalizations of a Fibonacci Identity and parabolic equations, In Applications of Fibonacci Numbers, (Ed. G. E. Bergum et al. Dordrecht), Kluwer, 8 201-211. google scholar
  • T. Koshy, 2001, Fibonacci and Lucas Numbers with Applications. In Applications of Fibonacci Numbers, Wiley, New York. google scholar
  • N. J. A. Sloane, 1973, A Handbook of Integer Sequences, Academic Press, New York, google scholar

Generalizations of third-order recurrence relation

Yıl 2024, Cilt: 2 Sayı: 2, 87 - 94, 31.12.2024
https://doi.org/10.26650/ijmath.2024.00019

Öz

This paper presents a generalization of the sequence defined by the third-order recurrence relation𝑉𝑛 (𝑎 𝑗 , 𝑝 𝑗) = Í 3 𝑗=1 𝑝 𝑗𝑉𝑛− 𝑗 , 𝑛 ≥ 4,, 𝑝3 ≠ 0 with initial terms 𝑉𝑗 = 𝑎 𝑗 , where 𝑎 𝑗 and 𝑝 𝑗 𝑗 = 1, 2, 3, are any non-zero real numbers. The generating function and Binet’s formula are derived for this generalized tribonacci sequence. Classical second-order generalized Fibonacci sequences and other existing sequences based on second-order recurrence relations are implicitly included in this analysis. These derived sequences are discussed as special cases of the generalization. A pictorial representation is provided, illustrating the growth and variation of tribonacci numbers for different initial terms 𝑎 𝑗 and coefficients 𝑝 𝑗 . Additionally, the tribonacci constant is examined and visually represented. It is observed that the constant is influenced solely by the coefficients 𝑝 𝑗 of the recurrence relation and is unaffected by the initial terms 𝑎 𝑗 .

Kaynakça

  • W. R. Spickerman, 1982, Binet’s formula for the Tribonacci Sequence, The Fibonacci Quarterly, 10, 118-120. google scholar
  • T. Komatsu, 2018, Convolution Identities for Tribonacci Numbers, Ars Combinatoria, CXXXVI, 199-210. google scholar
  • R.Frontczak, 2018, Convolutions for Generalized Tribonacci Numbers and Related Results, International Journal of Mathematical Analysis, 12(7), 307-324. google scholar
  • A. G. Shannon,1972, Iterative Formulas Associated with Generalized Third-Order Recurrence Relations. SIM J. Appl. Math., 23(3), 364-367. google scholar
  • M. Feinberg, 1963, Iterative Formulas Associated with Generalized Third-Order Recurrence Relations. The Fibonacci Quarterly, 1(1), 71-74. google scholar
  • M. Elia, 2001, Derived Sequences, The Tribonacci Recurrence and Cubic Forms. The Fibonacci Quarterly,39(2), 107-109. google scholar
  • A. C. F. Bueno, 2015, Notes on Number Theory and Discrete Mathematics,The Fibonacci Quarterly, 21, 67-69. google scholar
  • M. Catalani, 2002, Identities for Tribonacci-related sequences, Combinatorics, Available from: https://arxiv.org/pdf/math/0209179. pdfmath/0209179. google scholar
  • G. Cerda-Morales, 2017, On a Generalization for Tribonacci Quaternions, Mediterranean Journal of Mathematics, 14(239), 1-12. google scholar
  • F. T. Howard 2001, A Tribonacci Identity, The Fibonacci Quarterly, 39(4), 352-357. google scholar
  • P. Y. Lin,1988, De Moivre-Type Identities For The Tribonacci Numbers,The Fibonacci Quarterly, 26, 131—134. google scholar
  • W. Watkins,1987,Generating Function, The College Mathematics Journal, 18(3), 195-211. google scholar
  • S. Pethe,1988, Some Identities for Tribonacci sequences, The Fibonacci Quarterly, 26(2), 144—151. google scholar
  • Y. Soykan, 2019, Tribonacci and Tribonacci-Lucas Sedenions,Mathematics, 7(1), 2019), 74. arXiv:1808.09248v2. google scholar
  • C. C. Yalavigi,1972, Properties of Tribonacci numbers, The Fibonacci Quarterly, 10(3), 231-246. google scholar
  • A. G. Shannon and A. F. Horadam,1972, Some Properties of Third-Order Recurrence Relations, The Fibonacci Quarterly, 10(2), 135-145. google scholar
  • F. T. Howard and C. Cooper,1970, Some Identities for r-Fibonacci numbers, The Fibonacci Quarterly, 49(3), 231-242. google scholar
  • M. E. Waddill and L. Sacks,1967, Another Generalized Fibonacci Sequence, The Fibonacci Quarterly, 59(3), 209-222. google scholar
  • T. Komatsu and R. Li, 2017, Convolution identities for Tribonacci numbers with symmetric formulae, 5 Jan 2017, arXiv:1610.02559v2 [math.NT]. google scholar
  • Y. Soykan, I. Okumus and E. T. Taşdemir, 2020, On Genralized Tribonacci sedenions, Sarajevo Journal of Mathematics,16(29), 103-122. google scholar
  • A. Scott, T. Delaney, V. Jr, Hoggatt 1997, The Tribonacci sequence, The Fibonacci Quarterly, 15(3),193-200. google scholar
  • F. T. Howard, 1999, Generalizations of a Fibonacci Identity and parabolic equations, In Applications of Fibonacci Numbers, (Ed. G. E. Bergum et al. Dordrecht), Kluwer, 8 201-211. google scholar
  • T. Koshy, 2001, Fibonacci and Lucas Numbers with Applications. In Applications of Fibonacci Numbers, Wiley, New York. google scholar
  • N. J. A. Sloane, 1973, A Handbook of Integer Sequences, Academic Press, New York, google scholar
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel Matematik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Kishori Lal Verma 0000-0002-6486-8736

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 8 Temmuz 2024
Kabul Tarihi 24 Aralık 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 2 Sayı: 2

Kaynak Göster

APA Verma, K. L. (2024). Generalizations of third-order recurrence relation. Istanbul Journal of Mathematics, 2(2), 87-94. https://doi.org/10.26650/ijmath.2024.00019
AMA Verma KL. Generalizations of third-order recurrence relation. Istanbul Journal of Mathematics. Aralık 2024;2(2):87-94. doi:10.26650/ijmath.2024.00019
Chicago Verma, Kishori Lal. “Generalizations of Third-Order Recurrence Relation”. Istanbul Journal of Mathematics 2, sy. 2 (Aralık 2024): 87-94. https://doi.org/10.26650/ijmath.2024.00019.
EndNote Verma KL (01 Aralık 2024) Generalizations of third-order recurrence relation. Istanbul Journal of Mathematics 2 2 87–94.
IEEE K. L. Verma, “Generalizations of third-order recurrence relation”, Istanbul Journal of Mathematics, c. 2, sy. 2, ss. 87–94, 2024, doi: 10.26650/ijmath.2024.00019.
ISNAD Verma, Kishori Lal. “Generalizations of Third-Order Recurrence Relation”. Istanbul Journal of Mathematics 2/2 (Aralık 2024), 87-94. https://doi.org/10.26650/ijmath.2024.00019.
JAMA Verma KL. Generalizations of third-order recurrence relation. Istanbul Journal of Mathematics. 2024;2:87–94.
MLA Verma, Kishori Lal. “Generalizations of Third-Order Recurrence Relation”. Istanbul Journal of Mathematics, c. 2, sy. 2, 2024, ss. 87-94, doi:10.26650/ijmath.2024.00019.
Vancouver Verma KL. Generalizations of third-order recurrence relation. Istanbul Journal of Mathematics. 2024;2(2):87-94.