Yıl 2025,
Cilt: 28 Sayı: 2, 69 - 78, 01.06.2025
Melih Yıldız
,
Saliha Özarslan
Kaynakça
- C. M. Plugge, “Biogas,” Microbial Biotechnology, vol. 10, no. 5, pp. 1128-1130, Sep. 2017, doi: 10.1111/1751-7915.12854.
N. Scarlat, J. -F. Dallemand, and F. Fahl, “Biogas: Developments and perspectives in Europe,” Renewable Energy, vol. 129, pp. 457-472, Dec. 2018, doi: 10.1016/j.renene.2018.03.006.
- S. Rasi, A. Veijanen, and J. Rintala, “Trace compounds of biogas from different biogas production plants,” Energy, vol. 32, no. 8, pp. 1375-1380, Aug. 2007, doi: 10.1016/j.energy.2006.10.018.
- A. Rafiee, K. R. Khalilpour, J. Prest, and I. Skryabin, “Biogas as an energy vector,” Biomass and Bioenergy, vol 144, Jan. 2021, Art. no. 105935, doi: 10.1016/j.biombioe.2020.105935.
- S. E. Hosseini and M. A. Wahid, “Development of biogas combustion in combined heat and power generation,” Renewable and Sustainable Energy Reviews, vol. 40, pp. 868-875, Dec. 2014, doi: 10.1016/j.rser.2014.07.204.
- S. E. Hosseini, G. Bagheri, and M. A. Wahid, “Numerical investigation of biogas flameless combustion,” Energy Conversion and Management, vol. 81, pp. 41-50, May 2014, doi: 10.1016/j.enconman.2014.02.006.
- M. Yıldız, “Chemical equilibrium based combustion model to evaluate the effects of H2 addition to biogases with different CO2 contents,” International Journal of Hydrogen Energy, vol. 52, pp. 1334-1344, Jan. 2024, doi: 10.1016/j.ijhydene.2023.06.077.
- J. P. Gómez Montoya, A. A. Amell, and D. B. Olsen, “Prediction and measurement of the critical compression ratio and methane number for blends of biogas with methane, propane and hydrogen,” Fuel, vol. 186, pp. 168-175, Dec. 2016, doi: 10.1016/j.fuel.2016 .08.064.
- S. Benaissa, B. Adouane, S. M. Ali, S. S. Rashwan, and Z. Aouachria, “Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors,” Thermal Science and Engineering Progress, vol. 27, Jan. 2022, Art. no. 101178, doi: 10.1016/j.tsep.2021.101178.
- A. Sharma, Y. Singh, N. Ahmet Ansari, A. Pal, and S. Lalhriatpuia, “Experimental investigation of the behaviour of a DI diesel engine fuelled with biodiesel/diesel blends having effect of raw biogas at different operating responses,” Fuel, vol. 279, 2020, Art. no. 118460, doi: 10.1016/j.fuel.2020.118460.
- M. Sekar, M. YE. Selim, and M. Elgendi, “Improving the performance of a diesel engine using nanomaterials and chlorella vulgaris microalgae blends assisted with biogas,” International Journal of Hydrogen Energy, vol. 49, pp. 496-506, Jan. 2024, doi: 10.1016/j.ijhydene.2023.09.171.
- İ. Yilmaz, B. Alabaş, M. Taştan, and G. Tunç, “Effect of oxygen enrichment on the flame stability and emissions during biogas combustion: An experimental study,” Fuel, vol. 280, Nov. 2020, Art. no. 118703, doi: 10.1016/j.fuel.2020.118703.
- K. Safer, M. Safer, F. Tabet, and A. Ouadha, “A numerical investigation of oxygen-enriched biogas counter-flow diffusion flames,” Combustion Science and Technology, vol. 196, no. 8, pp. 1207-1226, Jun. 2024, doi: 10.1080/00102202.2022.2112955.
- K. Cacua, A. Amell, and F. Cadavid, “Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine,” Biomass and Bioenergy, vol. 45, pp. 159-167, Oct. 2012, doi: 10.1016/j.biombioe.2012.06.003.
- H. A. Alabaş and B. Albayrak Çeper, “Effect of oxygen enrichment on the combustion characteristic and pollutant emissions of kerosene-biogas mixtures on a mini jet engine combustion chamber,” Journal of the Energy Institute, vol. 111, Dec. 2023, Art. no. 101420, doi: 10.1016/j.joei.2023.101420.
- X. Wang et al., “Effect of propane addition and oxygen enrichment on the flame characteristics of biogas,” Energy & Fuels, vol. 35, no. 6, pp. 5015-5025, Mar. 2021, doi: 10.1021/acs.energyfuels.1c00113.
- B. Alabaş, G. Tunç, M. Taştan, and İ. Yilmaz, “Effect of oxygen enrichment of Biogas-Hydrogen mixtures in a premixed combustor on the combustion instability and emissions,” Fuel, vol. 340, May 2023, Art. no. 127498, doi: 10.1016/j.fuel.2023.127498.
- J. Li et al., “Combustion and heat release characteristics of biogas under hydrogen-and oxygen-enriched condition,” Energies (Basel), vol. 10, no. 8, p. 1200, 2017, doi: 10.3390/en10081200.
- N. Striūgas, R. Paulauskas, R. Skvorčinskienė, and A. Lisauskas, “Investigation of waste biogas flame stability under oxygen or hydrogen-enriched conditions,” Energies (Basel), vol. 13, no. 18, pp. 4760, Sep. 2020, doi: 10.3390/en13184760.
- M. Elwardany, “Enhancing steam boiler efficiency through comprehensive energy and exergy analysis: A review,” Process Safety and Environmental Protection, vol. 184, pp. 1222-1250, Apr. 2024, doi: 10.1016/j.psep.2024.01.102.
- M. Parvez, T. Ahamad, S. Lal, O. Khan, F. Khalid, and Z. Yahya, “Energy, Exergy, Economic, and environmental assessment of a trigeneration system for combined power, cooling, and water desalination system driven by solar energy,” International Journal of Thermofluids, vol. 22, May 2024, Art. no. 100694, doi: 10.1016/j.ijft.2024.100694.
- J. Galindo, S. Ruiz, V. Dolz, and L. Royo-Pascual, “Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine,” Energy Conversion and Management, vol. 126, pp. 217-227, Oct. 2016, doi: 10.1016/j.enconman.2016.07.080.
- D.-C. Sue and C.-C. Chuang, “Engineering design and exergy analyses for combustion gas turbine based power generation system,” Energy, vol. 29, no. 8, pp. 1183-1205, Jun. 2004, doi: 10.1016/j.energy.2004.02. 027.
- M. Terhan and K. Comakli, “Energy and exergy analyses of natural gas-fired boilers in a district heating system,” Applied Thermal Engineering, vol. 121, pp. 380-387, Jul. 2017, doi: 10.1016/j.applthermaleng.2017.04.091.
- V. A. F. Costa, L.A.C. Tarelho, and A. Sobrinho, “Mass, energy and exergy analysis of a biomass boiler: A portuguese representative case of the pulp and paper industry,” Applied Thermal Engineering, vol. 152, pp. 350-361, Apr. 2019, doi: 10.1016/j.applthermaleng.2019.01.033.
- J. Zueco, D. López-Asensio, F.J. Fernández, and L. M. López-González, “Exergy analysis of a steam-turbine power plant using thermocombustion,” Applied Thermal Engineering, vol. 180, Nov. 2020, Art. no. 115812, doi: 10.1016/j.applthermaleng.2020.115812.
- H. Mahabadipour, S. R. Krishnan, and K. K. Srinivasan, “Investigation of exhaust flow and exergy fluctuations in a diesel engine,” Applied Thermal Engineering, vol. 147, pp. 856-865, Jan. 2019, doi: 10.1016/j.applthermal eng.2018.10.109.
- M. N. Nabi and M.G.Rasul, “Influence of second generation biodiesel on engine performance, emissions, energy and exergy parameters,” Energy Conversion and Management, vol. 169, pp. 326-333, Aug. 2018, doi: 10.1016/j.enconman.2018.05.066.
- S. Sarıkoç, İ. Örs, and S. Ünalan, “An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends,” Fuel, vol. 268, May 2020, Art. no. 117321, doi:10.1016/j.fuel.2020.117321.
Y. Li, M. Jia, Y. Chang, S. L. Kokjohn, and R. D. Reitz, “Thermodynamic energy and exergy analysis of three different engine combustion regimes,” Applied Energy, vol. 180, pp. 849-858, Oct. 2016, doi: 10.1016/j.apenergy.2016.08.038.
- X. Wang, B. Sun, and Q. Luo, “Energy and exergy analysis of a turbocharged hydrogen internal combustion engine,” International Journal of Hydrogen Energy, vol. 44, no. 11, pp. 5551-5563, Feb. 2019, doi: 10.1016/j.ijhydene.2018.10.047.
- C. Yin, L. A. Rosendahl, S. K. Kær, “Chemistry and radiation in oxy-fuel combustion: a computational fluid dynamic modeling study,” Fuel, vol. 90, no. 7, pp. 2519-2529, Jul. 2011, doi: 10.1016/j.fuel.2011.03.023.
- Wardach-Święcicka, S. Polesek-Karczewska, and D. Kardaś, “Biomass Combustion in the Helically Coiled
Domestic Boiler Combined with the Equilibrium/Chemical Kinetics CFD Approach,” Applied Mechanics, vol. 4, no. 2, pp. 779-802, Jun. 2023, doi: 10.3390/applmech4020040.
- Fluent User’s Guide, Centerra Resource Park,10. Cavendish Court, Lebanon, NH 03766, USA.
- M. A. Nemitallah and M. A. Habib, “Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor,” Applied Energy, vol. 111, pp. 401-415, Nov. 2013, doi: 10.1016/j.apenergy.2013.05.027.
- M. Farokhi and M. Birouk, “Application of Eddy dissipation concept for modeling biomass combustion, Part 1: Assessment of the model coefficients,” Energy & Fuels, vol. 30, no. 12, pp. 10789-10799, Dec. 2016, doi: 10.1021/acs.energyfuels.6b01947.
- E.-M. Wartha, M. Bösenhofer, and M. Harasek, “Characteristic chemical time scales for reactive flow modeling,” Combustion Science and Technology, vol. 193, no. 16, pp. 2807-2832, Dec. 2021, doi: 10.1080/00102202.2020.1760257.
- M. J. Evans, P.R. Medwell, and Z.F. Tian, “Modeling lifted jet flames in a heated coflow using an optimized eddy dissipation concept model,” Combustion Science and Technology, vol. 187, no. 7, pp. 1093-1109, Jul. 2015, doi: 10.1080/00102202.2014.1002836.
- J. P. Kim, U. Schnell, and G. Scheffknecht, “Comparison of different global reaction mechanisms for MILD combustion of natural gas,” Combustion Science and Technology, vol. 180, no. 4, pp. 565-592, Feb. 2008, doi: 10.1080/00102200701838735.
- S. Mazumder, and S. P. Roy, “Modeling thermal radiation in combustion environments: progress and challenges,” Energies (Basel), vol. 16, no. 10, p. 4250, May 2023, doi: 10.3390/en16104250.
- J. Gorman, S. Bhattacharyya, L. Cheng, and J. P. Abraham, “Turbulence models commonly used in CFD,” in Applications of Computational Fluid Dynamics Simulation and Modeling: IntechOpen, 2021, doi: 10.5772/intechopen.99784.
- C. A. Cardona and A. A. Amell, “Laminar burning velocity and interchangeability analysis of biogas/C3H8/H2 with normal and oxygen-enriched air,” International Journal of Hydrogen Energy, vol. 38, no. 19, pp. 7994-8001, Jun. 2013, doi: 10.1016/j.ijhydene.2013.04.094.
- M. A. Boles, Y. A. Cengel, Thermodynamics: an engineering approach, 8 th ed. New York: McGraw-Hill Education, 2014.
- Y. Kalinci, A. Hepbasli, and I. Dincer, “Exergoeconomic analysis and performance assessment of hydrogen and power production using different gasification systems,” Fuel, vol. 102, pp. 187-198, Dec. 2012, doi: 10.1016/j.fuel.2012.06.040.
- H. Caliskan, M. E. Tat, and A. Hepbasli, “Performance assessment of an internal combustion engine at varying dead (reference) state temperatures,” Applied Thermal Engineering, vol. 29, no. 16, pp. 3431-3436, Nov. 2009, doi: 10.1016/j.applthermaleng.2009.05.021.
- R. Pal, “Chemical exergy of ideal and non-ideal gas mixtures and liquid solutions with applications,” International Journal of Mechanical Engineering Education, vol. 47, no. 1, pp. 44-72, Jan. 2019, doi: 10.1177/030641901774958.
- D. Liu et al., “Theoretical analysis on the exergy destruction mechanisms and reduction under LTC relevant conditions,” Proceedings of the Combustion Institute, vol. 37, no. 4, pp. 4797-4804, 2019, doi: 10.1016/j.proci.2018.08.012.
- O. Razbani, N. Mirzamohammad, and M. Assadi, “Literature review and road map for using biogas in internal combustion engines,” in 3 th Int. Conference on Applied Energy, Perugia, Italy, 2011.
- I. Sivri, H. Yilmaz, O. Cam, and I. Yilmaz, “Combustion and emission characteristics of premixed biogas mixtures: An experimental study,” International Journal of Hydrogen Energy, vol. 47, no. 24, pp. 12377-12392, Mar. 2022, doi: 10.1016/j.ijhydene.2021.08.119.
- C. Ghenai and I. Janajreh, “Combustion of renewable biogas fuels,” Journal of Energy and Power Engineering, vol. 9, no. 10, pp. 831-843, 2015, doi:10.17265/19348975/2015.010.001.
- S. K. Som and A. Datta, “Thermodynamic irreversibilities and exergy balance in combustion processes,” Progress in Energy and Combustion science, vol. 34, no. 3, pp. 351-376, June 2008, doi: 10.1016/j.pecs.2007.09.001.
- X. Tian, J. Yang, Y. Gong, Q. Guo, X. Wang, and G. Yu, “Experimental study on OH*, CH*, and CO2* chemiluminescence diagnosis of CH4/O2 diffusion flame with CO2-diluted fuel,” ACS Omega, vol. 7, no. 45, pp. 41137-41146, Nov. 2022, doi: 10.1021/acsomega.2c04689.
- M. Bastani, S. Tabejamaat, M. Mani, and H. Ashini, “Numerical and experimental investigation of microturbine combustion chamber performance and emissions through biogas consumption with varied component ratios,” Fuel, vol. 380, Jan. 2025, Art. no. 133234, doi: 10.1016/j.fuel.2024.133234.
- T.J. Kotas, Y.R. Mayhew, and R.C. Raichura, “Nomenclature for exergy analysis,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 209, no. 4, pp. 275-280, Nov. 1995, doi: 10.1243/PIME_PROC_1995_209_006_01.
Exergy Analysis of Oxy-Biogas Combustion with Different Rates of the CO2 Content
Yıl 2025,
Cilt: 28 Sayı: 2, 69 - 78, 01.06.2025
Melih Yıldız
,
Saliha Özarslan
Öz
This work presents the exergetic evaluations of the oxy-biogas combustion process in an adiabatic furnace for the cases of biogas involving different carbon dioxide (CO2) concentrations. A three-dimensional steady-state computational fluid dynamics model was developed for combustion simulation. The model was first verified with the data of oxy-natural gas and showed good agreement with the data. Thus, simulation studies were performed for the oxy-biogas combustion with different CO2 concentrations of biogas fuel, from 10 vol% to 40 vol% with a 10% increment, at a constant input power capacity. The results show that the sum of specific thermo-mechanical and chemical exergy of combustion products has a decreasing trend with increasing CO2 content in biogas. However, the exergy flow rates of the combustion products increased with the increase in CO2 due to the increasing mass flow rates. Increasing the CO2 level in biogas led to an increase in the chemical exergy fraction of the combustion products. Thus, the exergy loss fractions resulting from incomplete combustion varied increasingly from 5.8 % to 13.8 % in the range from 10 % CO2 to 40 % CO2 contents of biogas.
Kaynakça
- C. M. Plugge, “Biogas,” Microbial Biotechnology, vol. 10, no. 5, pp. 1128-1130, Sep. 2017, doi: 10.1111/1751-7915.12854.
N. Scarlat, J. -F. Dallemand, and F. Fahl, “Biogas: Developments and perspectives in Europe,” Renewable Energy, vol. 129, pp. 457-472, Dec. 2018, doi: 10.1016/j.renene.2018.03.006.
- S. Rasi, A. Veijanen, and J. Rintala, “Trace compounds of biogas from different biogas production plants,” Energy, vol. 32, no. 8, pp. 1375-1380, Aug. 2007, doi: 10.1016/j.energy.2006.10.018.
- A. Rafiee, K. R. Khalilpour, J. Prest, and I. Skryabin, “Biogas as an energy vector,” Biomass and Bioenergy, vol 144, Jan. 2021, Art. no. 105935, doi: 10.1016/j.biombioe.2020.105935.
- S. E. Hosseini and M. A. Wahid, “Development of biogas combustion in combined heat and power generation,” Renewable and Sustainable Energy Reviews, vol. 40, pp. 868-875, Dec. 2014, doi: 10.1016/j.rser.2014.07.204.
- S. E. Hosseini, G. Bagheri, and M. A. Wahid, “Numerical investigation of biogas flameless combustion,” Energy Conversion and Management, vol. 81, pp. 41-50, May 2014, doi: 10.1016/j.enconman.2014.02.006.
- M. Yıldız, “Chemical equilibrium based combustion model to evaluate the effects of H2 addition to biogases with different CO2 contents,” International Journal of Hydrogen Energy, vol. 52, pp. 1334-1344, Jan. 2024, doi: 10.1016/j.ijhydene.2023.06.077.
- J. P. Gómez Montoya, A. A. Amell, and D. B. Olsen, “Prediction and measurement of the critical compression ratio and methane number for blends of biogas with methane, propane and hydrogen,” Fuel, vol. 186, pp. 168-175, Dec. 2016, doi: 10.1016/j.fuel.2016 .08.064.
- S. Benaissa, B. Adouane, S. M. Ali, S. S. Rashwan, and Z. Aouachria, “Investigation on combustion characteristics and emissions of biogas/hydrogen blends in gas turbine combustors,” Thermal Science and Engineering Progress, vol. 27, Jan. 2022, Art. no. 101178, doi: 10.1016/j.tsep.2021.101178.
- A. Sharma, Y. Singh, N. Ahmet Ansari, A. Pal, and S. Lalhriatpuia, “Experimental investigation of the behaviour of a DI diesel engine fuelled with biodiesel/diesel blends having effect of raw biogas at different operating responses,” Fuel, vol. 279, 2020, Art. no. 118460, doi: 10.1016/j.fuel.2020.118460.
- M. Sekar, M. YE. Selim, and M. Elgendi, “Improving the performance of a diesel engine using nanomaterials and chlorella vulgaris microalgae blends assisted with biogas,” International Journal of Hydrogen Energy, vol. 49, pp. 496-506, Jan. 2024, doi: 10.1016/j.ijhydene.2023.09.171.
- İ. Yilmaz, B. Alabaş, M. Taştan, and G. Tunç, “Effect of oxygen enrichment on the flame stability and emissions during biogas combustion: An experimental study,” Fuel, vol. 280, Nov. 2020, Art. no. 118703, doi: 10.1016/j.fuel.2020.118703.
- K. Safer, M. Safer, F. Tabet, and A. Ouadha, “A numerical investigation of oxygen-enriched biogas counter-flow diffusion flames,” Combustion Science and Technology, vol. 196, no. 8, pp. 1207-1226, Jun. 2024, doi: 10.1080/00102202.2022.2112955.
- K. Cacua, A. Amell, and F. Cadavid, “Effects of oxygen enriched air on the operation and performance of a diesel-biogas dual fuel engine,” Biomass and Bioenergy, vol. 45, pp. 159-167, Oct. 2012, doi: 10.1016/j.biombioe.2012.06.003.
- H. A. Alabaş and B. Albayrak Çeper, “Effect of oxygen enrichment on the combustion characteristic and pollutant emissions of kerosene-biogas mixtures on a mini jet engine combustion chamber,” Journal of the Energy Institute, vol. 111, Dec. 2023, Art. no. 101420, doi: 10.1016/j.joei.2023.101420.
- X. Wang et al., “Effect of propane addition and oxygen enrichment on the flame characteristics of biogas,” Energy & Fuels, vol. 35, no. 6, pp. 5015-5025, Mar. 2021, doi: 10.1021/acs.energyfuels.1c00113.
- B. Alabaş, G. Tunç, M. Taştan, and İ. Yilmaz, “Effect of oxygen enrichment of Biogas-Hydrogen mixtures in a premixed combustor on the combustion instability and emissions,” Fuel, vol. 340, May 2023, Art. no. 127498, doi: 10.1016/j.fuel.2023.127498.
- J. Li et al., “Combustion and heat release characteristics of biogas under hydrogen-and oxygen-enriched condition,” Energies (Basel), vol. 10, no. 8, p. 1200, 2017, doi: 10.3390/en10081200.
- N. Striūgas, R. Paulauskas, R. Skvorčinskienė, and A. Lisauskas, “Investigation of waste biogas flame stability under oxygen or hydrogen-enriched conditions,” Energies (Basel), vol. 13, no. 18, pp. 4760, Sep. 2020, doi: 10.3390/en13184760.
- M. Elwardany, “Enhancing steam boiler efficiency through comprehensive energy and exergy analysis: A review,” Process Safety and Environmental Protection, vol. 184, pp. 1222-1250, Apr. 2024, doi: 10.1016/j.psep.2024.01.102.
- M. Parvez, T. Ahamad, S. Lal, O. Khan, F. Khalid, and Z. Yahya, “Energy, Exergy, Economic, and environmental assessment of a trigeneration system for combined power, cooling, and water desalination system driven by solar energy,” International Journal of Thermofluids, vol. 22, May 2024, Art. no. 100694, doi: 10.1016/j.ijft.2024.100694.
- J. Galindo, S. Ruiz, V. Dolz, and L. Royo-Pascual, “Advanced exergy analysis for a bottoming organic rankine cycle coupled to an internal combustion engine,” Energy Conversion and Management, vol. 126, pp. 217-227, Oct. 2016, doi: 10.1016/j.enconman.2016.07.080.
- D.-C. Sue and C.-C. Chuang, “Engineering design and exergy analyses for combustion gas turbine based power generation system,” Energy, vol. 29, no. 8, pp. 1183-1205, Jun. 2004, doi: 10.1016/j.energy.2004.02. 027.
- M. Terhan and K. Comakli, “Energy and exergy analyses of natural gas-fired boilers in a district heating system,” Applied Thermal Engineering, vol. 121, pp. 380-387, Jul. 2017, doi: 10.1016/j.applthermaleng.2017.04.091.
- V. A. F. Costa, L.A.C. Tarelho, and A. Sobrinho, “Mass, energy and exergy analysis of a biomass boiler: A portuguese representative case of the pulp and paper industry,” Applied Thermal Engineering, vol. 152, pp. 350-361, Apr. 2019, doi: 10.1016/j.applthermaleng.2019.01.033.
- J. Zueco, D. López-Asensio, F.J. Fernández, and L. M. López-González, “Exergy analysis of a steam-turbine power plant using thermocombustion,” Applied Thermal Engineering, vol. 180, Nov. 2020, Art. no. 115812, doi: 10.1016/j.applthermaleng.2020.115812.
- H. Mahabadipour, S. R. Krishnan, and K. K. Srinivasan, “Investigation of exhaust flow and exergy fluctuations in a diesel engine,” Applied Thermal Engineering, vol. 147, pp. 856-865, Jan. 2019, doi: 10.1016/j.applthermal eng.2018.10.109.
- M. N. Nabi and M.G.Rasul, “Influence of second generation biodiesel on engine performance, emissions, energy and exergy parameters,” Energy Conversion and Management, vol. 169, pp. 326-333, Aug. 2018, doi: 10.1016/j.enconman.2018.05.066.
- S. Sarıkoç, İ. Örs, and S. Ünalan, “An experimental study on energy-exergy analysis and sustainability index in a diesel engine with direct injection diesel-biodiesel-butanol fuel blends,” Fuel, vol. 268, May 2020, Art. no. 117321, doi:10.1016/j.fuel.2020.117321.
Y. Li, M. Jia, Y. Chang, S. L. Kokjohn, and R. D. Reitz, “Thermodynamic energy and exergy analysis of three different engine combustion regimes,” Applied Energy, vol. 180, pp. 849-858, Oct. 2016, doi: 10.1016/j.apenergy.2016.08.038.
- X. Wang, B. Sun, and Q. Luo, “Energy and exergy analysis of a turbocharged hydrogen internal combustion engine,” International Journal of Hydrogen Energy, vol. 44, no. 11, pp. 5551-5563, Feb. 2019, doi: 10.1016/j.ijhydene.2018.10.047.
- C. Yin, L. A. Rosendahl, S. K. Kær, “Chemistry and radiation in oxy-fuel combustion: a computational fluid dynamic modeling study,” Fuel, vol. 90, no. 7, pp. 2519-2529, Jul. 2011, doi: 10.1016/j.fuel.2011.03.023.
- Wardach-Święcicka, S. Polesek-Karczewska, and D. Kardaś, “Biomass Combustion in the Helically Coiled
Domestic Boiler Combined with the Equilibrium/Chemical Kinetics CFD Approach,” Applied Mechanics, vol. 4, no. 2, pp. 779-802, Jun. 2023, doi: 10.3390/applmech4020040.
- Fluent User’s Guide, Centerra Resource Park,10. Cavendish Court, Lebanon, NH 03766, USA.
- M. A. Nemitallah and M. A. Habib, “Experimental and numerical investigations of an atmospheric diffusion oxy-combustion flame in a gas turbine model combustor,” Applied Energy, vol. 111, pp. 401-415, Nov. 2013, doi: 10.1016/j.apenergy.2013.05.027.
- M. Farokhi and M. Birouk, “Application of Eddy dissipation concept for modeling biomass combustion, Part 1: Assessment of the model coefficients,” Energy & Fuels, vol. 30, no. 12, pp. 10789-10799, Dec. 2016, doi: 10.1021/acs.energyfuels.6b01947.
- E.-M. Wartha, M. Bösenhofer, and M. Harasek, “Characteristic chemical time scales for reactive flow modeling,” Combustion Science and Technology, vol. 193, no. 16, pp. 2807-2832, Dec. 2021, doi: 10.1080/00102202.2020.1760257.
- M. J. Evans, P.R. Medwell, and Z.F. Tian, “Modeling lifted jet flames in a heated coflow using an optimized eddy dissipation concept model,” Combustion Science and Technology, vol. 187, no. 7, pp. 1093-1109, Jul. 2015, doi: 10.1080/00102202.2014.1002836.
- J. P. Kim, U. Schnell, and G. Scheffknecht, “Comparison of different global reaction mechanisms for MILD combustion of natural gas,” Combustion Science and Technology, vol. 180, no. 4, pp. 565-592, Feb. 2008, doi: 10.1080/00102200701838735.
- S. Mazumder, and S. P. Roy, “Modeling thermal radiation in combustion environments: progress and challenges,” Energies (Basel), vol. 16, no. 10, p. 4250, May 2023, doi: 10.3390/en16104250.
- J. Gorman, S. Bhattacharyya, L. Cheng, and J. P. Abraham, “Turbulence models commonly used in CFD,” in Applications of Computational Fluid Dynamics Simulation and Modeling: IntechOpen, 2021, doi: 10.5772/intechopen.99784.
- C. A. Cardona and A. A. Amell, “Laminar burning velocity and interchangeability analysis of biogas/C3H8/H2 with normal and oxygen-enriched air,” International Journal of Hydrogen Energy, vol. 38, no. 19, pp. 7994-8001, Jun. 2013, doi: 10.1016/j.ijhydene.2013.04.094.
- M. A. Boles, Y. A. Cengel, Thermodynamics: an engineering approach, 8 th ed. New York: McGraw-Hill Education, 2014.
- Y. Kalinci, A. Hepbasli, and I. Dincer, “Exergoeconomic analysis and performance assessment of hydrogen and power production using different gasification systems,” Fuel, vol. 102, pp. 187-198, Dec. 2012, doi: 10.1016/j.fuel.2012.06.040.
- H. Caliskan, M. E. Tat, and A. Hepbasli, “Performance assessment of an internal combustion engine at varying dead (reference) state temperatures,” Applied Thermal Engineering, vol. 29, no. 16, pp. 3431-3436, Nov. 2009, doi: 10.1016/j.applthermaleng.2009.05.021.
- R. Pal, “Chemical exergy of ideal and non-ideal gas mixtures and liquid solutions with applications,” International Journal of Mechanical Engineering Education, vol. 47, no. 1, pp. 44-72, Jan. 2019, doi: 10.1177/030641901774958.
- D. Liu et al., “Theoretical analysis on the exergy destruction mechanisms and reduction under LTC relevant conditions,” Proceedings of the Combustion Institute, vol. 37, no. 4, pp. 4797-4804, 2019, doi: 10.1016/j.proci.2018.08.012.
- O. Razbani, N. Mirzamohammad, and M. Assadi, “Literature review and road map for using biogas in internal combustion engines,” in 3 th Int. Conference on Applied Energy, Perugia, Italy, 2011.
- I. Sivri, H. Yilmaz, O. Cam, and I. Yilmaz, “Combustion and emission characteristics of premixed biogas mixtures: An experimental study,” International Journal of Hydrogen Energy, vol. 47, no. 24, pp. 12377-12392, Mar. 2022, doi: 10.1016/j.ijhydene.2021.08.119.
- C. Ghenai and I. Janajreh, “Combustion of renewable biogas fuels,” Journal of Energy and Power Engineering, vol. 9, no. 10, pp. 831-843, 2015, doi:10.17265/19348975/2015.010.001.
- S. K. Som and A. Datta, “Thermodynamic irreversibilities and exergy balance in combustion processes,” Progress in Energy and Combustion science, vol. 34, no. 3, pp. 351-376, June 2008, doi: 10.1016/j.pecs.2007.09.001.
- X. Tian, J. Yang, Y. Gong, Q. Guo, X. Wang, and G. Yu, “Experimental study on OH*, CH*, and CO2* chemiluminescence diagnosis of CH4/O2 diffusion flame with CO2-diluted fuel,” ACS Omega, vol. 7, no. 45, pp. 41137-41146, Nov. 2022, doi: 10.1021/acsomega.2c04689.
- M. Bastani, S. Tabejamaat, M. Mani, and H. Ashini, “Numerical and experimental investigation of microturbine combustion chamber performance and emissions through biogas consumption with varied component ratios,” Fuel, vol. 380, Jan. 2025, Art. no. 133234, doi: 10.1016/j.fuel.2024.133234.
- T.J. Kotas, Y.R. Mayhew, and R.C. Raichura, “Nomenclature for exergy analysis,” Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, vol. 209, no. 4, pp. 275-280, Nov. 1995, doi: 10.1243/PIME_PROC_1995_209_006_01.