Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 28 Sayı: 2, 89 - 102, 01.06.2025
https://doi.org/10.5541/ijot.1665595

Öz

Kaynakça

  • A. Al-Nagdy, M. I. A. Habba, R. A. Khalaf-Allah, S. M. Mohamed, M. T. Tolan, and A. S. Easa, “Optimizing pool boiling heat transfer with laser-engineered microchannels: Experimental and RSM modeling analysis,” International Journal of Thermal Sciences, vol. 213, 2025, Art. no. 109806, doi: 10.1016/j.ijthermalsci.2025.109806.
  • E. I. Eid, A. A. Al-Nagdy, and R. A. Khalaf-Allah, “Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid,” Experimental Heat Transfer, vol. 35, no. 5, pp. 688–707, Jul. 2022, doi: 10.1080/08916152.2021.1946207.
  • E. I. Eid, R. A. Khalaf-Allah, S. H. Taher, and A. A. Al-Nagdy, “An experimental investigation of the effect of the addition of nano Aluminum oxide on pool boiling of refrigerant 134A,” Heat and Mass Transfer, vol. 53, pp. 2597–2607, 2017, doi: 10.1007/s00231-017-2010-y.
  • T. Chen and J. N. Chung, “Heat-transfer effects of coalescence of bubbles from various site distributions,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 459, 2003, doi:10.1098/rspa.2003.1133.
  • A. Coulibaly, X. P. Lin, J. L. Bi, and D. M. Christopher, “Effect of bubble coalescence on the wall heat transfer during subcooled pool boiling,” International Journal of Thermal Sciences, vol. 76, pp. 101–109, 2014, doi: 10.1016/j.ijthermalsci.2013.08.019.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 8th Edition, John Wiley & Sons, 2018.
  • Y. Y. Hsu, “On the size range of active nucleation cavities on a heating surface,” ASME Journal of Heat and Mass Transfer, pp. 207–213, 1962, doi:10.1115/1.3684339.
  • M. K. Gupta, D. S. Sharma, and V. J. Lakhera, “Vapor bubble formation, forces, and induced vibration: A review,” ASME Applied Mechanics Reviews, vol. 68, 2016, Art. no. 030801, doi:10.1115/1.4033622.
  • D. B. R. Kenning, “Nucleate Boiling,” in Thermopedia. Begell House Inc., 2011, doi: 10.1615/AtoZ.n.nucleate_boiling
  • S. Paruya, J. Bhati, and F. Akhtar, “Numerical model of bubble shape and departure in nucleate pool boiling,” International Journal of Heat and Mass Transfer, vol. 180, 2021, Art. no. 121756, doi: 10.1016/j.ijheatmasstransfer.2021.121756.
  • M. M. Petrovic and V. D. Stevanovic, “Pool boiling simulation with two-fluid and grid resolved wall boiling model,” International Journal of Multiphase Flow, vol. 144, 2021, Art. no. 103806, doi: 10.1016/j.ijmultiphaseflow.2021.103806.
  • S. Iyer, A. Kumar, J. Coventry, and W. Lipiński, “Modelling of bubble growth and detachment in nucleate pool boiling,” International Journal of Thermal Sciences, vol. 185, 2023, Art. No. 108041, doi: 10.1016/j.ijthermalsci.2022.108041.
  • M. M. Mahmoud and T. G. Karayiannis, “Bubble growth models in saturated pool boiling of water on a smooth metallic surface: Assessment and a new recommendation,” International Journal of Heat and Mass Transfer, vol. 208, 2023, doi: 10.1016/j.ijheatmasstransfer.2023.124065.
  • A. A. Alsaati, D. M. Warsinger, J. A. Weibel, and A. M. Marconnet, “A mechanistic model to predict saturated pool boiling critical heat flux (CHF) in a confined gap,” International Journal of Multiphase Flow, 2023, Art. no. 104542, doi: 10.1016/j.ijmultiphaseflow.2023.104542.
  • N. Qiu, Y. Xuan, J. Li, and Q. Li, “Numerical simulation of nucleate pool boiling under high pressure using an initial micro-layer thickness model,” Case Studies in Thermal Engineering, vol. 39, 2022, Art. no. 102460, doi: 10.1016/j.csite.2022.102460.
  • N. Kumar, P. Ghosh, and P. Shukla, “Development of an approximate model for the prediction of bubble departure diameter in pool boiling of water,” International Communications in Heat and Mass Transfer, vol. 127, 2021, Art. no. 105531, doi: 10.1016/j.icheatmasstransfer.2021.105531.
  • M. Kim and S. J. Kim, “A mechanistic model for nucleate pool boiling including the effect of bubble coalescence on area fractions,” International Journal of Heat and Mass Transfer, vol. 163, 2020, Art. no. 120453, doi: 10.1016/j.ijheatmasstransfer.2020.120453.
  • J. Yuan, X. Ye, and Y. Shan, “Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling,” International Journal of Multiphase Flow, vol. 142, 2021, Art. no. 103701, doi: 10.1016/j.ijmultiphaseflow.2021.103701.
  • A. Mukherjee and V. K. Dhir, “Study of lateral merger of vapor bubbles during nucleate pool boiling,” ASME Journal of Heat and Mass Transfer, vol. 126, pp. 1023–1039, 2004, doi:10.1115/1.1834614.
  • ANSYS Inc., ANSYS Fluent User’s Guide, Release 2023 R1, Canonsburg, PA, USA, 2023.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Washington, D.C.: Hemisphere Publishing Corporation, 1980, doi:10.1201/9781482234213.
  • V. K. Dhir, “Boiling heat transfer,” Annual Review of Fluid Mechanics, vol. 30, no. 1, pp. 365–401, 1998, doi: 10.1146/annurev.fluid.30.1.365.
  • S. G. Kandlikar, “A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation,” ASME Journal of Heat and Mass Transfer, vol. 123, no. 6, pp. 1071–1079, 2001, doi:10.1115/1.1409265.
  • J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics, 3rd edition, Springer, 2002.
  • J. G. Collier and J. R. Thome, Convective Boiling and Condensation, 3rd edition, Oxford, UK: Oxford University Press, 1994.
  • A. N. Georgoulas, M. Marengo, “Numerical Simulation of Pool Boiling: The Effects of Initial Thermal Boundary Layer, Contact Angle and Wall Superheat,” in Proc. 14th UK Heat Transfer Conference (UKHTC), Belfast, UK, 2015.
  • I. Mudawar, S. Kim, and J. Lee, “A coupled level-set and volume-of-fluid (CLSVOF) method for prediction of microgravity flow boiling with low inlet subcooling on the International Space Station,” International Journal of Heat and Mass Transfer, vol. 202, 2023, Art. no. 124644, doi: 10.1016/j.ijheatmasstransfer.2023.124644.
  • T. Tetik, “Study of Bubble Nucleation in a Microcavity in Pool Boiling”, Ph.D. Thesis, Dept. Mech. Eng., Tech. Univ. Istanbul, Graduate School of Science Eng. and Tech., Turkey, 2022.
  • Y. A. Buyevich and B. W. Webbon, “The isolated bubble regime in pool nucleate boiling,” International Journal of Heat and Mass Transfer, vol. 40, issue 2, pp. 365–377, 1997, doi:10.1016/0017-9310(96)00097-X.
  • M. G. Cooper, “Heat flow rates in saturated nucleate pool boiling - a wide-ranging examination using reduced properties,” Advances in Heat Transfer, vol. 16, pp. 157–239, 1984, doi: 10.1016/S0065-2717(08)70205-3.
  • J. F. Klausner, R. Mei, D. M. Bernhard, and L. Z. Zeng, “Vapor bubble departure in forced convection boiling,” International Journal of Heat and Mass Transfer, vol. 36, issue 3, pp. 651–662, 1993, doi:10.1016/0017-9310(93)80041-R.
  • V. K. Dhir, “Mechanistic Prediction of Nucleate Boiling Heat Transfer–Achievable or a Hopeless Task?,” ASME Journal of Heat and Mass Transfer, vol. 128, pp. 1-12, 2006, doi:10.1115/1.2136366.
  • J. Bhati, S. Paruya, “Numerical simulation of bubble dynamics in pool boiling at heated surface,” International Journal of Heat and Mass Transfer, vol. 152, 2020, Art. no. 119465, doi: 10.1016/j.ijheatmasstransfer.2020.119465.
  • N. Zuber, “Hydrodynamic aspects of boiling heat transfer,” Thesis, U.S. Department of Energy Office of Scientific and Technical Information,1959, doi:10.2172/4175511.
  • J. H. Lienhard, V. K. Dhir, “Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes,” NASA Technical Report CR-2270, 1973.
  • M. Mobli, C. Li, “On the heat transfer characteristics of a single bubble growth and departure during pool boiling,” ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, Washington, 2016, doi: 10.1115/ICNMM2016-8097.
  • S. Nukiyama, “The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure,” International Journal of Heat and Mass Transfer, vol. 9, pp. 1419-1433, 1966, doi: 10.1016/0017-9310(66)90138-4.
  • H. Küçük, “Effect of Solid Particles on Heat Transfer in Nucleate Pool Boiling”, Ph.D. Thesis, Dept. Mech. Eng., Tech. Univ. Istanbul, Graduate School of Science Eng. and Tech., Turkey, 2002.

Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling

Yıl 2025, Cilt: 28 Sayı: 2, 89 - 102, 01.06.2025
https://doi.org/10.5541/ijot.1665595

Öz

This study comprehensively investigates nucleate pool boiling by focusing on bubble formation, growth, and detachment mechanisms. A numerical analysis of saturated nucleate pool boiling of water on a heated surface, specifically emphasizing a single cavity, was conducted and compared with experimental results documented in the literature. Accurate modeling of boiling phenomena is crucial, particularly in effectively capturing the mass transfer and phase change processes between the liquid and vapor phases. The dynamic separation of these phases through a moving interface presents a significant challenge when simultaneously applying the Navier–Stokes equations to both phases, as it complicates the continuity conditions at the interface. Various numerical methods, incorporating implicit and explicit schemes, have been developed to address these challenges for two-phase flow simulations. Interface tracking techniques such as the Volume of Fluid (VOF), Level-Set, and Lattice Boltzmann methods are commonly employed. This study used Ansys Fluent software to perform a detailed boiling model analysis. Based on the findings from detailed literature reviews, the Volume of Fluid (VOF) method is considered the most suitable simulation approach for modeling pool boiling. After establishing an appropriate computational domain, a two-dimensional simulation of single bubble formation on a microscale heated surface was carried out using a custom-developed User Defined Function (UDF). The objective was to analyze the bubble's geometric characteristics and diameter evolution throughout the boiling process. The accuracy of the numerical model was evaluated by comparing simulation results with experimental observations reported in the literature, showing a high degree of agreement.CFD analyses were conducted for both a flat copper surface and a surface with a single cavity. The results showed that, due to nucleate boiling, the copper surface's superheat values were higher than those on the surface with a cavity. This indicates improved heat transfer performance on the structured surface. These findings suggest that in processes where boiling-induced heat transfer is applied, surfaces that are roughened either through etching or coating methods may yield enhanced thermal performance compared to smooth surfaces, in line with observations reported in the literature.

Kaynakça

  • A. Al-Nagdy, M. I. A. Habba, R. A. Khalaf-Allah, S. M. Mohamed, M. T. Tolan, and A. S. Easa, “Optimizing pool boiling heat transfer with laser-engineered microchannels: Experimental and RSM modeling analysis,” International Journal of Thermal Sciences, vol. 213, 2025, Art. no. 109806, doi: 10.1016/j.ijthermalsci.2025.109806.
  • E. I. Eid, A. A. Al-Nagdy, and R. A. Khalaf-Allah, “Nucleate pool boiling heat transfer above laser machining heating surfaces with different micro-cavity geometric shape for water-aluminum oxide nanofluid,” Experimental Heat Transfer, vol. 35, no. 5, pp. 688–707, Jul. 2022, doi: 10.1080/08916152.2021.1946207.
  • E. I. Eid, R. A. Khalaf-Allah, S. H. Taher, and A. A. Al-Nagdy, “An experimental investigation of the effect of the addition of nano Aluminum oxide on pool boiling of refrigerant 134A,” Heat and Mass Transfer, vol. 53, pp. 2597–2607, 2017, doi: 10.1007/s00231-017-2010-y.
  • T. Chen and J. N. Chung, “Heat-transfer effects of coalescence of bubbles from various site distributions,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 459, 2003, doi:10.1098/rspa.2003.1133.
  • A. Coulibaly, X. P. Lin, J. L. Bi, and D. M. Christopher, “Effect of bubble coalescence on the wall heat transfer during subcooled pool boiling,” International Journal of Thermal Sciences, vol. 76, pp. 101–109, 2014, doi: 10.1016/j.ijthermalsci.2013.08.019.
  • T. L. Bergman, A. S. Lavine, F. P. Incropera, D. P. DeWitt, Fundamentals of Heat and Mass Transfer, 8th Edition, John Wiley & Sons, 2018.
  • Y. Y. Hsu, “On the size range of active nucleation cavities on a heating surface,” ASME Journal of Heat and Mass Transfer, pp. 207–213, 1962, doi:10.1115/1.3684339.
  • M. K. Gupta, D. S. Sharma, and V. J. Lakhera, “Vapor bubble formation, forces, and induced vibration: A review,” ASME Applied Mechanics Reviews, vol. 68, 2016, Art. no. 030801, doi:10.1115/1.4033622.
  • D. B. R. Kenning, “Nucleate Boiling,” in Thermopedia. Begell House Inc., 2011, doi: 10.1615/AtoZ.n.nucleate_boiling
  • S. Paruya, J. Bhati, and F. Akhtar, “Numerical model of bubble shape and departure in nucleate pool boiling,” International Journal of Heat and Mass Transfer, vol. 180, 2021, Art. no. 121756, doi: 10.1016/j.ijheatmasstransfer.2021.121756.
  • M. M. Petrovic and V. D. Stevanovic, “Pool boiling simulation with two-fluid and grid resolved wall boiling model,” International Journal of Multiphase Flow, vol. 144, 2021, Art. no. 103806, doi: 10.1016/j.ijmultiphaseflow.2021.103806.
  • S. Iyer, A. Kumar, J. Coventry, and W. Lipiński, “Modelling of bubble growth and detachment in nucleate pool boiling,” International Journal of Thermal Sciences, vol. 185, 2023, Art. No. 108041, doi: 10.1016/j.ijthermalsci.2022.108041.
  • M. M. Mahmoud and T. G. Karayiannis, “Bubble growth models in saturated pool boiling of water on a smooth metallic surface: Assessment and a new recommendation,” International Journal of Heat and Mass Transfer, vol. 208, 2023, doi: 10.1016/j.ijheatmasstransfer.2023.124065.
  • A. A. Alsaati, D. M. Warsinger, J. A. Weibel, and A. M. Marconnet, “A mechanistic model to predict saturated pool boiling critical heat flux (CHF) in a confined gap,” International Journal of Multiphase Flow, 2023, Art. no. 104542, doi: 10.1016/j.ijmultiphaseflow.2023.104542.
  • N. Qiu, Y. Xuan, J. Li, and Q. Li, “Numerical simulation of nucleate pool boiling under high pressure using an initial micro-layer thickness model,” Case Studies in Thermal Engineering, vol. 39, 2022, Art. no. 102460, doi: 10.1016/j.csite.2022.102460.
  • N. Kumar, P. Ghosh, and P. Shukla, “Development of an approximate model for the prediction of bubble departure diameter in pool boiling of water,” International Communications in Heat and Mass Transfer, vol. 127, 2021, Art. no. 105531, doi: 10.1016/j.icheatmasstransfer.2021.105531.
  • M. Kim and S. J. Kim, “A mechanistic model for nucleate pool boiling including the effect of bubble coalescence on area fractions,” International Journal of Heat and Mass Transfer, vol. 163, 2020, Art. no. 120453, doi: 10.1016/j.ijheatmasstransfer.2020.120453.
  • J. Yuan, X. Ye, and Y. Shan, “Modeling of the bubble dynamics and heat flux variations during lateral coalescence of bubbles in nucleate pool boiling,” International Journal of Multiphase Flow, vol. 142, 2021, Art. no. 103701, doi: 10.1016/j.ijmultiphaseflow.2021.103701.
  • A. Mukherjee and V. K. Dhir, “Study of lateral merger of vapor bubbles during nucleate pool boiling,” ASME Journal of Heat and Mass Transfer, vol. 126, pp. 1023–1039, 2004, doi:10.1115/1.1834614.
  • ANSYS Inc., ANSYS Fluent User’s Guide, Release 2023 R1, Canonsburg, PA, USA, 2023.
  • S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Washington, D.C.: Hemisphere Publishing Corporation, 1980, doi:10.1201/9781482234213.
  • V. K. Dhir, “Boiling heat transfer,” Annual Review of Fluid Mechanics, vol. 30, no. 1, pp. 365–401, 1998, doi: 10.1146/annurev.fluid.30.1.365.
  • S. G. Kandlikar, “A theoretical model to predict pool boiling CHF incorporating effects of contact angle and orientation,” ASME Journal of Heat and Mass Transfer, vol. 123, no. 6, pp. 1071–1079, 2001, doi:10.1115/1.1409265.
  • J. H. Ferziger and M. Perić, Computational Methods for Fluid Dynamics, 3rd edition, Springer, 2002.
  • J. G. Collier and J. R. Thome, Convective Boiling and Condensation, 3rd edition, Oxford, UK: Oxford University Press, 1994.
  • A. N. Georgoulas, M. Marengo, “Numerical Simulation of Pool Boiling: The Effects of Initial Thermal Boundary Layer, Contact Angle and Wall Superheat,” in Proc. 14th UK Heat Transfer Conference (UKHTC), Belfast, UK, 2015.
  • I. Mudawar, S. Kim, and J. Lee, “A coupled level-set and volume-of-fluid (CLSVOF) method for prediction of microgravity flow boiling with low inlet subcooling on the International Space Station,” International Journal of Heat and Mass Transfer, vol. 202, 2023, Art. no. 124644, doi: 10.1016/j.ijheatmasstransfer.2023.124644.
  • T. Tetik, “Study of Bubble Nucleation in a Microcavity in Pool Boiling”, Ph.D. Thesis, Dept. Mech. Eng., Tech. Univ. Istanbul, Graduate School of Science Eng. and Tech., Turkey, 2022.
  • Y. A. Buyevich and B. W. Webbon, “The isolated bubble regime in pool nucleate boiling,” International Journal of Heat and Mass Transfer, vol. 40, issue 2, pp. 365–377, 1997, doi:10.1016/0017-9310(96)00097-X.
  • M. G. Cooper, “Heat flow rates in saturated nucleate pool boiling - a wide-ranging examination using reduced properties,” Advances in Heat Transfer, vol. 16, pp. 157–239, 1984, doi: 10.1016/S0065-2717(08)70205-3.
  • J. F. Klausner, R. Mei, D. M. Bernhard, and L. Z. Zeng, “Vapor bubble departure in forced convection boiling,” International Journal of Heat and Mass Transfer, vol. 36, issue 3, pp. 651–662, 1993, doi:10.1016/0017-9310(93)80041-R.
  • V. K. Dhir, “Mechanistic Prediction of Nucleate Boiling Heat Transfer–Achievable or a Hopeless Task?,” ASME Journal of Heat and Mass Transfer, vol. 128, pp. 1-12, 2006, doi:10.1115/1.2136366.
  • J. Bhati, S. Paruya, “Numerical simulation of bubble dynamics in pool boiling at heated surface,” International Journal of Heat and Mass Transfer, vol. 152, 2020, Art. no. 119465, doi: 10.1016/j.ijheatmasstransfer.2020.119465.
  • N. Zuber, “Hydrodynamic aspects of boiling heat transfer,” Thesis, U.S. Department of Energy Office of Scientific and Technical Information,1959, doi:10.2172/4175511.
  • J. H. Lienhard, V. K. Dhir, “Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes,” NASA Technical Report CR-2270, 1973.
  • M. Mobli, C. Li, “On the heat transfer characteristics of a single bubble growth and departure during pool boiling,” ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels, Washington, 2016, doi: 10.1115/ICNMM2016-8097.
  • S. Nukiyama, “The maximum and minimum values of the heat Q transmitted from metal to boiling water under atmospheric pressure,” International Journal of Heat and Mass Transfer, vol. 9, pp. 1419-1433, 1966, doi: 10.1016/0017-9310(66)90138-4.
  • H. Küçük, “Effect of Solid Particles on Heat Transfer in Nucleate Pool Boiling”, Ph.D. Thesis, Dept. Mech. Eng., Tech. Univ. Istanbul, Graduate School of Science Eng. and Tech., Turkey, 2002.
Toplam 38 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Enerji Sistemleri Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Esra Koç 0009-0006-9644-4803

Yalçın Uralcan 0000-0002-3702-3666

Erken Görünüm Tarihi 13 Mayıs 2025
Yayımlanma Tarihi 1 Haziran 2025
Gönderilme Tarihi 25 Mart 2025
Kabul Tarihi 8 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 28 Sayı: 2

Kaynak Göster

APA Koç, E., & Uralcan, Y. (2025). Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling. International Journal of Thermodynamics, 28(2), 89-102. https://doi.org/10.5541/ijot.1665595
AMA Koç E, Uralcan Y. Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling. International Journal of Thermodynamics. Haziran 2025;28(2):89-102. doi:10.5541/ijot.1665595
Chicago Koç, Esra, ve Yalçın Uralcan. “Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling”. International Journal of Thermodynamics 28, sy. 2 (Haziran 2025): 89-102. https://doi.org/10.5541/ijot.1665595.
EndNote Koç E, Uralcan Y (01 Haziran 2025) Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling. International Journal of Thermodynamics 28 2 89–102.
IEEE E. Koç ve Y. Uralcan, “Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling”, International Journal of Thermodynamics, c. 28, sy. 2, ss. 89–102, 2025, doi: 10.5541/ijot.1665595.
ISNAD Koç, Esra - Uralcan, Yalçın. “Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling”. International Journal of Thermodynamics 28/2 (Haziran 2025), 89-102. https://doi.org/10.5541/ijot.1665595.
JAMA Koç E, Uralcan Y. Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling. International Journal of Thermodynamics. 2025;28:89–102.
MLA Koç, Esra ve Yalçın Uralcan. “Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling”. International Journal of Thermodynamics, c. 28, sy. 2, 2025, ss. 89-102, doi:10.5541/ijot.1665595.
Vancouver Koç E, Uralcan Y. Numerical Analysis of Bubble Formation Mechanism in Nucleate Pool Boiling. International Journal of Thermodynamics. 2025;28(2):89-102.