Derleme
BibTex RIS Kaynak Göster

Recent Advances In Whey Processing and Valorisation

Yıl 2025, Cilt: 11 Sayı: 1, 317 - 348, 30.06.2025
https://doi.org/10.29132/ijpas.1594075

Öz

The dairy industry is considered one of the largest water-consuming industries in the world, and waste from the dairy industry seriously pollutes the environment. If wastewater is released into the environment without treatment, these organic and inorganic pollutants from the dairy industry can disrupt terrestrial and aquatic ecosystems, thereby leading to ecosystem imbalance. Wastewater from the dairy industry can be treated by various methods such as physical, chemical and biological. However, further advances in treatment methods have become the need of the hour to reduce operating costs, increase efficiency, recycle and reuse wastewater, and reduce degradation of environmental resources. Whey has several environmental risks if disposed of as waste in watercourses. However, there are numerous valorisation techniques to convert it into valuable and highly nutritious products. Techniques such as membrane filtration may be utilised, but these are not applicable to all categories of whey. Novel methodologies that are agile enough to deal with whey variability can produce valorised products. This review assesses the capability of whey processing techniques, applicationsand methodologies, discussing pertinent research that can innovate product development further. It focuses on environmental impacts of whey as a waste and ways of minimising it.

Kaynakça

  • Geary, U., Lopez-Villalobos, N., Garrick, D. J., & Shalloo, L. (2010). Development and application of a processing model for the Irish dairy industry. Journal of Dairy Science, 93(11), 5091-5100.
  • Panghal, A., Patidar, R., Jaglan, S., Chhikara, N., Khatkar, S. K., Gat, Y., & Sindhu, N. (2018). Whey valorization: Current options and future scenario–a critical review. Nutrition & Food Science, 48(3), 520-535.
  • Chandrapala, J., Duke, M. C., Gray, S. R., Zisu, B., Weeks, M., Palmer, M., & Vasiljevic, T. (2015). Properties of acid whey as a function of pH and temperature. Journal of Dairy Science, 98(7), 4352-4363.
  • Flinois, J. C., Dando, R., & Padilla-Zakour, O. I. (2019). Effects of replacing buttermilk with yogurt acid whey in ranch dressing. Journal Of Dairy Science, 102(9), 7874-7883.
  • Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., & Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology And Biotechnology, 104(7), 2749-2764.
  • Sharma, D., Manzoor, M., Yadav, P., Sohal, J. S., Aseri, G. K., & Khare, N. (2018). Bio-valorization of dairy whey for bioethanol by stress-tolerant yeast. In Fungi And Their Role In Sustainable Development: Current Perspectives, 349-366.
  • Mano, J., Liu, N., Hammond, J. H., Currie, D. H., & Stephanopoulos, G. (2020). Engineering Yarrowia lipolytica for the utilization of acid whey. Metabolic Engineering, 57, 43-50.
  • Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: A review. Journal Of Environmental Management, 110, 48-68.
  • Solak, B. B., & Akin, N. (2012). Health benefits of whey protein: A review. Journal of Food Science and Engineering, 2(3), 129.
  • Lindsay, M. J., Walker, T. W., Dumesic, J. A., Rankin, S. A., & Huber, G. W. (2018). Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chemistry, 20(8), 1824-1834.
  • Pal, P., & Nayak, J. (2016). Development and analysis of a sustainable technology in manufacturing acetic acid and whey protein from waste cheese whey. Journal of Cleaner Production, 112, 59-70.
  • Rivas, J., Prazeres, A. R., & Carvalho, F. (2011). Aerobic biodegradation of precoagulated cheese whey wastewater. Journal Of Agricultural And Food Chemistry, 59(6), 2511-2517.
  • Risner, D., Tomasino, E., Hughes, P., & Meunier-Goddik, L. (2019). Volatile aroma composition of distillates produced from fermented sweet and acid whey. Journal Of Dairy Science, 102(1), 202-210.
  • Schmidt, R. H., Packard, V. S., & Morris, H. A. (1984). Effect of processing on whey protein functionality. Journal of Dairy Science, 67(11), 2723-2733.
  • Dec, B., & Chojnowski, W. (2006). Characteristics of acid whey powder partially demineralised by nanofiltration. Polish Journal Of Food And Nutrition Sciences, 15(1), 87.
  • Farkye, N. Y. (2017). Quark, quark-like products, and concentrated yogurts. In Cheese (pp. 1103-1110). Academic Press.
  • Geiger, B., Nguyen, H. M., Wenig, S., Nguyen, H. A., Lorenz, C., Kittl,& Nguyen, T. H. (2016). From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochemical Engineering Journal, 116, 45-53.
  • Guo, M., & Wang, G. (2019). History of whey production and whey protein manufacturing. In Whey Protein Production, Chemistry, Functionality, and Applications (pp. 1–12).
  • Mulcahy, E. M. (2017). Preparation, characterisation and functional applications of whey protein-carbohydrate conjugates as food ingredients.
  • Stout, M., & Drake, M. (2019). Flavor aspects of whey protein ingredients. In Whey Proteins (pp. 377-406). Academic Press.
  • Tallapragada, P., & Rayavarapu, B. (2019). Recent trends and developments in milk-based beverages. In Milk-based beverages (pp. 139-172). Woodhead Publishing.
  • Huffman, L. M., & de Barros Ferreira, L. (2011). Whey-based ingredients. In Dairy ingredients for food processing, 1, 179-198.
  • Masotti, F., Cattaneo, S., Stuknytė, M., & De Noni, I. (2018). Status and developments in analogue cheese formulations and functionalities. Trends in Food Science & Technology, 74, 158-169.
  • Bansal, N., & Bhandari, B. (2016). Functional milk proteins: Production and utilization—whey-based ingredients. In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects, 67-98.
  • Bolwig, S., Brekke, A., Strange, L., & Strøm-Andersen, N. (2019). 9 Valorisation of whey. In From waste to value, (pp. 162–182).
  • Bozanic, R., Barukcic, I., Lisak, K., & Jakopovic, T. L. (2014). Possibilities of whey utilisation. Austin Journal of Nutrition and Food Sciences, 2(7), 1036-1042.
  • Farkye, N. Y. (2004). Acid-and acid/rennet-curd cheeses part C: Acid-heat coagulated cheeses. In Cheese: Chemistry, physics and microbiology (Vol. 2, pp. 343-348). Academic Press.
  • Shon, J., Lee, S. H., Lee, F. Z., Lee, B. D., & Eun, J. B. (2007). The effects of heating on the physicochemical and functional properties of acid whey compared to sweet whey. Food Science And Biotechnology, 16(5), 836-842.
  • Zargar, M., Jin, B., & Dai, S. (2015). Development and application of reverse osmosis for separation. In Membrane processing for dairy ingredient separation (pp. 139–175).
  • Broekema, R., & Kramer, G. (2014). LCA of Dutch semi-skimmed milk and semi-mature cheese. Netherlands: Blonk Consultants..
  • González-García, S., Hospido, A., Moreira, M. T., Feijoo, G., & Arroja, L. (2013). Environmental life cycle assessment of a Galician cheese: San Simon da Costa. Journal Of Cleaner Production, 52, 253-262.
  • Kim, D., Thoma, G., Nutter, D., Milani, F., Ulrich, R., & Norris, G. (2013). Life cycle assessment of cheese and whey production in the USA. The International Journal of Life Cycle Assessment, 18, 1019-1035.
  • Van Middelaar, C. E., Berentsen, P. B. M., Dolman, M. A., & De Boer, I. J. M. (2011). Eco-efficiency in the production chain of Dutch semi-hard cheese. Livestock Science, 139(1-2), 91-99.
  • Chwialkowska, J., Duber, A., Zagrodnik, R., Walkiewicz, F., Łężyk, M., & Oleskowicz-Popiel, P. (2019). Caproic acid production from acid whey via open culture fermentation–Evaluation of the role of electron donors and downstream processing. Bioresource technology, 279, 74-83.
  • Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S., & Bhattacharjee, C. (2016). Recovery of whey proteins and lactose from dairy waste: A step towards green waste management. Process Safety and Environmental Protection, 101, 27-33.
  • Dufrene, A., Park, D., Olson, D., & Aryana, K. (2021). Survival of lactobacillus acidophilus in fruit-flavored Greek yogurt acid whey. Food and Nutrition Sciences, 12(7), 681-692.
  • Luo, N., Ye, A., Wolber, F. M., & Singh, H. (2021). Effect of gel structure on the in vitro gastrointestinal digestion behaviour of whey protein emulsion gels and the bioaccessibility of capsaicinoids. Molecules, 26(5), 1379.
  • Pandey, A., Srivastava, S., & Kumar, S. (2020). Development and cost-benefit analysis of a novel process for biofuel production from microalgae using pre-treated high-strength fresh cheese whey wastewater. Environmental Science and Pollution Research, 27, 23963-23980.
  • Kasmi, M., Hamdi, M., & Trabelsi, I. (2017). Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation. Environmental Science and Pollution Research, 24, 13604-13613.
  • Pires, A. F., Marnotes, N. G., Rubio, O. D., Garcia, A. C., & Pereira, C. D. (2021). Dairy by-products: A review on the valorization of whey and second cheese whey. Foods, 10(5), 1067.
  • Xia, J., He, J., Xu, J., Liu, X., Qiu, Z., Xu, N., & Su, L. (2021). Direct conversion of cheese whey to polymalic acid by mixed culture of Aureobasidium pullulans and permeabilized Kluyveromyces marxianus. Bioresource Technology, 337, 125443.
  • Isipato, M. (2021). Application of microbial electrochemical systems for valorisation of cheese whey in biorefinery framework.
  • Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. Journal Of Cleaner Production, 140, 766-783.
  • Ladha-Sabur, A., Bakalis, S., Fryer, P. J., & Lopez-Quiroga, E. (2019). Mapping energy consumption in food manufacturing. Trends in Food Science & Technology, 86, 270-280.
  • Foster, C., Green, K., & Bleda, M. (2007). Environmental impacts of food production and consumption: final report to the Department for Environment Food and Rural Affairs.
  • Finnegan, W., Goggins, J., Clifford, E., & Zhan, X. (2017). Global warming potential associated with dairy products in the Republic of Ireland. Journal Of Cleaner Production, 163, 262-273.
  • Brooks, C., Swainson, M., Beauchamp, I., Campelos, I., Ishak, R., & Martindale, W. (2021). Transformational steam infusion processing for resilient and sustainable food manufacturing businesses. Foods, 10(8), 1763.
  • Allen, M. R., Shine, K. P., Fuglestvedt, J. S., Millar, R. J., Cain, M., Frame, D. J., & Macey, A. H. (2018). A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Npj Climate and Atmospheric Science, 1(1), 16.
  • Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., & Shiina, T. (2009). A review of life cycle assessment (LCA) on some food products. Journal Of Food Engineering, 90(1), 1-10.
  • Berardy, A., Johnston, C. S., Plukis, A., Vizcaino, M., & Wharton, C. (2019). Integrating protein quality and quantity with environmental impacts in life cycle assessment. Sustainability, 11(10), 2747.
  • Finnegan, W., Goggins, J., & Zhan, X. (2018a). Assessing the environmental impact of the dairy processing industry in the Republic of Ireland. Journal of Dairy Research, 85(3), 396-399.
  • Flysjö, A., Thrane, M., & Hermansen, J. E. (2014). Method to assess the carbon footprint at product level in the dairy industry. International Dairy Journal, 34(1), 86-92.
  • Ineichen, S., Schenker, U., Nemecek, T., & Reidy, B. (2022). Allocation of environmental burdens in dairy systems: Expanding a biophysical approach for application to larger meat-to-milk ratios. Livestock Science, 261, 104955.
  • Finnegan, W., Yan, M., Holden, N. M., & Goggins, J. (2018b). A review of environmental life cycle assessment studies examining cheese production. The International Journal of Life Cycle Assessment, 23, 1773-1787.
  • Palmieri, N., Forleo, M. B., & Salimei, E. (2017). Environmental impacts of a dairy cheese chain including whey feeding: An Italian case study. Journal of Cleaner Production, 140, 881-889.
  • Feitz, A. J., Lundie, S., Dennien, G., Morain, M., & Jones, M. (2007). Generation of an industry-specific physico-chemical allocation matrix. Application in the dairy industry and implications for systems analysis (9 pp). The International Journal of Life Cycle Assessment, 12, 109-117.
  • Rocha, J. M., & Guerra, A. (2020). On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: an overview. European Food Research and Technology, 246(11), 2161-2174.
  • Asunis, F., De Gioannis, G., Francini, G., Lombardi, L., Muntoni, A., Polettini, A., ... & Spiga, D. (2021). Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Management, 132, 31-43.
  • Bonnaillie, L. M., & Tomasula, P. M. (2008). Whey protein fractionation. In Whey Processing, Functionality and Health Benefits (pp. 15–38).
  • Barukčić, I., Lisak Jakopović, K., & Božanić, R. (2019). Valorisation of whey and buttermilk for production of functional beverages–an overview of current possibilities. Food Technology And Biotechnology, 57(4), 448-460.
  • Lawton, M. R., Dana, L. D., & Alcaine, S. D. (2021). Lactose utilization by Brettanomyces claussenii expands potential for valorization of dairy by-products to functional beverages through fermentation. Current Opinion in Food Science, 42, 93-101.
  • Risner, D., Shayevitz, A., Haapala, K., Meunier-Goddik, L., & Hughes, P. (2018). Fermentation and distillation of cheese whey: Carbon dioxide-equivalent emissions and water use in the production of whey spirits and white whiskey. Journal of Dairy Science, 101(4), 2963-2973.
  • Tirloni, E., Vasconi, M., Cattaneo, P., Moretti, V., Bellagamba, F., Bernardi, C., & Stella, S. (2020). A possible solution to minimise scotta as a food waste: A sports beverage. International Journal of Dairy Technology, 73(2), 421-428.
  • Koushki, M., Jafari, M., & Azizi, M. (2012). Comparison of ethanol production from cheese whey permeate by two yeast strains. Journal of Food Science And Technology, 49, 614-619.
  • Lovato, G., Augusto, I. M. G., Júnior, A. D. N. F., Albanez, R., Ratusznei, S. M., Etchebehere, C., ... & Rodrigues, J. A. D. (2021). Reactor start-up strategy as key for high and stable hydrogen production from cheese whey thermophilic dark fermentation. International Journal of Hydrogen Energy, 46(54), 27364-27379.
  • Akan, E., Yerlikaya, O., Akpinar, A., Karagozlu, C., Kinik, O., & Uysal, H. R. (2021). The effect of various herbs and packaging material on antioxidant activity and colour parameters of whey (Lor) cheese. International Journal of Dairy Technology, 74(3), 554-563.
  • Chudy, S., Makowska, A., Krzywdzińska‐Bartkowiak, M., Piątek, M., Henriques, M., Borges, A. R., ... & Pereira, C. D. (2021). The effect of microparticulated whey protein on the characteristics of reduced‐fat cheese and of the corresponding microwave vacuum‐dried cheese puffs and finely ground puffs. International Journal of Dairy Technology, 74(4), 747-758.
  • Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese whey processing: Integrated biorefinery concepts and emerging food applications. Foods, 8(8), 347.
  • Wang, G., & Guo, M. (2019). Manufacturing technologies of whey protein products. In Whey protein production, chemistry, functionality, and applications, (pp. 13-37).
  • Addai, F. P., Lin, F., Wang, T., Kosiba, A. A., Sheng, P., Yu, F., ... & Shi, H. (2020). Technical integrative approaches to cheese whey valorization towards sustainable environment. Food & Function, 11(10), 8407-8423.
  • Santos, M. I. S., Fradinho, P., Martins, S., Lima, A. I. G., Boavida Ferreira, R. M. S., Pedroso, L., ... & Sousa, I. (2019). A novel way for whey: Cheese whey fermentation produces an effective and environmentally safe alternative to chlorine. Applied Sciences, 9(14), 2800.
  • Wójciak, K. M., Karwowska, M., & Dolatowski, Z. J. (2014). Use of acid whey and mustard seed to replace nitrites during cooked sausage production. Meat Science, 96(2), 750-756.
  • Xiong, X., Iris, K. M., Tsang, D. C., Bolan, N. S., Ok, Y. S., Igalavithana, A. D., ... & Vikrant, K. (2019). Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 375, 121983.
  • Macedo, A., Azedo, D., Duarte, E., & Pereira, C. (2021a). Valorization of goat cheese whey through an integrated process of ultrafiltration and nanofiltration. Membranes, 11(7), 477.
  • Macedo, A., Bilau, J., Cambóias, E., & Duarte, E. (2021b). Integration of membrane processes for by-product valorization to improve the eco-efficiency of small/medium size cheese dairy plants. Foods, 10(8), 1740.
  • Sarenkova, I., Sáez‐Orviz, S., Ciprovica, I., Rendueles, M., & Díaz, M. (2022). Lactobionic acid production by Pseudomonas taetrolens in a fed‐batch bioreactor using acid whey as substrate. International Journal of Dairy Technology, 75(2), 361-371.
  • Dopazo, V., Luz, C., Calpe, J., Vila‐Donat, P., Rodriguez, L., & Meca, G. (2022). Antifungal properties of whey fermented by lactic acid bacteria in films for the preservation of cheese slices. International Journal of Dairy Technology, 75(3), 619-629.
  • Tamošaitis, A., JaruševičienĖ, A., StrykaitĖ, M., & Damašius, J. (2022). Analysis of antimicrobial whey protein‐based biocomposites with lactic acid, tea tree (Melaleuca alternifolia) and garlic (Allium sativum) essential oils for Edam cheese coating. International Journal of Dairy Technology, 75(3), 611-618.
  • Blais, H. N., Schroën, K., & Tobin, J. T. (2022). A review of multistage membrane filtration approaches for enhanced efficiency during concentration and fractionation of milk and whey. International Journal of Dairy Technology, 75(4), 749-760.
  • Nielsen, E. N., Skibsted, L. H., Yazdi, S. R., Merkel, A., & Ahrné, L. M. (2022). Improving electrodialysis separation efficiency of minerals from acid whey by nano‐filtration pre‐processing. International Journal of Dairy Technology, 75(4), 820-830.
  • Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144.
  • Costa, C. E., Romaní, A., Teixeira, J. A., & Domingues, L. (2022). Resveratrol production for the valorisation of lactose-rich wastes by engineered industrial Saccharomyces cerevisiae. Bioresource Technology, 359, 127463.
  • Gutiérrez-Hernández, C. A., Hernández-Almanza, A., Hernández-Beltran, J. U., Balagurusamy, N., & Hernández-Teran, F. (2022). Cheese whey valorization to obtain single-cell oils of industrial interest: An overview. Food Bioscience, 50, 102086.
  • Hausjell, J., Miltner, M., Herzig, C., Limbeck, A., Saracevic, Z., Saracevic, E., ... & Spadiut, O. (2019). Valorisation of cheese whey as substrate and inducer for recombinant protein production in E. coli HMS174 (DE3). Bioresource technology reports, 8, 100340.
  • Ibarruri, J., & Hernández, I. (2019). Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess And Biosystems Engineering, 42, 1285-1300.
  • Barba, F. J. (2021). An integrated approach for the valorization of cheese whey. Foods, 10(3), 564.
  • Cheng, Y., Yeboah, G. B., Guo, X., Donkor, P. O., & Wu, J. (2022). Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode. Polymers, 14(10), 2054.
  • Gentès, M. C., Caron, A., & Champagne, C. P. (2022). Potential applications of pulsed electric field in cheesemaking. International Journal of Dairy Technology, 75(2), 270-288.
  • Jiang, Z., Gao, Y., Li, J., Wang, K., Ma, C., Sun, D., ... & Hou, J. (2022). Consecutive pH-shift and ultrasound treatment modify the physicochemical properties of whey protein isolate. International Dairy Journal, 127, 105211.
  • Karim, A., & Aïder, M. (2020). Contribution to the process development for lactulose production through complete valorization of whey permeate by using electro-activation technology versus a chemical isomerization process. ACS Omega, 5(44), 28831-28843.
  • Khaire, R. A., & Gogate, P. R. (2018). Intensified recovery of lactose from whey using thermal, ultrasonic and thermosonication pretreatments. Journal of Food Engineering, 237, 240-248.
  • Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., ... & Liu, L. (2021). Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT, 152, 112272.
  • Rocha, C. M., Genisheva, Z., Ferreira-Santos, P., Rodrigues, R., Vicente, A. A., Teixeira, J. A., & Pereira, R. N. (2018). Electric field-based technologies for valorization of bioresources. Bioresource Technology, 254, 325-339.
  • de Souza, R. R., Bergamasco, R., da Costa, S. C., Feng, X., Faria, S. H. B., & Gimenes, M. L. (2010). Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification, 49(11), 1137-1143.
  • Erdoğan, S. L., Tekgül, Y., & Koç, G. Ç. (2022). Farklı meyve çekirdekleri yağlarının keklerin kalite karakteristikleri üzerine etkisi. International Journal of Pure and Applied Sciences, 8(2), 342-350.
  • Eryılmaz, H., Ince, O. K., & Ince, M. (2022). Comparison of some physical and chemical properties of kefir obtained from different kefir cultures and brands of milk. International Journal of Pure and Applied Sciences, 8(2), 468-477.
  • Jayaprakasha, H. M., Yoon, Y. C., & Paik, H. D. (2005). Probiotic functional dairy foods and health claims: an overview. Food Science And Biotechnology, 14(4), 523-528.
  • Zydney, A. L. (1998). Protein separations using membrane filtration: new opportunities for whey fractionation. International Dairy Journal, 8(3), 243-250.
  • Imtiaz-Ul-Islam, M., Hong, L., & Langrish, T. (2011). CO2 capture using whey protein isolate. Chemical Engineering Journal, 171(3), 1069-1081.
  • El-Sayed, M. M., & Chase, H. A. (2011). Trends in whey protein fractionation. Biotechnology Letters, 33, 1501-1511.
  • Jara, F., & Pilosof, A. M. (2011). Partitioning of α-lactalbumin and β-lactoglobulin in whey protein concentrate/hydroxypropylmethylcellulose aqueous two-phase systems. Food Hydrocolloids, 25(3), 374-380.
  • de Souza, R. R., Bergamasco, R., da Costa, S. C., Feng, X., Faria, S. H. B., & Gimenes, M. L. (2010). Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification, 49(11), 1137-1143.
  • Chandan, R. C. (2014). Dairy–fermented products. In Clark, S., & Jung, S. (Eds.), Food processing: Principles and applications (pp. 405–436). Hoboken, NJ: Wiley.
  • Patel, S. R., & Murthy, Z. V. P. (2012). Lactose recovery processes from whey: a comparative study based on sonocrystallization. Separation & Purification Reviews, 41(4), 251-266.
  • Yamahata, N., Toyotake, Y., Kunieda, S., & Wakayama, M. (2020). Application of multiple sensory evaluations to produce fermented beverages made from sole whey using Kluyveromyces marxianus. International Journal Of Food Science & Technology, 55(4), 1698-1704.
  • Ferreira, A., & Gouveia, L. (2020). Microalgal biorefineries. In I. G. B. dos Santos & M. J. C. da Silva (Eds.), Handbook of microalgae-based processes and products (pp. 771–798). London: Academic Press..
  • Weide, T., Peitzmeier, J., Wetter, C., Wichern, M., & Bruegging, E. (2021). Comparison of thermophilic and hyperthermophilic dark fermentation with subsequent mesophilic methanogenesis in expanded granular sludge bed reactors. International Journal of Hydrogen Energy, 46(57), 29142-29159.
  • Srivastava, S., Jhariya, U., Purohit, H. J., & Dafale, N. A. (2021). Synergistic action of lytic polysaccharide monooxygenase with glycoside hydrolase for lignocellulosic waste valorization: a review. Biomass Conversion and Biorefinery, 1-19.
  • Zhang, P., Chen, Y., & Zhou, Q. (2009). Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Research, 43(15), 3735-3742.
  • Reyhanitash, E., Zaalberg, B., Kersten, S. R., & Schuur, B. (2016). Extraction of volatile fatty acids from fermented wastewater. Separation and Purification Technology, 161, 61-68.
  • Liu, H., Wang, L., Zhang, X., Fu, B., Liu, H., Li, Y., & Lu, X. (2019). A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor. Journal Of Hazardous Materials, 365, 912-920.
  • Athira, S., Mann, B., Sharma, R., Pothuraju, R., & Bajaj, R. K. (2021). Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification. Food Research International, 141, 110133.
  • Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., ... & Liu, L. (2021). Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT, 152, 112272.
  • Henriques, M. H. F. (2013). Recovery and application of whey proteins in conventional and nonconventional food systems (Doctoral dissertation, Universidade de Coimbra, Portugal).
  • Torok, V. A., Luyckx, K., & Lapidge, S. (2021). Human food waste to animal feed: Opportunities and challenges. Animal Production Science, 62(12), 1129-1139.
  • Talbott, T. C. (2022). Extended Producer Responsibility: Opportunities and challenges for waste pickers. Social Contracts and Informal Workers in the Global South, (pp. 126–143). Oxford: Oxford University Press..
  • Momete, D. C. (2020). A unified framework for assessing the readiness of European Union economies to migrate to a circular modelling. Science of the Total Environment, 718, 137375.
  • Garske, B., Heyl, K., Ekardt, F., Weber, L. M., & Gradzka, W. (2020). Challenges of food waste governance: An assessment of European legislation on food waste and recommendations for improvement by economic instruments. Land, 9(7), 231.
  • Granato, D., Carocho, M., Barros, L., Zabetakis, I., Mocan, A., Tsoupras, A., ... & Pimentel, T. C. (2022). Implementation of sustainable development goals in the dairy sector: Perspectives on the use of agro-industrial side-streams to design functional foods. Trends in Food Science & Technology, 124, 128-139.
  • Roufou, S., Griffin, S., Katsini, L., Polańska, M., Van Impe, J. F., & Valdramidis, V. P. (2021). The (potential) impact of seasonality and climate change on the physicochemical and microbial properties of dairy waste and its management. Trends in Food Science & Technology, 116, 1-10.

Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler

Yıl 2025, Cilt: 11 Sayı: 1, 317 - 348, 30.06.2025
https://doi.org/10.29132/ijpas.1594075

Öz

Süt endüstrisi, dünyanın en büyük su tüketicilerinden biri olarak kabul edilmekte olup, bu endüstriden kaynaklanan atıklar çevreyi ciddi şekilde kirletmektedir. Arıtılmamış atık suyun çevreye salınması durumunda, süt endüstrisinden kaynaklanan organik ve inorganik kirleticiler karasal ve su ekosistemlerini bozabilir, bu da ekosistemin dengesizliğine yol açabilir. Süt endüstrisinden kaynaklanan atık sular, fiziksel, kimyasal ve biyolojik yöntemlerle arıtılabilmektedir. Ancak, işletme maliyetlerinin düşürülmesi, verimliliğin arttırılması, atık suyun geri dönüştürülmesi ve yeniden kullanılması ile çevresel bozulmanın azaltılması için arıtma yöntemlerinde daha fazla ilerleme sağlanması gerekmektedir. Peynir altı suyunun atık olarak su sistemlerine salınması çeşitli çevresel riskler taşır. Ancak, bu atığı değerli ve son derece besleyici ürünlere dönüştürmek için birçok değerlendirme tekniği bulunmaktadır. Membran filtreleme gibi teknikler uygulanabilir, ancak bunlar her peynir altı suyu tipi için uygun olmayabilir. Değişkenliğe uyum sağlayabilen ve değerli ürünler üretebilen yeni metodolojiler geliştirilmelidir. Bu derleme, peynir altı suyu işleme tekniklerinin kapasitesini, uygulamalarını ve metodolojilerini değerlendirerek, ürün geliştirmede daha fazla yenilik yapabilecek ilgili araştırmaları tartışmaktadır. Peynir altı suyunun atık olarak çevresel etkilerine odaklanmakta ve bu etkileri en aza indirmek için çözüm yollarını araştırmaktadır.

Kaynakça

  • Geary, U., Lopez-Villalobos, N., Garrick, D. J., & Shalloo, L. (2010). Development and application of a processing model for the Irish dairy industry. Journal of Dairy Science, 93(11), 5091-5100.
  • Panghal, A., Patidar, R., Jaglan, S., Chhikara, N., Khatkar, S. K., Gat, Y., & Sindhu, N. (2018). Whey valorization: Current options and future scenario–a critical review. Nutrition & Food Science, 48(3), 520-535.
  • Chandrapala, J., Duke, M. C., Gray, S. R., Zisu, B., Weeks, M., Palmer, M., & Vasiljevic, T. (2015). Properties of acid whey as a function of pH and temperature. Journal of Dairy Science, 98(7), 4352-4363.
  • Flinois, J. C., Dando, R., & Padilla-Zakour, O. I. (2019). Effects of replacing buttermilk with yogurt acid whey in ranch dressing. Journal Of Dairy Science, 102(9), 7874-7883.
  • Zotta, T., Solieri, L., Iacumin, L., Picozzi, C., & Gullo, M. (2020). Valorization of cheese whey using microbial fermentations. Applied Microbiology And Biotechnology, 104(7), 2749-2764.
  • Sharma, D., Manzoor, M., Yadav, P., Sohal, J. S., Aseri, G. K., & Khare, N. (2018). Bio-valorization of dairy whey for bioethanol by stress-tolerant yeast. In Fungi And Their Role In Sustainable Development: Current Perspectives, 349-366.
  • Mano, J., Liu, N., Hammond, J. H., Currie, D. H., & Stephanopoulos, G. (2020). Engineering Yarrowia lipolytica for the utilization of acid whey. Metabolic Engineering, 57, 43-50.
  • Prazeres, A. R., Carvalho, F., & Rivas, J. (2012). Cheese whey management: A review. Journal Of Environmental Management, 110, 48-68.
  • Solak, B. B., & Akin, N. (2012). Health benefits of whey protein: A review. Journal of Food Science and Engineering, 2(3), 129.
  • Lindsay, M. J., Walker, T. W., Dumesic, J. A., Rankin, S. A., & Huber, G. W. (2018). Production of monosaccharides and whey protein from acid whey waste streams in the dairy industry. Green Chemistry, 20(8), 1824-1834.
  • Pal, P., & Nayak, J. (2016). Development and analysis of a sustainable technology in manufacturing acetic acid and whey protein from waste cheese whey. Journal of Cleaner Production, 112, 59-70.
  • Rivas, J., Prazeres, A. R., & Carvalho, F. (2011). Aerobic biodegradation of precoagulated cheese whey wastewater. Journal Of Agricultural And Food Chemistry, 59(6), 2511-2517.
  • Risner, D., Tomasino, E., Hughes, P., & Meunier-Goddik, L. (2019). Volatile aroma composition of distillates produced from fermented sweet and acid whey. Journal Of Dairy Science, 102(1), 202-210.
  • Schmidt, R. H., Packard, V. S., & Morris, H. A. (1984). Effect of processing on whey protein functionality. Journal of Dairy Science, 67(11), 2723-2733.
  • Dec, B., & Chojnowski, W. (2006). Characteristics of acid whey powder partially demineralised by nanofiltration. Polish Journal Of Food And Nutrition Sciences, 15(1), 87.
  • Farkye, N. Y. (2017). Quark, quark-like products, and concentrated yogurts. In Cheese (pp. 1103-1110). Academic Press.
  • Geiger, B., Nguyen, H. M., Wenig, S., Nguyen, H. A., Lorenz, C., Kittl,& Nguyen, T. H. (2016). From by-product to valuable components: Efficient enzymatic conversion of lactose in whey using β-galactosidase from Streptococcus thermophilus. Biochemical Engineering Journal, 116, 45-53.
  • Guo, M., & Wang, G. (2019). History of whey production and whey protein manufacturing. In Whey Protein Production, Chemistry, Functionality, and Applications (pp. 1–12).
  • Mulcahy, E. M. (2017). Preparation, characterisation and functional applications of whey protein-carbohydrate conjugates as food ingredients.
  • Stout, M., & Drake, M. (2019). Flavor aspects of whey protein ingredients. In Whey Proteins (pp. 377-406). Academic Press.
  • Tallapragada, P., & Rayavarapu, B. (2019). Recent trends and developments in milk-based beverages. In Milk-based beverages (pp. 139-172). Woodhead Publishing.
  • Huffman, L. M., & de Barros Ferreira, L. (2011). Whey-based ingredients. In Dairy ingredients for food processing, 1, 179-198.
  • Masotti, F., Cattaneo, S., Stuknytė, M., & De Noni, I. (2018). Status and developments in analogue cheese formulations and functionalities. Trends in Food Science & Technology, 74, 158-169.
  • Bansal, N., & Bhandari, B. (2016). Functional milk proteins: Production and utilization—whey-based ingredients. In Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects, 67-98.
  • Bolwig, S., Brekke, A., Strange, L., & Strøm-Andersen, N. (2019). 9 Valorisation of whey. In From waste to value, (pp. 162–182).
  • Bozanic, R., Barukcic, I., Lisak, K., & Jakopovic, T. L. (2014). Possibilities of whey utilisation. Austin Journal of Nutrition and Food Sciences, 2(7), 1036-1042.
  • Farkye, N. Y. (2004). Acid-and acid/rennet-curd cheeses part C: Acid-heat coagulated cheeses. In Cheese: Chemistry, physics and microbiology (Vol. 2, pp. 343-348). Academic Press.
  • Shon, J., Lee, S. H., Lee, F. Z., Lee, B. D., & Eun, J. B. (2007). The effects of heating on the physicochemical and functional properties of acid whey compared to sweet whey. Food Science And Biotechnology, 16(5), 836-842.
  • Zargar, M., Jin, B., & Dai, S. (2015). Development and application of reverse osmosis for separation. In Membrane processing for dairy ingredient separation (pp. 139–175).
  • Broekema, R., & Kramer, G. (2014). LCA of Dutch semi-skimmed milk and semi-mature cheese. Netherlands: Blonk Consultants..
  • González-García, S., Hospido, A., Moreira, M. T., Feijoo, G., & Arroja, L. (2013). Environmental life cycle assessment of a Galician cheese: San Simon da Costa. Journal Of Cleaner Production, 52, 253-262.
  • Kim, D., Thoma, G., Nutter, D., Milani, F., Ulrich, R., & Norris, G. (2013). Life cycle assessment of cheese and whey production in the USA. The International Journal of Life Cycle Assessment, 18, 1019-1035.
  • Van Middelaar, C. E., Berentsen, P. B. M., Dolman, M. A., & De Boer, I. J. M. (2011). Eco-efficiency in the production chain of Dutch semi-hard cheese. Livestock Science, 139(1-2), 91-99.
  • Chwialkowska, J., Duber, A., Zagrodnik, R., Walkiewicz, F., Łężyk, M., & Oleskowicz-Popiel, P. (2019). Caproic acid production from acid whey via open culture fermentation–Evaluation of the role of electron donors and downstream processing. Bioresource technology, 279, 74-83.
  • Das, B., Sarkar, S., Sarkar, A., Bhattacharjee, S., & Bhattacharjee, C. (2016). Recovery of whey proteins and lactose from dairy waste: A step towards green waste management. Process Safety and Environmental Protection, 101, 27-33.
  • Dufrene, A., Park, D., Olson, D., & Aryana, K. (2021). Survival of lactobacillus acidophilus in fruit-flavored Greek yogurt acid whey. Food and Nutrition Sciences, 12(7), 681-692.
  • Luo, N., Ye, A., Wolber, F. M., & Singh, H. (2021). Effect of gel structure on the in vitro gastrointestinal digestion behaviour of whey protein emulsion gels and the bioaccessibility of capsaicinoids. Molecules, 26(5), 1379.
  • Pandey, A., Srivastava, S., & Kumar, S. (2020). Development and cost-benefit analysis of a novel process for biofuel production from microalgae using pre-treated high-strength fresh cheese whey wastewater. Environmental Science and Pollution Research, 27, 23963-23980.
  • Kasmi, M., Hamdi, M., & Trabelsi, I. (2017). Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation. Environmental Science and Pollution Research, 24, 13604-13613.
  • Pires, A. F., Marnotes, N. G., Rubio, O. D., Garcia, A. C., & Pereira, C. D. (2021). Dairy by-products: A review on the valorization of whey and second cheese whey. Foods, 10(5), 1067.
  • Xia, J., He, J., Xu, J., Liu, X., Qiu, Z., Xu, N., & Su, L. (2021). Direct conversion of cheese whey to polymalic acid by mixed culture of Aureobasidium pullulans and permeabilized Kluyveromyces marxianus. Bioresource Technology, 337, 125443.
  • Isipato, M. (2021). Application of microbial electrochemical systems for valorisation of cheese whey in biorefinery framework.
  • Clune, S., Crossin, E., & Verghese, K. (2017). Systematic review of greenhouse gas emissions for different fresh food categories. Journal Of Cleaner Production, 140, 766-783.
  • Ladha-Sabur, A., Bakalis, S., Fryer, P. J., & Lopez-Quiroga, E. (2019). Mapping energy consumption in food manufacturing. Trends in Food Science & Technology, 86, 270-280.
  • Foster, C., Green, K., & Bleda, M. (2007). Environmental impacts of food production and consumption: final report to the Department for Environment Food and Rural Affairs.
  • Finnegan, W., Goggins, J., Clifford, E., & Zhan, X. (2017). Global warming potential associated with dairy products in the Republic of Ireland. Journal Of Cleaner Production, 163, 262-273.
  • Brooks, C., Swainson, M., Beauchamp, I., Campelos, I., Ishak, R., & Martindale, W. (2021). Transformational steam infusion processing for resilient and sustainable food manufacturing businesses. Foods, 10(8), 1763.
  • Allen, M. R., Shine, K. P., Fuglestvedt, J. S., Millar, R. J., Cain, M., Frame, D. J., & Macey, A. H. (2018). A solution to the misrepresentations of CO2-equivalent emissions of short-lived climate pollutants under ambitious mitigation. Npj Climate and Atmospheric Science, 1(1), 16.
  • Roy, P., Nei, D., Orikasa, T., Xu, Q., Okadome, H., Nakamura, N., & Shiina, T. (2009). A review of life cycle assessment (LCA) on some food products. Journal Of Food Engineering, 90(1), 1-10.
  • Berardy, A., Johnston, C. S., Plukis, A., Vizcaino, M., & Wharton, C. (2019). Integrating protein quality and quantity with environmental impacts in life cycle assessment. Sustainability, 11(10), 2747.
  • Finnegan, W., Goggins, J., & Zhan, X. (2018a). Assessing the environmental impact of the dairy processing industry in the Republic of Ireland. Journal of Dairy Research, 85(3), 396-399.
  • Flysjö, A., Thrane, M., & Hermansen, J. E. (2014). Method to assess the carbon footprint at product level in the dairy industry. International Dairy Journal, 34(1), 86-92.
  • Ineichen, S., Schenker, U., Nemecek, T., & Reidy, B. (2022). Allocation of environmental burdens in dairy systems: Expanding a biophysical approach for application to larger meat-to-milk ratios. Livestock Science, 261, 104955.
  • Finnegan, W., Yan, M., Holden, N. M., & Goggins, J. (2018b). A review of environmental life cycle assessment studies examining cheese production. The International Journal of Life Cycle Assessment, 23, 1773-1787.
  • Palmieri, N., Forleo, M. B., & Salimei, E. (2017). Environmental impacts of a dairy cheese chain including whey feeding: An Italian case study. Journal of Cleaner Production, 140, 881-889.
  • Feitz, A. J., Lundie, S., Dennien, G., Morain, M., & Jones, M. (2007). Generation of an industry-specific physico-chemical allocation matrix. Application in the dairy industry and implications for systems analysis (9 pp). The International Journal of Life Cycle Assessment, 12, 109-117.
  • Rocha, J. M., & Guerra, A. (2020). On the valorization of lactose and its derivatives from cheese whey as a dairy industry by-product: an overview. European Food Research and Technology, 246(11), 2161-2174.
  • Asunis, F., De Gioannis, G., Francini, G., Lombardi, L., Muntoni, A., Polettini, A., ... & Spiga, D. (2021). Environmental life cycle assessment of polyhydroxyalkanoates production from cheese whey. Waste Management, 132, 31-43.
  • Bonnaillie, L. M., & Tomasula, P. M. (2008). Whey protein fractionation. In Whey Processing, Functionality and Health Benefits (pp. 15–38).
  • Barukčić, I., Lisak Jakopović, K., & Božanić, R. (2019). Valorisation of whey and buttermilk for production of functional beverages–an overview of current possibilities. Food Technology And Biotechnology, 57(4), 448-460.
  • Lawton, M. R., Dana, L. D., & Alcaine, S. D. (2021). Lactose utilization by Brettanomyces claussenii expands potential for valorization of dairy by-products to functional beverages through fermentation. Current Opinion in Food Science, 42, 93-101.
  • Risner, D., Shayevitz, A., Haapala, K., Meunier-Goddik, L., & Hughes, P. (2018). Fermentation and distillation of cheese whey: Carbon dioxide-equivalent emissions and water use in the production of whey spirits and white whiskey. Journal of Dairy Science, 101(4), 2963-2973.
  • Tirloni, E., Vasconi, M., Cattaneo, P., Moretti, V., Bellagamba, F., Bernardi, C., & Stella, S. (2020). A possible solution to minimise scotta as a food waste: A sports beverage. International Journal of Dairy Technology, 73(2), 421-428.
  • Koushki, M., Jafari, M., & Azizi, M. (2012). Comparison of ethanol production from cheese whey permeate by two yeast strains. Journal of Food Science And Technology, 49, 614-619.
  • Lovato, G., Augusto, I. M. G., Júnior, A. D. N. F., Albanez, R., Ratusznei, S. M., Etchebehere, C., ... & Rodrigues, J. A. D. (2021). Reactor start-up strategy as key for high and stable hydrogen production from cheese whey thermophilic dark fermentation. International Journal of Hydrogen Energy, 46(54), 27364-27379.
  • Akan, E., Yerlikaya, O., Akpinar, A., Karagozlu, C., Kinik, O., & Uysal, H. R. (2021). The effect of various herbs and packaging material on antioxidant activity and colour parameters of whey (Lor) cheese. International Journal of Dairy Technology, 74(3), 554-563.
  • Chudy, S., Makowska, A., Krzywdzińska‐Bartkowiak, M., Piątek, M., Henriques, M., Borges, A. R., ... & Pereira, C. D. (2021). The effect of microparticulated whey protein on the characteristics of reduced‐fat cheese and of the corresponding microwave vacuum‐dried cheese puffs and finely ground puffs. International Journal of Dairy Technology, 74(4), 747-758.
  • Lappa, I. K., Papadaki, A., Kachrimanidou, V., Terpou, A., Koulougliotis, D., Eriotou, E., & Kopsahelis, N. (2019). Cheese whey processing: Integrated biorefinery concepts and emerging food applications. Foods, 8(8), 347.
  • Wang, G., & Guo, M. (2019). Manufacturing technologies of whey protein products. In Whey protein production, chemistry, functionality, and applications, (pp. 13-37).
  • Addai, F. P., Lin, F., Wang, T., Kosiba, A. A., Sheng, P., Yu, F., ... & Shi, H. (2020). Technical integrative approaches to cheese whey valorization towards sustainable environment. Food & Function, 11(10), 8407-8423.
  • Santos, M. I. S., Fradinho, P., Martins, S., Lima, A. I. G., Boavida Ferreira, R. M. S., Pedroso, L., ... & Sousa, I. (2019). A novel way for whey: Cheese whey fermentation produces an effective and environmentally safe alternative to chlorine. Applied Sciences, 9(14), 2800.
  • Wójciak, K. M., Karwowska, M., & Dolatowski, Z. J. (2014). Use of acid whey and mustard seed to replace nitrites during cooked sausage production. Meat Science, 96(2), 750-756.
  • Xiong, X., Iris, K. M., Tsang, D. C., Bolan, N. S., Ok, Y. S., Igalavithana, A. D., ... & Vikrant, K. (2019). Value-added chemicals from food supply chain wastes: State-of-the-art review and future prospects. Chemical Engineering Journal, 375, 121983.
  • Macedo, A., Azedo, D., Duarte, E., & Pereira, C. (2021a). Valorization of goat cheese whey through an integrated process of ultrafiltration and nanofiltration. Membranes, 11(7), 477.
  • Macedo, A., Bilau, J., Cambóias, E., & Duarte, E. (2021b). Integration of membrane processes for by-product valorization to improve the eco-efficiency of small/medium size cheese dairy plants. Foods, 10(8), 1740.
  • Sarenkova, I., Sáez‐Orviz, S., Ciprovica, I., Rendueles, M., & Díaz, M. (2022). Lactobionic acid production by Pseudomonas taetrolens in a fed‐batch bioreactor using acid whey as substrate. International Journal of Dairy Technology, 75(2), 361-371.
  • Dopazo, V., Luz, C., Calpe, J., Vila‐Donat, P., Rodriguez, L., & Meca, G. (2022). Antifungal properties of whey fermented by lactic acid bacteria in films for the preservation of cheese slices. International Journal of Dairy Technology, 75(3), 619-629.
  • Tamošaitis, A., JaruševičienĖ, A., StrykaitĖ, M., & Damašius, J. (2022). Analysis of antimicrobial whey protein‐based biocomposites with lactic acid, tea tree (Melaleuca alternifolia) and garlic (Allium sativum) essential oils for Edam cheese coating. International Journal of Dairy Technology, 75(3), 611-618.
  • Blais, H. N., Schroën, K., & Tobin, J. T. (2022). A review of multistage membrane filtration approaches for enhanced efficiency during concentration and fractionation of milk and whey. International Journal of Dairy Technology, 75(4), 749-760.
  • Nielsen, E. N., Skibsted, L. H., Yazdi, S. R., Merkel, A., & Ahrné, L. M. (2022). Improving electrodialysis separation efficiency of minerals from acid whey by nano‐filtration pre‐processing. International Journal of Dairy Technology, 75(4), 820-830.
  • Chourasia, R., Phukon, L. C., Abedin, M. M., Padhi, S., Singh, S. P., & Rai, A. K. (2022). Whey valorization by microbial and enzymatic bioprocesses for the production of nutraceuticals and value-added products. Bioresource Technology Reports, 19, 101144.
  • Costa, C. E., Romaní, A., Teixeira, J. A., & Domingues, L. (2022). Resveratrol production for the valorisation of lactose-rich wastes by engineered industrial Saccharomyces cerevisiae. Bioresource Technology, 359, 127463.
  • Gutiérrez-Hernández, C. A., Hernández-Almanza, A., Hernández-Beltran, J. U., Balagurusamy, N., & Hernández-Teran, F. (2022). Cheese whey valorization to obtain single-cell oils of industrial interest: An overview. Food Bioscience, 50, 102086.
  • Hausjell, J., Miltner, M., Herzig, C., Limbeck, A., Saracevic, Z., Saracevic, E., ... & Spadiut, O. (2019). Valorisation of cheese whey as substrate and inducer for recombinant protein production in E. coli HMS174 (DE3). Bioresource technology reports, 8, 100340.
  • Ibarruri, J., & Hernández, I. (2019). Valorization of cheese whey and orange molasses for fungal biomass production by submerged fermentation with Rhizopus sp. Bioprocess And Biosystems Engineering, 42, 1285-1300.
  • Barba, F. J. (2021). An integrated approach for the valorization of cheese whey. Foods, 10(3), 564.
  • Cheng, Y., Yeboah, G. B., Guo, X., Donkor, P. O., & Wu, J. (2022). Gelling Characteristics of Emulsions Prepared with Modified Whey Protein by Multiple-Frequency Divergent Ultrasound at Different Ultrasonic Power and Frequency Mode. Polymers, 14(10), 2054.
  • Gentès, M. C., Caron, A., & Champagne, C. P. (2022). Potential applications of pulsed electric field in cheesemaking. International Journal of Dairy Technology, 75(2), 270-288.
  • Jiang, Z., Gao, Y., Li, J., Wang, K., Ma, C., Sun, D., ... & Hou, J. (2022). Consecutive pH-shift and ultrasound treatment modify the physicochemical properties of whey protein isolate. International Dairy Journal, 127, 105211.
  • Karim, A., & Aïder, M. (2020). Contribution to the process development for lactulose production through complete valorization of whey permeate by using electro-activation technology versus a chemical isomerization process. ACS Omega, 5(44), 28831-28843.
  • Khaire, R. A., & Gogate, P. R. (2018). Intensified recovery of lactose from whey using thermal, ultrasonic and thermosonication pretreatments. Journal of Food Engineering, 237, 240-248.
  • Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., ... & Liu, L. (2021). Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT, 152, 112272.
  • Rocha, C. M., Genisheva, Z., Ferreira-Santos, P., Rodrigues, R., Vicente, A. A., Teixeira, J. A., & Pereira, R. N. (2018). Electric field-based technologies for valorization of bioresources. Bioresource Technology, 254, 325-339.
  • de Souza, R. R., Bergamasco, R., da Costa, S. C., Feng, X., Faria, S. H. B., & Gimenes, M. L. (2010). Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification, 49(11), 1137-1143.
  • Erdoğan, S. L., Tekgül, Y., & Koç, G. Ç. (2022). Farklı meyve çekirdekleri yağlarının keklerin kalite karakteristikleri üzerine etkisi. International Journal of Pure and Applied Sciences, 8(2), 342-350.
  • Eryılmaz, H., Ince, O. K., & Ince, M. (2022). Comparison of some physical and chemical properties of kefir obtained from different kefir cultures and brands of milk. International Journal of Pure and Applied Sciences, 8(2), 468-477.
  • Jayaprakasha, H. M., Yoon, Y. C., & Paik, H. D. (2005). Probiotic functional dairy foods and health claims: an overview. Food Science And Biotechnology, 14(4), 523-528.
  • Zydney, A. L. (1998). Protein separations using membrane filtration: new opportunities for whey fractionation. International Dairy Journal, 8(3), 243-250.
  • Imtiaz-Ul-Islam, M., Hong, L., & Langrish, T. (2011). CO2 capture using whey protein isolate. Chemical Engineering Journal, 171(3), 1069-1081.
  • El-Sayed, M. M., & Chase, H. A. (2011). Trends in whey protein fractionation. Biotechnology Letters, 33, 1501-1511.
  • Jara, F., & Pilosof, A. M. (2011). Partitioning of α-lactalbumin and β-lactoglobulin in whey protein concentrate/hydroxypropylmethylcellulose aqueous two-phase systems. Food Hydrocolloids, 25(3), 374-380.
  • de Souza, R. R., Bergamasco, R., da Costa, S. C., Feng, X., Faria, S. H. B., & Gimenes, M. L. (2010). Recovery and purification of lactose from whey. Chemical Engineering and Processing: Process Intensification, 49(11), 1137-1143.
  • Chandan, R. C. (2014). Dairy–fermented products. In Clark, S., & Jung, S. (Eds.), Food processing: Principles and applications (pp. 405–436). Hoboken, NJ: Wiley.
  • Patel, S. R., & Murthy, Z. V. P. (2012). Lactose recovery processes from whey: a comparative study based on sonocrystallization. Separation & Purification Reviews, 41(4), 251-266.
  • Yamahata, N., Toyotake, Y., Kunieda, S., & Wakayama, M. (2020). Application of multiple sensory evaluations to produce fermented beverages made from sole whey using Kluyveromyces marxianus. International Journal Of Food Science & Technology, 55(4), 1698-1704.
  • Ferreira, A., & Gouveia, L. (2020). Microalgal biorefineries. In I. G. B. dos Santos & M. J. C. da Silva (Eds.), Handbook of microalgae-based processes and products (pp. 771–798). London: Academic Press..
  • Weide, T., Peitzmeier, J., Wetter, C., Wichern, M., & Bruegging, E. (2021). Comparison of thermophilic and hyperthermophilic dark fermentation with subsequent mesophilic methanogenesis in expanded granular sludge bed reactors. International Journal of Hydrogen Energy, 46(57), 29142-29159.
  • Srivastava, S., Jhariya, U., Purohit, H. J., & Dafale, N. A. (2021). Synergistic action of lytic polysaccharide monooxygenase with glycoside hydrolase for lignocellulosic waste valorization: a review. Biomass Conversion and Biorefinery, 1-19.
  • Zhang, P., Chen, Y., & Zhou, Q. (2009). Waste activated sludge hydrolysis and short-chain fatty acids accumulation under mesophilic and thermophilic conditions: Effect of pH. Water Research, 43(15), 3735-3742.
  • Reyhanitash, E., Zaalberg, B., Kersten, S. R., & Schuur, B. (2016). Extraction of volatile fatty acids from fermented wastewater. Separation and Purification Technology, 161, 61-68.
  • Liu, H., Wang, L., Zhang, X., Fu, B., Liu, H., Li, Y., & Lu, X. (2019). A viable approach for commercial VFAs production from sludge: Liquid fermentation in anaerobic dynamic membrane reactor. Journal Of Hazardous Materials, 365, 912-920.
  • Athira, S., Mann, B., Sharma, R., Pothuraju, R., & Bajaj, R. K. (2021). Preparation and characterization of iron-chelating peptides from whey protein: An alternative approach for chemical iron fortification. Food Research International, 141, 110133.
  • Meng, Y., Liang, Z., Zhang, C., Hao, S., Han, H., Du, P., ... & Liu, L. (2021). Ultrasonic modification of whey protein isolate: Implications for the structural and functional properties. LWT, 152, 112272.
  • Henriques, M. H. F. (2013). Recovery and application of whey proteins in conventional and nonconventional food systems (Doctoral dissertation, Universidade de Coimbra, Portugal).
  • Torok, V. A., Luyckx, K., & Lapidge, S. (2021). Human food waste to animal feed: Opportunities and challenges. Animal Production Science, 62(12), 1129-1139.
  • Talbott, T. C. (2022). Extended Producer Responsibility: Opportunities and challenges for waste pickers. Social Contracts and Informal Workers in the Global South, (pp. 126–143). Oxford: Oxford University Press..
  • Momete, D. C. (2020). A unified framework for assessing the readiness of European Union economies to migrate to a circular modelling. Science of the Total Environment, 718, 137375.
  • Garske, B., Heyl, K., Ekardt, F., Weber, L. M., & Gradzka, W. (2020). Challenges of food waste governance: An assessment of European legislation on food waste and recommendations for improvement by economic instruments. Land, 9(7), 231.
  • Granato, D., Carocho, M., Barros, L., Zabetakis, I., Mocan, A., Tsoupras, A., ... & Pimentel, T. C. (2022). Implementation of sustainable development goals in the dairy sector: Perspectives on the use of agro-industrial side-streams to design functional foods. Trends in Food Science & Technology, 124, 128-139.
  • Roufou, S., Griffin, S., Katsini, L., Polańska, M., Van Impe, J. F., & Valdramidis, V. P. (2021). The (potential) impact of seasonality and climate change on the physicochemical and microbial properties of dairy waste and its management. Trends in Food Science & Technology, 116, 1-10.
Toplam 120 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Gıda Mühendisliği, Gıda Sürdürülebilirliği, Gıda Bilimleri (Diğer)
Bölüm Derleme
Yazarlar

Damla Özışık 0009-0006-9406-1518

Nihat Akın 0000-0002-0966-1126

Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 30 Kasım 2024
Kabul Tarihi 20 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Özışık, D., & Akın, N. (2025). Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler. International Journal of Pure and Applied Sciences, 11(1), 317-348. https://doi.org/10.29132/ijpas.1594075
AMA Özışık D, Akın N. Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler. International Journal of Pure and Applied Sciences. Haziran 2025;11(1):317-348. doi:10.29132/ijpas.1594075
Chicago Özışık, Damla, ve Nihat Akın. “Peynir Altı Suyunun İşlemesi Ve Değerlendirilmesindeki Son Gelişmeler”. International Journal of Pure and Applied Sciences 11, sy. 1 (Haziran 2025): 317-48. https://doi.org/10.29132/ijpas.1594075.
EndNote Özışık D, Akın N (01 Haziran 2025) Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler. International Journal of Pure and Applied Sciences 11 1 317–348.
IEEE D. Özışık ve N. Akın, “Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler”, International Journal of Pure and Applied Sciences, c. 11, sy. 1, ss. 317–348, 2025, doi: 10.29132/ijpas.1594075.
ISNAD Özışık, Damla - Akın, Nihat. “Peynir Altı Suyunun İşlemesi Ve Değerlendirilmesindeki Son Gelişmeler”. International Journal of Pure and Applied Sciences 11/1 (Haziran 2025), 317-348. https://doi.org/10.29132/ijpas.1594075.
JAMA Özışık D, Akın N. Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler. International Journal of Pure and Applied Sciences. 2025;11:317–348.
MLA Özışık, Damla ve Nihat Akın. “Peynir Altı Suyunun İşlemesi Ve Değerlendirilmesindeki Son Gelişmeler”. International Journal of Pure and Applied Sciences, c. 11, sy. 1, 2025, ss. 317-48, doi:10.29132/ijpas.1594075.
Vancouver Özışık D, Akın N. Peynir Altı Suyunun İşlemesi ve Değerlendirilmesindeki Son Gelişmeler. International Journal of Pure and Applied Sciences. 2025;11(1):317-48.

154501544915448154471544615445