Derleme
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 28 Sayı: 2, 115 - 128, 01.06.2025
https://doi.org/10.5541/ijot.1608741

Öz

Kaynakça

  • J. A. M. da Silva, S. Ávila Filho, and M. Carvalho, “Assessment of energy and exergy efficiencies in steam generators,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 39, no. 8, pp. 3217–3226, Aug. 2017, doi: 10.1007/s40430-016-0704-6.
  • L. Miró, J. Gasia, and L. F. Cabeza, “Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review,” Applied Energy, vol. 179, pp. 284–301, Oct. 2016, doi: 10.1016/j.apenergy.2016.06.147.
  • S. LeBlanc, “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications,” Sustainable Materials and Technologies, vol. 1–2, pp. 26–35, Dec. 2014, doi: 10.1016/j.susmat.2014.11.002.
  • T. K. Ibrahim et al., “A comprehensive review on the exergy analysis of combined cycle power plants,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 835–850, Jul. 2018, doi: 10.1016/j.rser.2018.03.072.
  • M. Elwardany, A. M. Nassib, H. A. Mohamed, and Abdelaal, “Performance Assessment of Combined Cycle Power Plant,” in 2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES), IEEE, Oct. 2023, pp. 80–84, doi: 10.1109/NILES59815.2023.10296617.
  • Thanos. Bourtsalas and J. Wei, “Exhaust steam utilization in waste-to-energy strategies: From district heating to desalination,” Journal of Cleaner Production, vol. 428, Nov. 2023, Art. no. 139389, doi: 10.1016/j.jclepro.2023.139389.
  • A. Damasceno, L. Carneiro, N. Andrade, S. Vasconcelos, R. Brito, and K. Brito, “Simultaneous prediction of steam production and reduction efficiency in recovery boilers of pulping process,” Journal of Cleaner Production, vol. 275, Dec. 2020, Art. no. 124103, doi: 10.1016/j.jclepro.2020.124103.
  • P. Yang et al., “Solar-driven simultaneous steam production and electricity generation from salinity,” Energy and Environmental Science, vol. 10, no. 9, pp. 1923–1927, 2017, doi: 10.1039/c7ee01804e.
  • R. K. Pal and R. K. K., “Investigations of thermo-hydrodynamics, structural stability, and thermal energy storage for direct steam generation in parabolic trough solar collector: A comprehensive review,” Journal of Cleaner Production, vol. 311, Aug. 2021, Art. no. 127550, doi: 10.1016/j.jclepro.2021.127550.
  • M. Elwardany, A. M. Nassib, H. A. Mohamed, and M. Abdelaal, “Energy and exergy assessment of 750 MW combined cycle power plant: A case study,” Energy Nexus, vol. 12, Dec. 2023, Art. no. 100251, doi: 10.1016/j.nexus.2023.100251.
  • K. F. A. Sukra, D. Permana, And W. Adriansyah, “Modelling And Simulation Of Existing Geothermal Power Plant: A Case Study Of Darajat Geothermal Power Plant,” International Journal of Thermodynamics, vol. 26, no. 2, pp. 13–20, Jun. 2023, doi: 10.5541/ijot.1118778.
  • S. Sadri And S. Y. Seyed Mohseni, “Investigation Of Kalina Cycle For Power Generation From Heat Dissipation Of Tarasht Power Plant,” International Journal Of Thermodynamics, vol. 26, no. 2, pp. 57–63, Jun. 2023, doi: 10.5541/Ijot.1214617.
  • D. Kumar, T. Zehra, A. Junejo, S. A. Bhanbhro, And M. Basit, “4e (Energy, Exergy, Economic And Environmental) Analysis Of The Novel Design Of Wet Cooling Tower,” Journal of Thermal Engineering, vol. 6, no. 3, pp. 253–267, Apr. 2020, doi: 10.18186/thermal.710981.
  • M. Elwardany, A. E. M. Nassib, And H. A. Mohamed, “Comparative Evaluation For Selected Gas Turbine Cycles,” International Journal Of Thermodynamics, vol. 26, no. 4, pp. 57–67, Dec. 2023, doi: 10.5541/ijot.1268823.
  • A. T. Ubando, A. D. M. Africa, M. C. Maniquiz-Redillas, A. B. Culaba, and W. H. Chen, “Reduction of particulate matter and volatile organic compounds in biorefineries: A state-of-the-art review,” Journal of Hazardous Materials, vol. 403, 2021, Art. no. 123955, doi: 10.1016/j.jhazmat.2020.123955.
  • O. Svedovs, M. Dzikevics, V. Kirsanovs, and I. Wardach-Święcicka, “Bibliometric Analysis of the Modelling of LowQuality Biomass Pellets Combustion,” Environmental and Climate Technologies, vol. 28, no. 1, pp. 286–302, Jan. 2024, doi: 10.2478/rtuect-2024-0023.
  • Y. Kikuchi, Y. Kanematsu, R. Sato, and T. Nakagaki, “Distributed Cogeneration of Power and Heat within an Energy Management Strategy for Mitigating Fossil Fuel Consumption,” Journal of Industrial Ecology, vol. 20, no. 2, pp. 289–303, Apr. 2016, doi: 10.1111/jiec.12374.
  • M. Elwardany, A. M. Nassib, and H. A. Mohamed, “Advancing sustainable thermal power generation: insights from recent energy and exergy studies,” Process Safety and Environmental Protection, vol. 183, pp. 617–644, Mar. 2024, doi: 10.1016/j.psep.2024.01.039.
  • M. Ucar and O. Arslan, “Assessment of improvement potential of a condensed combi boiler via advanced exergy analysis,” Thermal Science and Engineering Progress, vol. 23, Jun. 2021, Art. no. 100853, doi: 10.1016/j.tsep.2021.100853.
  • F. Guarino, M. Cellura, and M. Traverso, “Costructal law, exergy analysis and life cycle energy sustainability assessment: an expanded framework applied to a boiler,” The International Journal of Life Cycle Assessment, vol. 25, no. 10, pp. 2063–2085, Oct. 2020, doi: 10.1007/s11367-020-01779-9.
  • K.-W. Lin and H.-W. Wu, “Emissions and energy/exergy efficiency in an industrial boiler with biodiesel and other fuels,” Case Studies in Thermal Engineering, vol. 50, Oct. 2023, Art. no. 103474, doi: 10.1016/j.csite.2023.103474.
  • G. Ahmadi, A. Jahangiri, and D. Toghraie, “Design of heat recovery steam generator (HRSG) and selection of gas turbine based on energy, exergy, exergoeconomic, and exergo-environmental prospects,” Process Safety and Environmental Protection, vol. 172, pp. 353–368, Apr. 2023, doi: 10.1016/j.psep.2023.02.025.
  • M. Elwardany, “Enhancing steam boiler efficiency through comprehensive energy and exergy analysis: A review,” Process Safety and Environmental Protection, vol. 184, pp. 1222–1250, Apr. 2024, doi: 10.1016/j.psep.2024.01.102.
  • K. S. Hasan, “Experimental study on the combustion of gaseous based fuel (LPG) in a tangential swirl burner of a steam boiler,” Journal of Thermal Engineering, vol. 10, no. 5, pp. 1226–1240, 2024, doi: 10.14744/thermal.0000863.
  • D. Kadric, N. Delalic, B. Delalic-Gurda, M. Kotur, And A. Skulj, “Reduction Of Energy Use In Industrial Facility,” Journal Of Thermal Engineering, vol. 7, no. 1, pp. 54–65, Jan. 2021, doi: 10.18186/Thermal.840063.
  • M. Elwardany, A. M. Nassib, and H. A. Mohamed, “Exergy analysis of a gas turbine cycle power plant: a case study of power plant in Egypt,” Journal of Thermal Analysis and Calorimetry, vol. 149, no. 14, pp. 7433–7447, Jul. 2024, doi: 10.1007/s10973-024-13324-z.
  • W. Mo et al., “Technical-economic-environmental analysis of biomass direct and indirect co-firing in pulverized coal boiler in China,” Journal of Cleaner Production, vol. 426, Nov. 2023, Art. no. 139119, doi: 10.1016/j.jclepro.2023.139119.
  • M. Elwardany, A. M. Nassib, H. A. Mohamed, and M. R. Abdelaal, “Modeling of performance and thermodynamic study of a gas turbine power plant,” Thermal Science and Engineering, vol. 7, no. 4, Oct. 2024, Art. no. 8016, doi: 10.24294/tse.v7i4.8016.
  • P. Mu et al., “Superwetting Monolithic Hollow‐Carbon‐Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation,” Advanced Energy Materials, vol. 9, no. 1, pp. 1–9, Jan. 2019, doi: 10.1002/aenm.201802158.
  • Z. Liu et al., “Extremely Cost‐Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper,” Global Challenges, vol. 1, no. 2, pp. 1–10, Feb. 2017, doi: 10.1002/gch2.201600003.
  • X. Wu et al., “A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation,” Nano Energy, vol. 56, pp. 708–715, 2019, doi: 10.1016/j.nanoen.2018.12.008.
  • M. Elwardany, A. M. Nassib, and H. A. Mohamed, “Case Study: Exergy Analysis of a Gas Turbine Cycle Power Plant in Hot Weather Conditions,” in 2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES), IEEE, Oct. 2023, pp. 291–294, doi: 10.1109/NILES59815.2023.10296731.
  • S. S. Chauhan and S. Khanam, “Energy integration in boiler section of thermal power plant,” Journal of Cleaner Production, vol. 202, pp. 601–615, Nov. 2018, doi: 10.1016/j.jclepro.2018.08.161.
  • M. A. Nemitallah et al., “Artificial intelligence for control and optimization of boilers’ performance and emissions: A review,” Journal of Cleaner Production, vol. 417, Sep. 2023, Art. no. 138109, doi: 10.1016/j.jclepro.2023.138109.
  • A. Farkas, N. Degiuli, I. Martić, and C. G. Grlj, “Is slow steaming a viable option to meet the novel energy efficiency requirements for containerships?,” Journal of Cleaner Production, vol. 374, Nov. 2022, Art. no. 133915, doi: 10.1016/j.jclepro.2022.133915.
  • J. Bujak, “Minimizing energy losses in steam systems for potato starch production,” Journal of Cleaner Production, vol. 17, no. 16, pp. 1453–1464, Nov. 2009, doi: 10.1016/j.jclepro.2009.06.013.
  • C. Jia et al., “Rich Mesostructures Derived from Natural Woods for Solar Steam Generation,” Joule, vol. 1, no. 3, pp. 588–599, Nov. 2017, doi: 10.1016/j.joule.2017.09.011.
  • M. Rafeek, M. Elwardany, A. M. Nassib, M. S. Ahmed, H. A. Mohamed, and M. Abdelaal, “Sustainable Refining: Enhancing Energy Efficiency in Crude Distillation Processes,” Chemical Engineering and Processing - Process Intensification, vol. 214, no. 2, Aug. 2025, Art. no. 110326, doi: 10.1016/j.cep.2025.110326.
  • M. Melicherová, M. Ondrišová, and J. Šušol, “Bibliometrics versus altmetrics: Researchers’ attitudes in Slovakia,” Iberoamerican Journal of Science Measurement and Communication, vol. 1, no. 1, 2021, doi: 10.47909/ijsmc.11.
  • F. Luo, R. Y. M. Li, M. J. C. Crabbe, and R. Pu, “Economic development and construction safety research: A bibliometrics approach,” Safety Science, vol. 145, 2022, doi: 10.1016/j.ssci.2021.105519.
  • X. Zhou and X. Ma, “Progress of graph model for conflict resolution in conflict analysis: A systematic review and bibliometrics research,” Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 5835–5846, Dec. 2021, doi: 10.3233/JIFS-201320.
  • X. Bai, M. Hao, M. Hu, and L. Yang, “Big Data Analysis of Water Saving Standard Based on Bibliometrics,” Journal of Sensors, vol. 2022, pp. 1–9, Apr. 2022, doi: 10.1155/2022/5851114.
  • Y. Hu, Y. Yu, K. Huang, and L. Wang, “Development tendency and future response about the recycling methods of spent lithium-ion batteries based on bibliometrics analysis,” Journal of Energy Storage, vol. 27, Feb. 2020, Art. no. 101111, doi: 10.1016/j.est.2019.101111.
  • J. Xiong et al., “Research Progress of Ferroptosis: A Bibliometrics and Visual Analysis Study,” Journal of Healthcare Engineering, vol. 2021, Aug. 2021, doi: 10.1155/2021/2178281.
  • M. Elwardany, A. M. Nassib, and H. A. Mohamed, “Analyzing global research trends in combined cycle power plants: A bibliometric study,” Energy Nexus, vol. 13, Mar. 2024, Art. no. 100265, doi: 10.1016/j.nexus.2023.100265.
  • J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo, and M. J. Cobo, “Software tools for conducting bibliometric analysis in science: An up-to-date review,” El Profesional de la Información, vol. 29, no. 1, pp. 1–20, Jan. 2020, doi: 10.3145/epi.2020.ene.03.
  • R. Wang et al., “Advanced nanoparticles that can target therapy and reverse drug resistance may be the dawn of leukemia treatment: A bibliometrics study,” Frontiers in Bioengineering and Biotechnology, vol. 10, Oct. 2022, doi: 10.3389/fbioe.2022.1027868.
  • T. C. C. Nepomuceno, V. D. H. De Carvalho, K. T. C. Nepomuceno, and A. P. C. S. Costa, “Exploring knowledge benchmarking using time‐series directional distance functions and bibliometrics,” Expert Systems, vol. 40, no. 1, Jan. 2023, doi: 10.1111/exsy.12967.
  • G. Vaccaro, P. Sánchez-Núñez, and P. Witt-Rodríguez, “Bibliometrics Evaluation of Scientific Journals and Country Research Output of Dental Research in Latin America Using Scimago Journal and Country Rank,” Publications, vol. 10, no. 3, p. 26, Aug. 2022, doi: 10.3390/publications10030026.
  • H. Qu, N. A. Nordin, T. B. Tsong, and X. Feng, “A Bibliometrics and Visual Analysis of Global Publications for Cognitive Map (1970-2022),” IEEE Access, vol. 11, pp. 1–1, 2023, doi: 10.1109/ACCESS.2023.3279198.
  • J. Liang et al., “Bibliometrics and visualization analysis of research in the field of sustainable development of the blue economy (2006–2021),” Frontiers in Marine Science, vol. 9, Sep. 2022, doi: 10.3389/fmars.2022.936612.
  • H. Ge, Y. Bo, H. Sun, M. Zheng, and Y. Lu, “A review of research on driving distraction based on bibliometrics and co-occurrence: Focus on driving distraction recognition methods,” Journal of Safety Research, vol. 82, pp. 261–274, Sep. 2022, doi: 10.1016/j.jsr.2022.06.002.
  • N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” Journal of Business Research, vol. 133, pp. 285–296, Sep. 2021, doi: 10.1016/j.jbusres.2021.04.070.
  • M. Kajba, B. Jereb, and T. Cvahte Ojsteršek, “Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach,” Energies, vol. 16, no. 9, p. 3922, May. 2023, doi: 10.3390/en16093922.
  • A. Kirby, “Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool,” Publications, vol. 11, no. 1, p. 10, Feb. 2023, doi: 10.3390/publications11010010.
  • S. S. Nunayon, K.-W. Mui, and L.-T. Wong, “Mapping the knowledge pattern of ultraviolet germicidal irradiation for cleaner indoor air through the lens of bibliometrics,” Journal of Cleaner Production, vol. 391, Mar. 2023, Art. no. 135974, doi: 10.1016/j.jclepro.2023.135974.
  • A. Rejeb, K. Rejeb, A. Abdollahi, S. Zailani, M. Iranmanesh, and M. Ghobakhloo, “Digitalization in Food Supply Chains: A Bibliometric Review and Key-Route Main Path Analysis,” Sustainability, vol. 14, no. 1, p. 83, Dec. 2021, doi: 10.3390/su14010083.
  • M. B. Firmansyah, A. A. A. D. Andriyani, and R. A. Asih, “Bibliometric Analysis of Multimodality Based on Multimodal Learning,” SSRN Electronic Journal, vol. 18, pp. 105–112, 2022, doi: 10.2139/ssrn.4298216.
  • Y. Qin, M. Ghalambaz, M. Sheremet, M. Fteiti, and F. Alresheedi, “A bibliometrics study of phase change materials (PCMs),” Journal of Energy Storage, vol. 73, Dec. 2023, Art. no. 108987, doi: 10.1016/j.est.2023.108987.
  • L. A. Díaz-Secades, R. González, and N. Rivera, “Waste heat recovery from marine engines and their limiting factors: Bibliometric analysis and further systematic review,” Cleaner Energy Systems, vol. 6, Dec. 2023, Art. no. 100083, doi: 10.1016/j.cles.2023.100083.
  • A. Yu, W. Su, X. Lin, and N. Zhou, “Recent trends of supercritical CO2 Brayton cycle: Bibliometric analysis and research review,” Nuclear Engineering and Technology, vol. 53, no. 3, pp. 699–714, Mar. 2021, doi: 10.1016/j.net.2020.08.005.
  • R. Zahedi, A. Aslani, M. A. N. Seraji, and Z. Zolfaghari, “Advanced bibliometric analysis on the coupling of energetic dark greenhouse with natural gas combined cycle power plant for CO2 capture,” Korean Journal of Chemical Engineering, vol. 39, no. 11, pp. 3021–3031, Nov. 2022, doi: 10.1007/s11814-022-1233-x.
  • O. Omoregbe, A. N. Mustapha, R. Steinberger-Wilckens, A. El-Kharouf, and H. Onyeaka, “Carbon capture technologies for climate change mitigation: A bibliometric analysis of the scientific discourse during 1998–2018,” Energy Reports, vol. 6, pp. 1200–1212, 2020, doi: 10.1016/j.egyr.2020.05.003.
  • M. Malekli, A. Aslani, Z. Zolfaghari, R. Zahedi, and A. Moshari, “Advanced bibliometric analysis on the development of natural gas combined cycle power plant with CO2 capture and storage technology,” Sustainable Energy Technologies and Assessments, vol. 52, Aug. 2022, Art. no. 102339, doi: 10.1016/j.seta.2022.102339.
  • M. Á. Reyes-Belmonte, “A bibliometric study on integrated solar combined cycles (ISCC), trends and future based on data analytics tools,” Sustainability (Switzerland), vol. 12, no. 19, 2020, doi: 10.3390/su12198217.
  • A. S. Karakurt, İ. Özsari, V. Başhan, and Ü. Güneş, “Evolution of steam turbines: A bibliometric approach,” Journal of Thermal Engineering, vol. 8, no. 5, pp. 681–690, 2022, doi: 10.18186/thermal.1187839.
  • D. I. Permana, D. Rusirawan, and I. Farkas, “A bibliometric analysis of the application of solar energy to the organic Rankine cycle,” Heliyon, vol. 8, no. 4, Apr. 2022, Art. no. e09220, doi: 10.1016/j.heliyon.2022.e09220.
  • L. F. Cabeza, M. Chàfer, and É. Mata, “Comparative analysis of web of science and scopus on the energy efficiency and climate impact of buildings,” Energies, vol. 13, no. 2, 2020, doi: 10.3390/en13020409.
  • M. Aria and C. Cuccurullo, “bibliometrix : An R-tool for comprehensive science mapping analysis,” Journal of Informetrics, vol. 11, no. 4, pp. 959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.
  • Y. Lin, Y. Jia, G. Alva, and G. Fang, “Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2730–2742, Feb. 2018, doi: 10.1016/j.rser.2017.10.002.
  • Q. Zhang, Y. Sun, W. Xu, and D. Zhu, “Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently,” Advanced Materials, vol. 26, no. 40, pp. 6829–6851, Oct. 2014, doi: 10.1002/adma.201305371.
  • H. Ghasemi et al., “Solar steam generation by heat localization,” Nature Communications, vol. 5, no. 1, p. 4449, Jul. 2014, doi: 10.1038/ncomms5449.
  • H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, “Waste heat recovery technologies and applications,” Thermal Science and Engineering Progress, vol. 6, pp. 268–289, Jun. 2018, doi: 10.1016/j.tsep.2018.04.017 .
  • Y. Li et al., “3D‐Printed, All‐in‐One Evaporator for High‐Efficiency Solar Steam Generation under 1 Sun Illumination,” Advanced Materials, vol. 29, no. 26, pp. 1–8, Jul. 2017, doi: 10.1002/adma.201700981.
  • K. K. Liu et al., “Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination,” ACS Applied Materials and Interfaces, vol. 9, no. 8, pp. 7675–7681, Mar. 2017, doi: 10.1021/acsami.7b01307.
  • Y. Shi et al., “A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation,” Joule, vol. 2, no. 6, pp. 1171–1186, Jun. 2018, doi: 10.1016/j.joule.2018.03.013.
  • G. Xue et al., “Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation,” ACS Applied Materials & Interfaces, vol. 9, no. 17, pp. 15052–15057, May. 2017, doi: 10.1021/acsami.7b01992.
  • S. He et al., “Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination,” Energy & Environmental Science, vol. 12, no. 5, pp. 1558–1567, 2019, doi: 10.1039/C9EE00945K.
  • T. Li et al., “Scalable and Highly Efficient Mesoporous Wood‐Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport,” Advanced Functional Materials, vol. 28, no. 16, pp. 1–8, Apr. 2018, doi: 10.1002/adfm.201707134.

Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement

Yıl 2025, Cilt: 28 Sayı: 2, 115 - 128, 01.06.2025
https://doi.org/10.5541/ijot.1608741

Öz

Steam boilers are widely used in power generation and industrial processes. Improving their efficiency is crucial for enhancing sustainability and reducing operating costs. This study conducts a comprehensive bibliometric analysis to map the evolving research landscape on steam boiler efficiency improvement from 2014 to 2023. A literature search in the Scopus database retrieved 3574 publications. This study employs bibliometric analysis using Bibliometrix R packages and VOSViewer software to examine research trends, focusing on publication growth, key journals, influential authors, and emerging themes in steam boiler efficiency improvement. The results indicate a significant increase in annual research output, reflecting sustained global efforts in the field. China leads in both the volume and impact of contributions. Key research themes include materials development, innovative designs, heat recovery, and sustainable solutions. Notable publications emphasize eco-friendly approaches such as solar and organic thermoelectrics. Prolific authors from China, the United States, and Europe have shaped the discourse through influential collaborations. Emerging trends highlight a growing focus on renewable energy integration, advanced thermal management, and computational methodologies. This study consolidates knowledge on enhancing steam boiler efficiency through both quantitative and qualitative analyses, showcasing remarkable progress driven by dedicated international efforts. These insights can inform future strategies and inspire innovation in optimizing this critical energy conversion process.

Kaynakça

  • J. A. M. da Silva, S. Ávila Filho, and M. Carvalho, “Assessment of energy and exergy efficiencies in steam generators,” Journal of the Brazilian Society of Mechanical Sciences and Engineering, vol. 39, no. 8, pp. 3217–3226, Aug. 2017, doi: 10.1007/s40430-016-0704-6.
  • L. Miró, J. Gasia, and L. F. Cabeza, “Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review,” Applied Energy, vol. 179, pp. 284–301, Oct. 2016, doi: 10.1016/j.apenergy.2016.06.147.
  • S. LeBlanc, “Thermoelectric generators: Linking material properties and systems engineering for waste heat recovery applications,” Sustainable Materials and Technologies, vol. 1–2, pp. 26–35, Dec. 2014, doi: 10.1016/j.susmat.2014.11.002.
  • T. K. Ibrahim et al., “A comprehensive review on the exergy analysis of combined cycle power plants,” Renewable and Sustainable Energy Reviews, vol. 90, pp. 835–850, Jul. 2018, doi: 10.1016/j.rser.2018.03.072.
  • M. Elwardany, A. M. Nassib, H. A. Mohamed, and Abdelaal, “Performance Assessment of Combined Cycle Power Plant,” in 2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES), IEEE, Oct. 2023, pp. 80–84, doi: 10.1109/NILES59815.2023.10296617.
  • Thanos. Bourtsalas and J. Wei, “Exhaust steam utilization in waste-to-energy strategies: From district heating to desalination,” Journal of Cleaner Production, vol. 428, Nov. 2023, Art. no. 139389, doi: 10.1016/j.jclepro.2023.139389.
  • A. Damasceno, L. Carneiro, N. Andrade, S. Vasconcelos, R. Brito, and K. Brito, “Simultaneous prediction of steam production and reduction efficiency in recovery boilers of pulping process,” Journal of Cleaner Production, vol. 275, Dec. 2020, Art. no. 124103, doi: 10.1016/j.jclepro.2020.124103.
  • P. Yang et al., “Solar-driven simultaneous steam production and electricity generation from salinity,” Energy and Environmental Science, vol. 10, no. 9, pp. 1923–1927, 2017, doi: 10.1039/c7ee01804e.
  • R. K. Pal and R. K. K., “Investigations of thermo-hydrodynamics, structural stability, and thermal energy storage for direct steam generation in parabolic trough solar collector: A comprehensive review,” Journal of Cleaner Production, vol. 311, Aug. 2021, Art. no. 127550, doi: 10.1016/j.jclepro.2021.127550.
  • M. Elwardany, A. M. Nassib, H. A. Mohamed, and M. Abdelaal, “Energy and exergy assessment of 750 MW combined cycle power plant: A case study,” Energy Nexus, vol. 12, Dec. 2023, Art. no. 100251, doi: 10.1016/j.nexus.2023.100251.
  • K. F. A. Sukra, D. Permana, And W. Adriansyah, “Modelling And Simulation Of Existing Geothermal Power Plant: A Case Study Of Darajat Geothermal Power Plant,” International Journal of Thermodynamics, vol. 26, no. 2, pp. 13–20, Jun. 2023, doi: 10.5541/ijot.1118778.
  • S. Sadri And S. Y. Seyed Mohseni, “Investigation Of Kalina Cycle For Power Generation From Heat Dissipation Of Tarasht Power Plant,” International Journal Of Thermodynamics, vol. 26, no. 2, pp. 57–63, Jun. 2023, doi: 10.5541/Ijot.1214617.
  • D. Kumar, T. Zehra, A. Junejo, S. A. Bhanbhro, And M. Basit, “4e (Energy, Exergy, Economic And Environmental) Analysis Of The Novel Design Of Wet Cooling Tower,” Journal of Thermal Engineering, vol. 6, no. 3, pp. 253–267, Apr. 2020, doi: 10.18186/thermal.710981.
  • M. Elwardany, A. E. M. Nassib, And H. A. Mohamed, “Comparative Evaluation For Selected Gas Turbine Cycles,” International Journal Of Thermodynamics, vol. 26, no. 4, pp. 57–67, Dec. 2023, doi: 10.5541/ijot.1268823.
  • A. T. Ubando, A. D. M. Africa, M. C. Maniquiz-Redillas, A. B. Culaba, and W. H. Chen, “Reduction of particulate matter and volatile organic compounds in biorefineries: A state-of-the-art review,” Journal of Hazardous Materials, vol. 403, 2021, Art. no. 123955, doi: 10.1016/j.jhazmat.2020.123955.
  • O. Svedovs, M. Dzikevics, V. Kirsanovs, and I. Wardach-Święcicka, “Bibliometric Analysis of the Modelling of LowQuality Biomass Pellets Combustion,” Environmental and Climate Technologies, vol. 28, no. 1, pp. 286–302, Jan. 2024, doi: 10.2478/rtuect-2024-0023.
  • Y. Kikuchi, Y. Kanematsu, R. Sato, and T. Nakagaki, “Distributed Cogeneration of Power and Heat within an Energy Management Strategy for Mitigating Fossil Fuel Consumption,” Journal of Industrial Ecology, vol. 20, no. 2, pp. 289–303, Apr. 2016, doi: 10.1111/jiec.12374.
  • M. Elwardany, A. M. Nassib, and H. A. Mohamed, “Advancing sustainable thermal power generation: insights from recent energy and exergy studies,” Process Safety and Environmental Protection, vol. 183, pp. 617–644, Mar. 2024, doi: 10.1016/j.psep.2024.01.039.
  • M. Ucar and O. Arslan, “Assessment of improvement potential of a condensed combi boiler via advanced exergy analysis,” Thermal Science and Engineering Progress, vol. 23, Jun. 2021, Art. no. 100853, doi: 10.1016/j.tsep.2021.100853.
  • F. Guarino, M. Cellura, and M. Traverso, “Costructal law, exergy analysis and life cycle energy sustainability assessment: an expanded framework applied to a boiler,” The International Journal of Life Cycle Assessment, vol. 25, no. 10, pp. 2063–2085, Oct. 2020, doi: 10.1007/s11367-020-01779-9.
  • K.-W. Lin and H.-W. Wu, “Emissions and energy/exergy efficiency in an industrial boiler with biodiesel and other fuels,” Case Studies in Thermal Engineering, vol. 50, Oct. 2023, Art. no. 103474, doi: 10.1016/j.csite.2023.103474.
  • G. Ahmadi, A. Jahangiri, and D. Toghraie, “Design of heat recovery steam generator (HRSG) and selection of gas turbine based on energy, exergy, exergoeconomic, and exergo-environmental prospects,” Process Safety and Environmental Protection, vol. 172, pp. 353–368, Apr. 2023, doi: 10.1016/j.psep.2023.02.025.
  • M. Elwardany, “Enhancing steam boiler efficiency through comprehensive energy and exergy analysis: A review,” Process Safety and Environmental Protection, vol. 184, pp. 1222–1250, Apr. 2024, doi: 10.1016/j.psep.2024.01.102.
  • K. S. Hasan, “Experimental study on the combustion of gaseous based fuel (LPG) in a tangential swirl burner of a steam boiler,” Journal of Thermal Engineering, vol. 10, no. 5, pp. 1226–1240, 2024, doi: 10.14744/thermal.0000863.
  • D. Kadric, N. Delalic, B. Delalic-Gurda, M. Kotur, And A. Skulj, “Reduction Of Energy Use In Industrial Facility,” Journal Of Thermal Engineering, vol. 7, no. 1, pp. 54–65, Jan. 2021, doi: 10.18186/Thermal.840063.
  • M. Elwardany, A. M. Nassib, and H. A. Mohamed, “Exergy analysis of a gas turbine cycle power plant: a case study of power plant in Egypt,” Journal of Thermal Analysis and Calorimetry, vol. 149, no. 14, pp. 7433–7447, Jul. 2024, doi: 10.1007/s10973-024-13324-z.
  • W. Mo et al., “Technical-economic-environmental analysis of biomass direct and indirect co-firing in pulverized coal boiler in China,” Journal of Cleaner Production, vol. 426, Nov. 2023, Art. no. 139119, doi: 10.1016/j.jclepro.2023.139119.
  • M. Elwardany, A. M. Nassib, H. A. Mohamed, and M. R. Abdelaal, “Modeling of performance and thermodynamic study of a gas turbine power plant,” Thermal Science and Engineering, vol. 7, no. 4, Oct. 2024, Art. no. 8016, doi: 10.24294/tse.v7i4.8016.
  • P. Mu et al., “Superwetting Monolithic Hollow‐Carbon‐Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation,” Advanced Energy Materials, vol. 9, no. 1, pp. 1–9, Jan. 2019, doi: 10.1002/aenm.201802158.
  • Z. Liu et al., “Extremely Cost‐Effective and Efficient Solar Vapor Generation under Nonconcentrated Illumination Using Thermally Isolated Black Paper,” Global Challenges, vol. 1, no. 2, pp. 1–10, Feb. 2017, doi: 10.1002/gch2.201600003.
  • X. Wu et al., “A flexible photothermal cotton-CuS nanocage-agarose aerogel towards portable solar steam generation,” Nano Energy, vol. 56, pp. 708–715, 2019, doi: 10.1016/j.nanoen.2018.12.008.
  • M. Elwardany, A. M. Nassib, and H. A. Mohamed, “Case Study: Exergy Analysis of a Gas Turbine Cycle Power Plant in Hot Weather Conditions,” in 2023 5th Novel Intelligent and Leading Emerging Sciences Conference (NILES), IEEE, Oct. 2023, pp. 291–294, doi: 10.1109/NILES59815.2023.10296731.
  • S. S. Chauhan and S. Khanam, “Energy integration in boiler section of thermal power plant,” Journal of Cleaner Production, vol. 202, pp. 601–615, Nov. 2018, doi: 10.1016/j.jclepro.2018.08.161.
  • M. A. Nemitallah et al., “Artificial intelligence for control and optimization of boilers’ performance and emissions: A review,” Journal of Cleaner Production, vol. 417, Sep. 2023, Art. no. 138109, doi: 10.1016/j.jclepro.2023.138109.
  • A. Farkas, N. Degiuli, I. Martić, and C. G. Grlj, “Is slow steaming a viable option to meet the novel energy efficiency requirements for containerships?,” Journal of Cleaner Production, vol. 374, Nov. 2022, Art. no. 133915, doi: 10.1016/j.jclepro.2022.133915.
  • J. Bujak, “Minimizing energy losses in steam systems for potato starch production,” Journal of Cleaner Production, vol. 17, no. 16, pp. 1453–1464, Nov. 2009, doi: 10.1016/j.jclepro.2009.06.013.
  • C. Jia et al., “Rich Mesostructures Derived from Natural Woods for Solar Steam Generation,” Joule, vol. 1, no. 3, pp. 588–599, Nov. 2017, doi: 10.1016/j.joule.2017.09.011.
  • M. Rafeek, M. Elwardany, A. M. Nassib, M. S. Ahmed, H. A. Mohamed, and M. Abdelaal, “Sustainable Refining: Enhancing Energy Efficiency in Crude Distillation Processes,” Chemical Engineering and Processing - Process Intensification, vol. 214, no. 2, Aug. 2025, Art. no. 110326, doi: 10.1016/j.cep.2025.110326.
  • M. Melicherová, M. Ondrišová, and J. Šušol, “Bibliometrics versus altmetrics: Researchers’ attitudes in Slovakia,” Iberoamerican Journal of Science Measurement and Communication, vol. 1, no. 1, 2021, doi: 10.47909/ijsmc.11.
  • F. Luo, R. Y. M. Li, M. J. C. Crabbe, and R. Pu, “Economic development and construction safety research: A bibliometrics approach,” Safety Science, vol. 145, 2022, doi: 10.1016/j.ssci.2021.105519.
  • X. Zhou and X. Ma, “Progress of graph model for conflict resolution in conflict analysis: A systematic review and bibliometrics research,” Journal of Intelligent & Fuzzy Systems, vol. 41, no. 6, pp. 5835–5846, Dec. 2021, doi: 10.3233/JIFS-201320.
  • X. Bai, M. Hao, M. Hu, and L. Yang, “Big Data Analysis of Water Saving Standard Based on Bibliometrics,” Journal of Sensors, vol. 2022, pp. 1–9, Apr. 2022, doi: 10.1155/2022/5851114.
  • Y. Hu, Y. Yu, K. Huang, and L. Wang, “Development tendency and future response about the recycling methods of spent lithium-ion batteries based on bibliometrics analysis,” Journal of Energy Storage, vol. 27, Feb. 2020, Art. no. 101111, doi: 10.1016/j.est.2019.101111.
  • J. Xiong et al., “Research Progress of Ferroptosis: A Bibliometrics and Visual Analysis Study,” Journal of Healthcare Engineering, vol. 2021, Aug. 2021, doi: 10.1155/2021/2178281.
  • M. Elwardany, A. M. Nassib, and H. A. Mohamed, “Analyzing global research trends in combined cycle power plants: A bibliometric study,” Energy Nexus, vol. 13, Mar. 2024, Art. no. 100265, doi: 10.1016/j.nexus.2023.100265.
  • J. A. Moral-Muñoz, E. Herrera-Viedma, A. Santisteban-Espejo, and M. J. Cobo, “Software tools for conducting bibliometric analysis in science: An up-to-date review,” El Profesional de la Información, vol. 29, no. 1, pp. 1–20, Jan. 2020, doi: 10.3145/epi.2020.ene.03.
  • R. Wang et al., “Advanced nanoparticles that can target therapy and reverse drug resistance may be the dawn of leukemia treatment: A bibliometrics study,” Frontiers in Bioengineering and Biotechnology, vol. 10, Oct. 2022, doi: 10.3389/fbioe.2022.1027868.
  • T. C. C. Nepomuceno, V. D. H. De Carvalho, K. T. C. Nepomuceno, and A. P. C. S. Costa, “Exploring knowledge benchmarking using time‐series directional distance functions and bibliometrics,” Expert Systems, vol. 40, no. 1, Jan. 2023, doi: 10.1111/exsy.12967.
  • G. Vaccaro, P. Sánchez-Núñez, and P. Witt-Rodríguez, “Bibliometrics Evaluation of Scientific Journals and Country Research Output of Dental Research in Latin America Using Scimago Journal and Country Rank,” Publications, vol. 10, no. 3, p. 26, Aug. 2022, doi: 10.3390/publications10030026.
  • H. Qu, N. A. Nordin, T. B. Tsong, and X. Feng, “A Bibliometrics and Visual Analysis of Global Publications for Cognitive Map (1970-2022),” IEEE Access, vol. 11, pp. 1–1, 2023, doi: 10.1109/ACCESS.2023.3279198.
  • J. Liang et al., “Bibliometrics and visualization analysis of research in the field of sustainable development of the blue economy (2006–2021),” Frontiers in Marine Science, vol. 9, Sep. 2022, doi: 10.3389/fmars.2022.936612.
  • H. Ge, Y. Bo, H. Sun, M. Zheng, and Y. Lu, “A review of research on driving distraction based on bibliometrics and co-occurrence: Focus on driving distraction recognition methods,” Journal of Safety Research, vol. 82, pp. 261–274, Sep. 2022, doi: 10.1016/j.jsr.2022.06.002.
  • N. Donthu, S. Kumar, D. Mukherjee, N. Pandey, and W. M. Lim, “How to conduct a bibliometric analysis: An overview and guidelines,” Journal of Business Research, vol. 133, pp. 285–296, Sep. 2021, doi: 10.1016/j.jbusres.2021.04.070.
  • M. Kajba, B. Jereb, and T. Cvahte Ojsteršek, “Exploring Digital Twins in the Transport and Energy Fields: A Bibliometrics and Literature Review Approach,” Energies, vol. 16, no. 9, p. 3922, May. 2023, doi: 10.3390/en16093922.
  • A. Kirby, “Exploratory Bibliometrics: Using VOSviewer as a Preliminary Research Tool,” Publications, vol. 11, no. 1, p. 10, Feb. 2023, doi: 10.3390/publications11010010.
  • S. S. Nunayon, K.-W. Mui, and L.-T. Wong, “Mapping the knowledge pattern of ultraviolet germicidal irradiation for cleaner indoor air through the lens of bibliometrics,” Journal of Cleaner Production, vol. 391, Mar. 2023, Art. no. 135974, doi: 10.1016/j.jclepro.2023.135974.
  • A. Rejeb, K. Rejeb, A. Abdollahi, S. Zailani, M. Iranmanesh, and M. Ghobakhloo, “Digitalization in Food Supply Chains: A Bibliometric Review and Key-Route Main Path Analysis,” Sustainability, vol. 14, no. 1, p. 83, Dec. 2021, doi: 10.3390/su14010083.
  • M. B. Firmansyah, A. A. A. D. Andriyani, and R. A. Asih, “Bibliometric Analysis of Multimodality Based on Multimodal Learning,” SSRN Electronic Journal, vol. 18, pp. 105–112, 2022, doi: 10.2139/ssrn.4298216.
  • Y. Qin, M. Ghalambaz, M. Sheremet, M. Fteiti, and F. Alresheedi, “A bibliometrics study of phase change materials (PCMs),” Journal of Energy Storage, vol. 73, Dec. 2023, Art. no. 108987, doi: 10.1016/j.est.2023.108987.
  • L. A. Díaz-Secades, R. González, and N. Rivera, “Waste heat recovery from marine engines and their limiting factors: Bibliometric analysis and further systematic review,” Cleaner Energy Systems, vol. 6, Dec. 2023, Art. no. 100083, doi: 10.1016/j.cles.2023.100083.
  • A. Yu, W. Su, X. Lin, and N. Zhou, “Recent trends of supercritical CO2 Brayton cycle: Bibliometric analysis and research review,” Nuclear Engineering and Technology, vol. 53, no. 3, pp. 699–714, Mar. 2021, doi: 10.1016/j.net.2020.08.005.
  • R. Zahedi, A. Aslani, M. A. N. Seraji, and Z. Zolfaghari, “Advanced bibliometric analysis on the coupling of energetic dark greenhouse with natural gas combined cycle power plant for CO2 capture,” Korean Journal of Chemical Engineering, vol. 39, no. 11, pp. 3021–3031, Nov. 2022, doi: 10.1007/s11814-022-1233-x.
  • O. Omoregbe, A. N. Mustapha, R. Steinberger-Wilckens, A. El-Kharouf, and H. Onyeaka, “Carbon capture technologies for climate change mitigation: A bibliometric analysis of the scientific discourse during 1998–2018,” Energy Reports, vol. 6, pp. 1200–1212, 2020, doi: 10.1016/j.egyr.2020.05.003.
  • M. Malekli, A. Aslani, Z. Zolfaghari, R. Zahedi, and A. Moshari, “Advanced bibliometric analysis on the development of natural gas combined cycle power plant with CO2 capture and storage technology,” Sustainable Energy Technologies and Assessments, vol. 52, Aug. 2022, Art. no. 102339, doi: 10.1016/j.seta.2022.102339.
  • M. Á. Reyes-Belmonte, “A bibliometric study on integrated solar combined cycles (ISCC), trends and future based on data analytics tools,” Sustainability (Switzerland), vol. 12, no. 19, 2020, doi: 10.3390/su12198217.
  • A. S. Karakurt, İ. Özsari, V. Başhan, and Ü. Güneş, “Evolution of steam turbines: A bibliometric approach,” Journal of Thermal Engineering, vol. 8, no. 5, pp. 681–690, 2022, doi: 10.18186/thermal.1187839.
  • D. I. Permana, D. Rusirawan, and I. Farkas, “A bibliometric analysis of the application of solar energy to the organic Rankine cycle,” Heliyon, vol. 8, no. 4, Apr. 2022, Art. no. e09220, doi: 10.1016/j.heliyon.2022.e09220.
  • L. F. Cabeza, M. Chàfer, and É. Mata, “Comparative analysis of web of science and scopus on the energy efficiency and climate impact of buildings,” Energies, vol. 13, no. 2, 2020, doi: 10.3390/en13020409.
  • M. Aria and C. Cuccurullo, “bibliometrix : An R-tool for comprehensive science mapping analysis,” Journal of Informetrics, vol. 11, no. 4, pp. 959–975, Nov. 2017, doi: 10.1016/j.joi.2017.08.007.
  • Y. Lin, Y. Jia, G. Alva, and G. Fang, “Review on thermal conductivity enhancement, thermal properties and applications of phase change materials in thermal energy storage,” Renewable and Sustainable Energy Reviews, vol. 82, pp. 2730–2742, Feb. 2018, doi: 10.1016/j.rser.2017.10.002.
  • Q. Zhang, Y. Sun, W. Xu, and D. Zhu, “Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently,” Advanced Materials, vol. 26, no. 40, pp. 6829–6851, Oct. 2014, doi: 10.1002/adma.201305371.
  • H. Ghasemi et al., “Solar steam generation by heat localization,” Nature Communications, vol. 5, no. 1, p. 4449, Jul. 2014, doi: 10.1038/ncomms5449.
  • H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, “Waste heat recovery technologies and applications,” Thermal Science and Engineering Progress, vol. 6, pp. 268–289, Jun. 2018, doi: 10.1016/j.tsep.2018.04.017 .
  • Y. Li et al., “3D‐Printed, All‐in‐One Evaporator for High‐Efficiency Solar Steam Generation under 1 Sun Illumination,” Advanced Materials, vol. 29, no. 26, pp. 1–8, Jul. 2017, doi: 10.1002/adma.201700981.
  • K. K. Liu et al., “Wood-Graphene Oxide Composite for Highly Efficient Solar Steam Generation and Desalination,” ACS Applied Materials and Interfaces, vol. 9, no. 8, pp. 7675–7681, Mar. 2017, doi: 10.1021/acsami.7b01307.
  • Y. Shi et al., “A 3D Photothermal Structure toward Improved Energy Efficiency in Solar Steam Generation,” Joule, vol. 2, no. 6, pp. 1171–1186, Jun. 2018, doi: 10.1016/j.joule.2018.03.013.
  • G. Xue et al., “Robust and Low-Cost Flame-Treated Wood for High-Performance Solar Steam Generation,” ACS Applied Materials & Interfaces, vol. 9, no. 17, pp. 15052–15057, May. 2017, doi: 10.1021/acsami.7b01992.
  • S. He et al., “Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination,” Energy & Environmental Science, vol. 12, no. 5, pp. 1558–1567, 2019, doi: 10.1039/C9EE00945K.
  • T. Li et al., “Scalable and Highly Efficient Mesoporous Wood‐Based Solar Steam Generation Device: Localized Heat, Rapid Water Transport,” Advanced Functional Materials, vol. 28, no. 16, pp. 1–8, Apr. 2018, doi: 10.1002/adfm.201707134.
Toplam 79 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Derleme Makaleler
Yazarlar

Mohamed Elwardany 0000-0001-8795-4998

Erken Görünüm Tarihi 13 Mayıs 2025
Yayımlanma Tarihi 1 Haziran 2025
Gönderilme Tarihi 28 Aralık 2024
Kabul Tarihi 11 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 2

Kaynak Göster

APA Elwardany, M. (2025). Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement. International Journal of Thermodynamics, 28(2), 115-128. https://doi.org/10.5541/ijot.1608741
AMA Elwardany M. Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement. International Journal of Thermodynamics. Haziran 2025;28(2):115-128. doi:10.5541/ijot.1608741
Chicago Elwardany, Mohamed. “Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement”. International Journal of Thermodynamics 28, sy. 2 (Haziran 2025): 115-28. https://doi.org/10.5541/ijot.1608741.
EndNote Elwardany M (01 Haziran 2025) Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement. International Journal of Thermodynamics 28 2 115–128.
IEEE M. Elwardany, “Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement”, International Journal of Thermodynamics, c. 28, sy. 2, ss. 115–128, 2025, doi: 10.5541/ijot.1608741.
ISNAD Elwardany, Mohamed. “Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement”. International Journal of Thermodynamics 28/2 (Haziran 2025), 115-128. https://doi.org/10.5541/ijot.1608741.
JAMA Elwardany M. Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement. International Journal of Thermodynamics. 2025;28:115–128.
MLA Elwardany, Mohamed. “Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement”. International Journal of Thermodynamics, c. 28, sy. 2, 2025, ss. 115-28, doi:10.5541/ijot.1608741.
Vancouver Elwardany M. Bibliometric Analysis of Research Trends in Steam Boiler Efficiency Improvement. International Journal of Thermodynamics. 2025;28(2):115-28.