Araştırma Makalesi
BibTex RIS Kaynak Göster

An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis

Yıl 2025, Cilt: 28 Sayı: 2, 103 - 114, 01.06.2025
https://doi.org/10.5541/ijot.1563338

Öz

A crucial technique for preserving products of agricultural is solar drying, but its efficiency can be limited by inconsistent sunlight. The research aimed to enhance solar dryer technology by integrating Phase Change Materials (PCMs) and photovoltaic (PV) panels to provide consistent drying conditions. A novel solar dryer was designed with PCM tubes placed horizontally behind a copper plate to store thermal energy, ensuring continuous drying at off-sunny hours. The research investigated the process of drying potato slices in different weather conditions to assess the enhanced dryer's performance. Key findings from our extensive testing show that the PCM-integrated solar dryer significantly improves drying efficiency. Specifically, we observed a 30% reduction in drying time, a 25% increase in moisture removal rates, and a 20% increase in overall drying efficiency compared to traditional solar dryers. These improvements highlight the effectiveness of integrating phase change materials in enhancing the performance of solar drying systems. This study provides valuable insights into the development of more efficient and sustainable solar dryers for agricultural products. This technology aims to minimize losses after harvesting, enhance the products quality as well as offer economic advantages to farmers. The research demonstrates the potential of PCM-integrated solar dryers as a sustainable and efficient solution for agricultural drying, with future studies needed to explore its application across different crops and regions.

Kaynakça

  • M. H. Masud, M. U. Joardder, A. A. Ananno, and S. Nasif, “Feasibility study and optimization of solar-assisted intermittent microwave–convective drying condition for potato,” Eur. Food Res. Technol., vol. 248, no. 5, pp. 1335–1349, 2022, doi: 10.1007/s00217-022-03957-5.
  • W. Cheng et al., “A comparative study of mango solar drying methods by visible and near-infrared spectroscopy coupled with ANOVA-simultaneous component analysis (ASCA),” LWT - Food Science and Technology, vol. 112, Sep. 2019, Art. no. 108214, doi: 10.1016/j.lwt.2019.05.112.
  • N. R. Nwakuba, “Optimisation of energy consumption of a solar-electric dryer during hot air drying of tomato slices,” Journal of Agricultural Engineering, vol. 50, no. 3, pp. 150–158, Jul. 2019, doi: 10.4081/jae.2019.876.
  • D. B. Jadhav, G. L. Visavale, P. P. Sutar, U. S. Annapure, and B. N. Thorat, “Solar cabinet drying of bitter gourd: Optimization of pretreatments and quality evaluation,” International Journal of Food Engineering, vol. 6, no. 4, Aug. 2010, doi: 10.2202/1556-3758.1503.
  • A. Jha and P. P. Tripathy, “Optimization of process parameters and numerical modeling of heat and mass transfer during simulated solar drying of paddy,” Computers and Electronics in Agriculture, vol. 187, Aug. 2021, Art. no. 106215, doi: 10.1016/j.compag.2021.106215.
  • M. Ssemwanga, E. Makule, and S. I. Kayondo, “Performance analysis of an improved solar dryer integrated with multiple metallic solar concentrators for drying fruits,” Solar Energy, vol. 204, pp. 419–428, Jul. 2020, doi: 10.1016/j.solener.2020.04.065.
  • P. J. Etim, A. B. Eke, K. J. Simonyan, K. C. Umani, and S. Udo, “Optimization of solar drying process parameters of cooking banana using response surface methodology,” Scientific African, vol. 13, Sep. 2021, Art. no. e00964, doi: 10.1016/j.sciaf. 2021.e00964.
  • D. I. Onyenwigwe, M. C. Ndukwu, F. I. Abam, and others, “Eco-thermal analysis and response surface optimization of the drying rate of potato slices in a mix-mode solar dryer,” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, vol. 47, pp. 1379–1396, Dec. 2023, doi: 10.1007/s40997-023-00595-4.
  • C. Mamulkar, S. Ikhar, and V. Katekar, “Computational fluid dynamic analysis of solar dryer equipped with different phase change materials,” International Journal of Thermodynamics, vol. 27, no. 1, pp. 35–42, Mar. 2024, doi: 10.5541/ijot.1324341.
  • C. E. Onu, P. K. Igbokwe, J. T. Nwabanne, C. O. Nwajinka, and P. E. Ohale, “Evaluation of optimization techniques in predicting optimum moisture content reduction in drying potato slices,” Artificial Intelligence in Agriculture, vol. 4, pp. 39–47, May. 2020, doi: 10.1016/j.aiia.2020.04.001.
  • C. Sharma, M. P. Singh, and S. Chaudhary, “Cost Analysis of Solar-Wind Based Hybrid Renewable Energy System,” in Advances in Automation, Signal Processing, Instrumentation, and Control, vol. 700, V. L. N. Komanapalli, N. Sivakumaran, and S. Hampannavar, Eds., Singapore: Springer Nature Singapore, 2021, pp. 2733–2746. doi: 10.1007/978-981-15-8221-9_256.
  • A. Tesfaye and N. G. Habtu, “Fabrication and performance evaluation of solar tunnel dryer for ginger drying,” International Journal of Photoenergy, vol. 2022, Oct. 2022, Art. no. 6435080, doi: 10.1155/2022/6435080.
  • M. Das and E. K. Akpinar, “Determination of thermal and drying performances of the solar air dryer with solar tracking system: Apple drying test,” Case Studies in Thermal Engineering, vol. 21, Oct. 2020, Art. no. 100731, doi: 10.1016/j.csite.2020.100731.
  • X. Li, M. Liu, L. Duanmu, and Y. Ji, “The optimization of solar heating system with seasonal storage based on a real project,” Procedia Engineering, vol. 121, pp. 1341–1348, Oct. 2015, doi: 10.1016/j.proeng.2015.09.017.
  • A. Lingayat, V. P. Chandramohan, and V. R. K. Raju, “Design, development and performance of indirect type solar dryer for banana drying,” Energy Procedia, vol. 109, pp. 409–416, Mar. 2017, doi: 10.1016/j.egypro.2017.03.041.
  • D. Wang, J. Liu, Y. Liu, Y. Wang, B. Li, and J. Liu, “Evaluation of the performance of an improved solar air heater with 'S' shaped ribs with gap,” Solar Energy, vol. 195, pp. 89–101, Jan. 2020, doi: 10.1016/j.solener.2019.11.034.
  • G. Yuan, L. Hong, X. Li, L. Xu, W. Tank, and Z. Wang, “Experimental investigation of a solar drying system for drying carpets,” Energy Procedia, vol. 75, pp. 1561–1568, 2015, doi: 10.1016/j.egypro.2015.07.256.
  • D. Walraven, B. Laenen, and W. D’haeseleer, “Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources,” Energy Conversion and Management, vol. 66, pp. 220–233, Feb. 2013, doi: 10.1016/j.enconman.2012.10.003.
  • V. P. Katekar and S. S. Deshmukh, “A review of the use of phase change materials on performance of solar stills,” Journal of Energy Storage, vol. 30, Aug. 2020, Art. no. 101398, doi: 10.1016/j.est.2020.101398.
  • A. Hedau and S. K. Singal, “Study on the thermal performance of double pass solar air heater with PCM-based thermal energy storage system,” Journal of Energy Storage, vol. 73, Part B, Dec. 2023, Art. no. 109018, doi: 10.1016/j.est.2023.109018.
  • S. Haldorai, S. Gurusamy, and M. Pradhapraj, “A review on thermal energy storage systems in solar air heaters,” International Journal of Energy Research, vol. 43, no. 12, pp. 6061–6077, Apr. 2019, doi: 10.1002/er.4379.
  • W. P. Missana, E. Park, and T. T. Kivevele, “Thermal performance analysis of solar dryer integrated with heat energy storage system and a low-cost parabolic solar dish concentrator for food preservation,” Journal of Energy, vol. 2020, no. 1, Jul. 2020, Art. no. 9205283, doi: 10.1155/2020/9205283.
  • O. Ojike and W. I. Okonkwo, "Study of a passive solar air heater using palm oil and paraffin as storage media," Case Studies in Thermal Engineering, vol. 14, Sept. 2019, Art. no. 100454, doi: 10.1016/j.csite.2019.100454.
  • M. A. Eltawil, M. M. Azam, and A. O. Alghannam, “Solar PV powered mixed-mode tunnel dryer for drying potato chips,” Renewable Energy, vol. 116, Part A, pp. 594-605, Feb. 2018, doi: 10.1016/j.renene.2017.10.007.
  • H. K. Mosuru and V. P. Chandramohan, “Numerical analysis of solar air collector with trapezoidal ribbed absorber plate of indirect solar dryer: estimation of performance parameters with proposed pitch for better performance,” Environmental Development and Sustainability, vol. 27, pp. 7115–7139, Jan. 2024, doi: 10.1007/s10668-023-04182-0.
  • S. Chouicha, A. Boubekri, D. Mennouche, and M. H. Berrbeuh, “Solar Drying of Sliced Potatoes. An Experimental Investigation,” Energy Procedia, vol. 36, pp. 1276–1285, Aug. 2013, doi: 10.1016/j.egypro.2013.07.144.
  • P. P. Tripathy and S. Kumar, “Influence of Sample Geometry and Rehydration Temperature on Quality Attributes of Potato Dried Under Open Sun and Mixed-Mode Solar Drying,” International Journal of Green Energy, vol. 6, no. 2, pp. 143–156, Apr. 2009, doi: 10.1080/15435070902784863.
  • A. Djebli, S. Hanini, O. Badaoui, B. Haddad, and A. Benhamou, “Modeling and comparative analysis of solar drying behavior of potatoes,” Renewable Energy, vol. 145, pp. 1494–1506, Jan. 2020, doi: 10.1016/j.renene.2019.07.083.
  • S. Kesavan, T. V. Arjunan, and S. Vijayan, “Thermodynamic analysis of a triple-pass solar dryer for drying potato slices,” J Therm Anal Calorim, vol. 136, pp. 159–171, Apr. 2019, doi: 10.1007/s10973-018-7747-0.
  • M.Y. Nasri and A. Belhamri, “Effects of the climatic conditions and the shape on the drying kinetics, Application to solar drying of potato-case of Maghreb's region,” Journal of Cleaner Production, vol. 183, pp. 1241–1251, May. 2018, doi: 10.1016/j.jclepro.2018.02.103.
  • D. Aydin, S.E. Ezenwali, M.Y. Alibar, and X. Chen, “Novel modular mixed-mode dryer for enhanced solar energy utilization in agricultural crop drying applications,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 43, no. 16, pp. 1958–1974, Sep. 2019, doi: 10.1080/15567036.2019.1663306.
  • A. Fudholi, K. Sopian, M.H. Ruslan, M.A. Alghoul, and M.Y. Sulaiman, “Review of solar dryers for agricultural and marine products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 1–30, Jan. 2010, doi: 10.1016/j.rser.2009.07.032.
  • C. Karapire, M. Kus, G. Turkmen, C.C. Trevithick-Sutton, C.S. Foote, and S. Icli, “Photooxidation studies with perylenediimides in solution, PVC and sol–gel thin films under concentrated sun light,” Solar Energy, vol. 78, no. 1, pp. 5–17, Jan. 2005, doi: 10.1016/j.solener.2004.07.003.
  • P.R. Olivkar, V.P. Katekar, S.S. Deshmukh, and S.V. Palatkar, “Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review,” Renewable and Sustainable Energy Reviews, vol. 157, Apr 2022, Art. no. 112085, doi: 10.1016/j.rser.2022.112085.
  • M.A. Eltawil, M.M. Azam, and A.O. Alghannam, “Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (Mentha Viridis),” Journal of Cleaner Production, vol. 181, pp. 352–364, Apr. 2018, doi: 10.1016/j.jclepro.2018.01.229.
  • G. Srinivasan, D.K. Rabha, and P. Muthukumar, “A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products,” Solar Energy, vol. 229, pp. 22–38, Nov. 2021, doi: 10.1016/j.solener.2021.07.075.
Yıl 2025, Cilt: 28 Sayı: 2, 103 - 114, 01.06.2025
https://doi.org/10.5541/ijot.1563338

Öz

Kaynakça

  • M. H. Masud, M. U. Joardder, A. A. Ananno, and S. Nasif, “Feasibility study and optimization of solar-assisted intermittent microwave–convective drying condition for potato,” Eur. Food Res. Technol., vol. 248, no. 5, pp. 1335–1349, 2022, doi: 10.1007/s00217-022-03957-5.
  • W. Cheng et al., “A comparative study of mango solar drying methods by visible and near-infrared spectroscopy coupled with ANOVA-simultaneous component analysis (ASCA),” LWT - Food Science and Technology, vol. 112, Sep. 2019, Art. no. 108214, doi: 10.1016/j.lwt.2019.05.112.
  • N. R. Nwakuba, “Optimisation of energy consumption of a solar-electric dryer during hot air drying of tomato slices,” Journal of Agricultural Engineering, vol. 50, no. 3, pp. 150–158, Jul. 2019, doi: 10.4081/jae.2019.876.
  • D. B. Jadhav, G. L. Visavale, P. P. Sutar, U. S. Annapure, and B. N. Thorat, “Solar cabinet drying of bitter gourd: Optimization of pretreatments and quality evaluation,” International Journal of Food Engineering, vol. 6, no. 4, Aug. 2010, doi: 10.2202/1556-3758.1503.
  • A. Jha and P. P. Tripathy, “Optimization of process parameters and numerical modeling of heat and mass transfer during simulated solar drying of paddy,” Computers and Electronics in Agriculture, vol. 187, Aug. 2021, Art. no. 106215, doi: 10.1016/j.compag.2021.106215.
  • M. Ssemwanga, E. Makule, and S. I. Kayondo, “Performance analysis of an improved solar dryer integrated with multiple metallic solar concentrators for drying fruits,” Solar Energy, vol. 204, pp. 419–428, Jul. 2020, doi: 10.1016/j.solener.2020.04.065.
  • P. J. Etim, A. B. Eke, K. J. Simonyan, K. C. Umani, and S. Udo, “Optimization of solar drying process parameters of cooking banana using response surface methodology,” Scientific African, vol. 13, Sep. 2021, Art. no. e00964, doi: 10.1016/j.sciaf. 2021.e00964.
  • D. I. Onyenwigwe, M. C. Ndukwu, F. I. Abam, and others, “Eco-thermal analysis and response surface optimization of the drying rate of potato slices in a mix-mode solar dryer,” Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, vol. 47, pp. 1379–1396, Dec. 2023, doi: 10.1007/s40997-023-00595-4.
  • C. Mamulkar, S. Ikhar, and V. Katekar, “Computational fluid dynamic analysis of solar dryer equipped with different phase change materials,” International Journal of Thermodynamics, vol. 27, no. 1, pp. 35–42, Mar. 2024, doi: 10.5541/ijot.1324341.
  • C. E. Onu, P. K. Igbokwe, J. T. Nwabanne, C. O. Nwajinka, and P. E. Ohale, “Evaluation of optimization techniques in predicting optimum moisture content reduction in drying potato slices,” Artificial Intelligence in Agriculture, vol. 4, pp. 39–47, May. 2020, doi: 10.1016/j.aiia.2020.04.001.
  • C. Sharma, M. P. Singh, and S. Chaudhary, “Cost Analysis of Solar-Wind Based Hybrid Renewable Energy System,” in Advances in Automation, Signal Processing, Instrumentation, and Control, vol. 700, V. L. N. Komanapalli, N. Sivakumaran, and S. Hampannavar, Eds., Singapore: Springer Nature Singapore, 2021, pp. 2733–2746. doi: 10.1007/978-981-15-8221-9_256.
  • A. Tesfaye and N. G. Habtu, “Fabrication and performance evaluation of solar tunnel dryer for ginger drying,” International Journal of Photoenergy, vol. 2022, Oct. 2022, Art. no. 6435080, doi: 10.1155/2022/6435080.
  • M. Das and E. K. Akpinar, “Determination of thermal and drying performances of the solar air dryer with solar tracking system: Apple drying test,” Case Studies in Thermal Engineering, vol. 21, Oct. 2020, Art. no. 100731, doi: 10.1016/j.csite.2020.100731.
  • X. Li, M. Liu, L. Duanmu, and Y. Ji, “The optimization of solar heating system with seasonal storage based on a real project,” Procedia Engineering, vol. 121, pp. 1341–1348, Oct. 2015, doi: 10.1016/j.proeng.2015.09.017.
  • A. Lingayat, V. P. Chandramohan, and V. R. K. Raju, “Design, development and performance of indirect type solar dryer for banana drying,” Energy Procedia, vol. 109, pp. 409–416, Mar. 2017, doi: 10.1016/j.egypro.2017.03.041.
  • D. Wang, J. Liu, Y. Liu, Y. Wang, B. Li, and J. Liu, “Evaluation of the performance of an improved solar air heater with 'S' shaped ribs with gap,” Solar Energy, vol. 195, pp. 89–101, Jan. 2020, doi: 10.1016/j.solener.2019.11.034.
  • G. Yuan, L. Hong, X. Li, L. Xu, W. Tank, and Z. Wang, “Experimental investigation of a solar drying system for drying carpets,” Energy Procedia, vol. 75, pp. 1561–1568, 2015, doi: 10.1016/j.egypro.2015.07.256.
  • D. Walraven, B. Laenen, and W. D’haeseleer, “Comparison of thermodynamic cycles for power production from low-temperature geothermal heat sources,” Energy Conversion and Management, vol. 66, pp. 220–233, Feb. 2013, doi: 10.1016/j.enconman.2012.10.003.
  • V. P. Katekar and S. S. Deshmukh, “A review of the use of phase change materials on performance of solar stills,” Journal of Energy Storage, vol. 30, Aug. 2020, Art. no. 101398, doi: 10.1016/j.est.2020.101398.
  • A. Hedau and S. K. Singal, “Study on the thermal performance of double pass solar air heater with PCM-based thermal energy storage system,” Journal of Energy Storage, vol. 73, Part B, Dec. 2023, Art. no. 109018, doi: 10.1016/j.est.2023.109018.
  • S. Haldorai, S. Gurusamy, and M. Pradhapraj, “A review on thermal energy storage systems in solar air heaters,” International Journal of Energy Research, vol. 43, no. 12, pp. 6061–6077, Apr. 2019, doi: 10.1002/er.4379.
  • W. P. Missana, E. Park, and T. T. Kivevele, “Thermal performance analysis of solar dryer integrated with heat energy storage system and a low-cost parabolic solar dish concentrator for food preservation,” Journal of Energy, vol. 2020, no. 1, Jul. 2020, Art. no. 9205283, doi: 10.1155/2020/9205283.
  • O. Ojike and W. I. Okonkwo, "Study of a passive solar air heater using palm oil and paraffin as storage media," Case Studies in Thermal Engineering, vol. 14, Sept. 2019, Art. no. 100454, doi: 10.1016/j.csite.2019.100454.
  • M. A. Eltawil, M. M. Azam, and A. O. Alghannam, “Solar PV powered mixed-mode tunnel dryer for drying potato chips,” Renewable Energy, vol. 116, Part A, pp. 594-605, Feb. 2018, doi: 10.1016/j.renene.2017.10.007.
  • H. K. Mosuru and V. P. Chandramohan, “Numerical analysis of solar air collector with trapezoidal ribbed absorber plate of indirect solar dryer: estimation of performance parameters with proposed pitch for better performance,” Environmental Development and Sustainability, vol. 27, pp. 7115–7139, Jan. 2024, doi: 10.1007/s10668-023-04182-0.
  • S. Chouicha, A. Boubekri, D. Mennouche, and M. H. Berrbeuh, “Solar Drying of Sliced Potatoes. An Experimental Investigation,” Energy Procedia, vol. 36, pp. 1276–1285, Aug. 2013, doi: 10.1016/j.egypro.2013.07.144.
  • P. P. Tripathy and S. Kumar, “Influence of Sample Geometry and Rehydration Temperature on Quality Attributes of Potato Dried Under Open Sun and Mixed-Mode Solar Drying,” International Journal of Green Energy, vol. 6, no. 2, pp. 143–156, Apr. 2009, doi: 10.1080/15435070902784863.
  • A. Djebli, S. Hanini, O. Badaoui, B. Haddad, and A. Benhamou, “Modeling and comparative analysis of solar drying behavior of potatoes,” Renewable Energy, vol. 145, pp. 1494–1506, Jan. 2020, doi: 10.1016/j.renene.2019.07.083.
  • S. Kesavan, T. V. Arjunan, and S. Vijayan, “Thermodynamic analysis of a triple-pass solar dryer for drying potato slices,” J Therm Anal Calorim, vol. 136, pp. 159–171, Apr. 2019, doi: 10.1007/s10973-018-7747-0.
  • M.Y. Nasri and A. Belhamri, “Effects of the climatic conditions and the shape on the drying kinetics, Application to solar drying of potato-case of Maghreb's region,” Journal of Cleaner Production, vol. 183, pp. 1241–1251, May. 2018, doi: 10.1016/j.jclepro.2018.02.103.
  • D. Aydin, S.E. Ezenwali, M.Y. Alibar, and X. Chen, “Novel modular mixed-mode dryer for enhanced solar energy utilization in agricultural crop drying applications,” Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, vol. 43, no. 16, pp. 1958–1974, Sep. 2019, doi: 10.1080/15567036.2019.1663306.
  • A. Fudholi, K. Sopian, M.H. Ruslan, M.A. Alghoul, and M.Y. Sulaiman, “Review of solar dryers for agricultural and marine products,” Renewable and Sustainable Energy Reviews, vol. 14, no. 1, pp. 1–30, Jan. 2010, doi: 10.1016/j.rser.2009.07.032.
  • C. Karapire, M. Kus, G. Turkmen, C.C. Trevithick-Sutton, C.S. Foote, and S. Icli, “Photooxidation studies with perylenediimides in solution, PVC and sol–gel thin films under concentrated sun light,” Solar Energy, vol. 78, no. 1, pp. 5–17, Jan. 2005, doi: 10.1016/j.solener.2004.07.003.
  • P.R. Olivkar, V.P. Katekar, S.S. Deshmukh, and S.V. Palatkar, “Effect of sensible heat storage materials on the thermal performance of solar air heaters: State-of-the-art review,” Renewable and Sustainable Energy Reviews, vol. 157, Apr 2022, Art. no. 112085, doi: 10.1016/j.rser.2022.112085.
  • M.A. Eltawil, M.M. Azam, and A.O. Alghannam, “Energy analysis of hybrid solar tunnel dryer with PV system and solar collector for drying mint (Mentha Viridis),” Journal of Cleaner Production, vol. 181, pp. 352–364, Apr. 2018, doi: 10.1016/j.jclepro.2018.01.229.
  • G. Srinivasan, D.K. Rabha, and P. Muthukumar, “A review on solar dryers integrated with thermal energy storage units for drying agricultural and food products,” Solar Energy, vol. 229, pp. 22–38, Nov. 2021, doi: 10.1016/j.solener.2021.07.075.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Chetan Mamulkar 0000-0003-0912-3747

Sanjay Ikhar 0000-0002-0660-7693

Erken Görünüm Tarihi 24 Mayıs 2025
Yayımlanma Tarihi 1 Haziran 2025
Gönderilme Tarihi 8 Ekim 2024
Kabul Tarihi 2 Ocak 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 2

Kaynak Göster

APA Mamulkar, C., & Ikhar, S. (2025). An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis. International Journal of Thermodynamics, 28(2), 103-114. https://doi.org/10.5541/ijot.1563338
AMA Mamulkar C, Ikhar S. An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis. International Journal of Thermodynamics. Haziran 2025;28(2):103-114. doi:10.5541/ijot.1563338
Chicago Mamulkar, Chetan, ve Sanjay Ikhar. “An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis”. International Journal of Thermodynamics 28, sy. 2 (Haziran 2025): 103-14. https://doi.org/10.5541/ijot.1563338.
EndNote Mamulkar C, Ikhar S (01 Haziran 2025) An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis. International Journal of Thermodynamics 28 2 103–114.
IEEE C. Mamulkar ve S. Ikhar, “An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis”, International Journal of Thermodynamics, c. 28, sy. 2, ss. 103–114, 2025, doi: 10.5541/ijot.1563338.
ISNAD Mamulkar, Chetan - Ikhar, Sanjay. “An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis”. International Journal of Thermodynamics 28/2 (Haziran 2025), 103-114. https://doi.org/10.5541/ijot.1563338.
JAMA Mamulkar C, Ikhar S. An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis. International Journal of Thermodynamics. 2025;28:103–114.
MLA Mamulkar, Chetan ve Sanjay Ikhar. “An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis”. International Journal of Thermodynamics, c. 28, sy. 2, 2025, ss. 103-14, doi:10.5541/ijot.1563338.
Vancouver Mamulkar C, Ikhar S. An Experimental Optimization of Solar Dryer Employing Phase Change Material for Potato Slices Using Variance Analysis. International Journal of Thermodynamics. 2025;28(2):103-14.