Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of mechanical-environmental outcomes of self-compacting mortars and modelling based on response surface method

Yıl 2025, Cilt: 11 Sayı: 1, 108 - 119, 30.06.2025
https://doi.org/10.29132/ijpas.1622266

Öz

This study focuses on the investigation of the mechanical-environmental outcomes of self-compacting mortars produced using waste materials in the perspective of sustainable development and circular economy and modelling using the response surface method. In order to reduce environmental outputs and improve mechanical properties, metakaolin and blast furnace slag were used as supplementary ce-mentitious materials and 10 different self-compacting mortar series were designed. For mechanical properties, 90-day compressive strength test and ultrasonic pulse velocity measurements were taken into consideration. A mathematical model was developed using the response surface method based on compressive strength and ultrasonic pulse velocity, and all calculated absolute relative deviations remained below 5%. Then, energy consumption results from the environmental impact cat-egories were analyzed and it was observed that the use of supplementary ce-mentitious material caused significant reductions. It was determined that the use of waste and supplementary cementitious materials has positive effects on both mechanical and environmental properties.

Kaynakça

  • Ulucan, M. (2024). From waste to sustainable production: Experimental design and optimization of sustainable concrete using response surface methodology and life cycle assessment. Sustainable Chemistry and Pharmacy, 42, 101770. https://doi.org/10.1016/j.scp.2024.101770.
  • Yön, M. Ş., Yön, B., Karataş, M., & Benli, A. (2024). Sustainable use of boron waste and volcanic scoria in slag-based self-compacting alkali-activated mortars: Fresh, mechanical and durability properties. Sustainable Chemistry and Pharmacy, 41, 101664. https://doi.org/10.1016/j.scp.2024.101664.
  • Ulucan, M., & Alyamac, K. E. (2022). A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental. Waste Management, 146, 53–65. https://doi.org/10.1016/j.wasman.2022.04.045.
  • Chen, L., Huang, Z., Pan, W., Su, R. K. L., Zhong, Y., & Zhang, Y. (2024). Low carbon concrete for prefabricated modular construction in circular economy: An integrated approach towards sustainability, durability, cost, and mechanical performances. Journal of Building Engineering, 90, 109368. https://doi.org/10.1016/j.jobe.2024.109368.
  • Li, T., Nogueira, R., Pereira, M. F. C., de Brito, J., & Liu, J. (2024). Effect of the incorporation ratio of recycled concrete aggregate on the properties of self-compacting mortar. Cement and Concrete Composites, 147, 105429. https://doi.org/10.1016/j.cemconcomp.2024.105429.
  • Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012.
  • Martínez-Lage, I., Vázquez-Burgo, P., & Velay-Lizancos, M. (2020). Sustainability evaluation of concretes with mixed recycled aggregate based on holistic approach: Technical, economic and environmental analysis. Waste Management, 104, 9–19. https://doi.org/10.1016/j.wasman.2019.12.044.
  • Ulucan, M., & Alyamac, K. E. (2023). An integrative approach of the use of recycled concrete aggregate in high‐rise buildings: Example of the Elysium. Structural Concrete, 24, 3329–3350. https://doi.org/10.1002/suco.202200512.
  • Ulucan, M., Yildirim, G., Alatas, B., & Alyamac, K. E. (2023). A new intelligent sunflower optimization based explainable artificial intelligence approach for early‐age concrete compressive strength classification and mixture design of RAC. Structural Concrete. https://doi.org/10.1002/suco.202300138.
  • Ulucan, M., Tas, Y., & Alyamac, K. E. (2023). Multi‐objective optimization and assessment of recycled concrete aggregates for sustainable development: Example of the Kömürhan bridge. Structural Concrete. https://doi.org/10.1002/suco.202201018.
  • Ulucan, M., Gunduzalp, E., Yildirim, G., Alatas, B., & Alyamac, K. E. (2024). Optimizing sustainable concrete compressive strength prediction: A new particle swarm optimization‐based metaheuristic approach to neural network modeling for circular economy and disaster resilience. Structural Concrete. https://doi.org/10.1002/suco.202400070.
  • Dener, M., Karataş, M., & Mohabbi, M. (2021). High temperature resistance of self-compacting alkali-activated slag/Portland cement composite using lightweight aggregate. Construction and Building Materials, 290, 123250. https://doi.org/10.1016/j.conbuildmat.2021.123250.
  • Ulucan, M., & Alyamac, K. E. (2023). A comprehensive assessment of mechanical and environmental properties of green concretes produced using recycled concrete aggregates and supplementary cementitious material. Environmental Science and Pollution Research, 30, 97765–97785. https://doi.org/10.1007/s11356-023-29197-y.
  • Türk, E., Karataş, M., & Dener, M. (2022). Rheological, mechanical and durability properties of self-compacting mortars containing basalt powder and silica fume. Construction and Building Materials, 356, 129229. https://doi.org/10.1016/j.conbuildmat.2022.129229.
  • de Brito, J., & Kurda, R. (2021). The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 281, 123558. https://doi.org/10.1016/j.jclepro.2020.123558.
  • Galusnyak, S. C., Petrescu, L., & Cormos, C.-C. (2022). Environmental impact assessment of post-combustion CO₂ capture technologies applied to cement production plants. Journal of Environmental Management, 320, 115908. https://doi.org/10.1016/j.jenvman.2022.115908.
  • Jiang, X., Xiao, R., Bai, Y., Huang, B., & Ma, Y. (2022). Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. Journal of Cleaner Production, 340, 130778. https://doi.org/10.1016/j.jclepro.2022.130778.
  • Ulucan, M., Yildirim, G., Alatas, B., & Alyamac, K. E. (2024). Modelling and evaluation of mechanical performance and environmental impacts of sustainable concretes using a multi-objective optimization based innovative interpretable artificial intelligence method. Journal of Environmental Management, 372, 123364. https://doi.org/10.1016/j.jenvman.2024.123364.
  • Culcu, M. B., & Esen, H. (2024). Investigation of mechanical, durability, and thermal properties of sustainable self-compacting mortars containing construction demolition waste and supplementary cementitious materials. Journal of Building Engineering, 95, 110361. https://doi.org/10.1016/j.jobe.2024.110361.
  • Ulas, M. A., Culcu, M. B., & Ulucan, M. (2024). Valorization of recycled aggregates to eco-efficient lightweight self-compacting mortars: Studies on microstructure, mechanical, durability, environmental, and economic properties. Construction and Building Materials, 419, 135436. https://doi.org/10.1016/j.conbuildmat.2024.135436.
  • Erkek, H., & Yetkin, M. (2023). Assessment of the performance of a historic minaret during the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6). Structures, 58, 105620. https://doi.org/10.1016/j.istruc.2023.105620.
  • Dedeoğlu, İ. Ö., Yetkin, M., Calayır, Y., & Erkek, H. (2024). January 24, 2020 Sivrice-Elazığ (Türkiye) earthquake: The seismic assessment of the earthquake territory, geotechnical findings and performance of masonry buildings. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48, 2393–2412. https://doi.org/10.1007/s40996-023-01318-0.
  • EFNARC. (2005). The European guidelines for self-compacting concrete: Specification, production and use. [European Federation of Specialist Construction Chemicals and Concrete Systems]. UK: EFNARC..
  • ASTM International. (2022). Standard test method for ultrasonic pulse velocity through concrete (ASTM C597-22). West Conshohocken, PA: ASTM International
  • European Committee for Standardization. (2019). Compressive strength – Specification for testing machines (EN 12390-4:2019). Brussels, Belgium: CEN.
  • Özdemir, A. M. (2025). Experimental evaluation and 3D finite element simulation of creep behaviour of SBS modified asphalt mixture. Construction and Building Materials, 460, 139821.https://doi.org/10.1016/j.conbuildmat.2024.139821.
  • Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156.
  • International Organization for Standardization. (2006). Environmental management: Life cycle assessment – Principles and framework (ISO 14044). Geneva, Switzerland: ISO.
  • International Organization for Standardization. (2006). Environmental management – Life cycle assessment – Principles and framework (ISO 14040). Geneva, Switzerland: ISO..
  • Xing, W., Tam, V. W. Y., Le, K. N., Hao, J. L., & Wang, J. (2023). Life cycle assessment of sustainable concrete with recycled aggregate and supplementary cementitious materials. Resources, Conservation and Recycling, 193, 106947. https://doi.org/10.1016/j.resconrec.2023.106947.
  • Tošić, N., Marinković, S., Dašić, T., & Stanić, M. (2015). Multicriteria optimization of natural and recycled aggregate concrete for structural use. Journal of Cleaner Production, 87, 766–776. https://doi.org/10.1016/j.jclepro.2014.10.070
  • Wijayasundara, M., Crawford, R. H., & Mendis, P. (2017). Comparative assessment of embodied energy of recycled aggregate concrete. Journal of Cleaner Production, 152, 406–419.
  • Shrestha, J. K. (2021). Assessment of energy demand and greenhouse gas emissions in low-rise building systems: Case study of five building systems built after the Gorkha Earthquake in Nepal. Journal of Building Engineering, 34, 101831. https://doi.org/10.1016/j.jobe.2020.101831.

Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi

Yıl 2025, Cilt: 11 Sayı: 1, 108 - 119, 30.06.2025
https://doi.org/10.29132/ijpas.1622266

Öz

Bu çalışma sürdürülebilir kalkınma ve döngüsel ekonomi perspektifinde atık malzemeler kullanılarak üretilen kendiliğinden yerleşen harçların meka-nik-çevresel sonuçlarının incelenmesine ve tepki yüzeyi metodu kullanılarak modellenmesine odaklanmaktadır. Çevresel çıktıları azaltabilmek ve meka-nik özellikleri iyileştirebilmek adına metakaolin ve yüksek fırın cürufu ek çimento esaslı malzeme olarak kullanılmış olup 10 farklı kendiliğinden yer-leşen harç serisi tasarlanmıştır. Mekanik özellikler için 90 günlük basınç dayanımı testi ve ultrases geçiş hızı ölçümleri dikkate alınmıştır. Tepki yüzeyi metodu kullanılarak basınç dayanımı ve ultrases geçiş hızına bağlı olarak matematiksel bir model geliştirilmiş, hesaplanan tüm bağıl hata oranları %5’in altında kalmıştır. Ardından çevresel etki kategorilerinden enerji tüke-timi sonuçları incelenmiş ve ek çimento esaslı malzeme kullanımının önemli azalmalara neden olduğu gözlenmiştir. Atık ve ek çimento esaslı malzeme kullanımının hem mekanik hem de çevresel özellikler üzerinde olumlu etkiler yarattığı tespit edilmiştir.

Kaynakça

  • Ulucan, M. (2024). From waste to sustainable production: Experimental design and optimization of sustainable concrete using response surface methodology and life cycle assessment. Sustainable Chemistry and Pharmacy, 42, 101770. https://doi.org/10.1016/j.scp.2024.101770.
  • Yön, M. Ş., Yön, B., Karataş, M., & Benli, A. (2024). Sustainable use of boron waste and volcanic scoria in slag-based self-compacting alkali-activated mortars: Fresh, mechanical and durability properties. Sustainable Chemistry and Pharmacy, 41, 101664. https://doi.org/10.1016/j.scp.2024.101664.
  • Ulucan, M., & Alyamac, K. E. (2022). A holistic assessment of the use of emerging recycled concrete aggregates after a destructive earthquake: Mechanical, economic and environmental. Waste Management, 146, 53–65. https://doi.org/10.1016/j.wasman.2022.04.045.
  • Chen, L., Huang, Z., Pan, W., Su, R. K. L., Zhong, Y., & Zhang, Y. (2024). Low carbon concrete for prefabricated modular construction in circular economy: An integrated approach towards sustainability, durability, cost, and mechanical performances. Journal of Building Engineering, 90, 109368. https://doi.org/10.1016/j.jobe.2024.109368.
  • Li, T., Nogueira, R., Pereira, M. F. C., de Brito, J., & Liu, J. (2024). Effect of the incorporation ratio of recycled concrete aggregate on the properties of self-compacting mortar. Cement and Concrete Composites, 147, 105429. https://doi.org/10.1016/j.cemconcomp.2024.105429.
  • Marinković, S., Radonjanin, V., Malešev, M., & Ignjatović, I. (2010). Comparative environmental assessment of natural and recycled aggregate concrete. Waste Management, 30, 2255–2264. https://doi.org/10.1016/j.wasman.2010.04.012.
  • Martínez-Lage, I., Vázquez-Burgo, P., & Velay-Lizancos, M. (2020). Sustainability evaluation of concretes with mixed recycled aggregate based on holistic approach: Technical, economic and environmental analysis. Waste Management, 104, 9–19. https://doi.org/10.1016/j.wasman.2019.12.044.
  • Ulucan, M., & Alyamac, K. E. (2023). An integrative approach of the use of recycled concrete aggregate in high‐rise buildings: Example of the Elysium. Structural Concrete, 24, 3329–3350. https://doi.org/10.1002/suco.202200512.
  • Ulucan, M., Yildirim, G., Alatas, B., & Alyamac, K. E. (2023). A new intelligent sunflower optimization based explainable artificial intelligence approach for early‐age concrete compressive strength classification and mixture design of RAC. Structural Concrete. https://doi.org/10.1002/suco.202300138.
  • Ulucan, M., Tas, Y., & Alyamac, K. E. (2023). Multi‐objective optimization and assessment of recycled concrete aggregates for sustainable development: Example of the Kömürhan bridge. Structural Concrete. https://doi.org/10.1002/suco.202201018.
  • Ulucan, M., Gunduzalp, E., Yildirim, G., Alatas, B., & Alyamac, K. E. (2024). Optimizing sustainable concrete compressive strength prediction: A new particle swarm optimization‐based metaheuristic approach to neural network modeling for circular economy and disaster resilience. Structural Concrete. https://doi.org/10.1002/suco.202400070.
  • Dener, M., Karataş, M., & Mohabbi, M. (2021). High temperature resistance of self-compacting alkali-activated slag/Portland cement composite using lightweight aggregate. Construction and Building Materials, 290, 123250. https://doi.org/10.1016/j.conbuildmat.2021.123250.
  • Ulucan, M., & Alyamac, K. E. (2023). A comprehensive assessment of mechanical and environmental properties of green concretes produced using recycled concrete aggregates and supplementary cementitious material. Environmental Science and Pollution Research, 30, 97765–97785. https://doi.org/10.1007/s11356-023-29197-y.
  • Türk, E., Karataş, M., & Dener, M. (2022). Rheological, mechanical and durability properties of self-compacting mortars containing basalt powder and silica fume. Construction and Building Materials, 356, 129229. https://doi.org/10.1016/j.conbuildmat.2022.129229.
  • de Brito, J., & Kurda, R. (2021). The past and future of sustainable concrete: A critical review and new strategies on cement-based materials. Journal of Cleaner Production, 281, 123558. https://doi.org/10.1016/j.jclepro.2020.123558.
  • Galusnyak, S. C., Petrescu, L., & Cormos, C.-C. (2022). Environmental impact assessment of post-combustion CO₂ capture technologies applied to cement production plants. Journal of Environmental Management, 320, 115908. https://doi.org/10.1016/j.jenvman.2022.115908.
  • Jiang, X., Xiao, R., Bai, Y., Huang, B., & Ma, Y. (2022). Influence of waste glass powder as a supplementary cementitious material (SCM) on physical and mechanical properties of cement paste under high temperatures. Journal of Cleaner Production, 340, 130778. https://doi.org/10.1016/j.jclepro.2022.130778.
  • Ulucan, M., Yildirim, G., Alatas, B., & Alyamac, K. E. (2024). Modelling and evaluation of mechanical performance and environmental impacts of sustainable concretes using a multi-objective optimization based innovative interpretable artificial intelligence method. Journal of Environmental Management, 372, 123364. https://doi.org/10.1016/j.jenvman.2024.123364.
  • Culcu, M. B., & Esen, H. (2024). Investigation of mechanical, durability, and thermal properties of sustainable self-compacting mortars containing construction demolition waste and supplementary cementitious materials. Journal of Building Engineering, 95, 110361. https://doi.org/10.1016/j.jobe.2024.110361.
  • Ulas, M. A., Culcu, M. B., & Ulucan, M. (2024). Valorization of recycled aggregates to eco-efficient lightweight self-compacting mortars: Studies on microstructure, mechanical, durability, environmental, and economic properties. Construction and Building Materials, 419, 135436. https://doi.org/10.1016/j.conbuildmat.2024.135436.
  • Erkek, H., & Yetkin, M. (2023). Assessment of the performance of a historic minaret during the Kahramanmaraş earthquakes (Mw 7.7 and Mw 7.6). Structures, 58, 105620. https://doi.org/10.1016/j.istruc.2023.105620.
  • Dedeoğlu, İ. Ö., Yetkin, M., Calayır, Y., & Erkek, H. (2024). January 24, 2020 Sivrice-Elazığ (Türkiye) earthquake: The seismic assessment of the earthquake territory, geotechnical findings and performance of masonry buildings. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 48, 2393–2412. https://doi.org/10.1007/s40996-023-01318-0.
  • EFNARC. (2005). The European guidelines for self-compacting concrete: Specification, production and use. [European Federation of Specialist Construction Chemicals and Concrete Systems]. UK: EFNARC..
  • ASTM International. (2022). Standard test method for ultrasonic pulse velocity through concrete (ASTM C597-22). West Conshohocken, PA: ASTM International
  • European Committee for Standardization. (2019). Compressive strength – Specification for testing machines (EN 12390-4:2019). Brussels, Belgium: CEN.
  • Özdemir, A. M. (2025). Experimental evaluation and 3D finite element simulation of creep behaviour of SBS modified asphalt mixture. Construction and Building Materials, 460, 139821.https://doi.org/10.1016/j.conbuildmat.2024.139821.
  • Alyamac, K. E., Ghafari, E., & Ince, R. (2017). Development of eco-efficient self-compacting concrete with waste marble powder using the response surface method. Journal of Cleaner Production, 144, 192–202. https://doi.org/10.1016/j.jclepro.2016.12.156.
  • International Organization for Standardization. (2006). Environmental management: Life cycle assessment – Principles and framework (ISO 14044). Geneva, Switzerland: ISO.
  • International Organization for Standardization. (2006). Environmental management – Life cycle assessment – Principles and framework (ISO 14040). Geneva, Switzerland: ISO..
  • Xing, W., Tam, V. W. Y., Le, K. N., Hao, J. L., & Wang, J. (2023). Life cycle assessment of sustainable concrete with recycled aggregate and supplementary cementitious materials. Resources, Conservation and Recycling, 193, 106947. https://doi.org/10.1016/j.resconrec.2023.106947.
  • Tošić, N., Marinković, S., Dašić, T., & Stanić, M. (2015). Multicriteria optimization of natural and recycled aggregate concrete for structural use. Journal of Cleaner Production, 87, 766–776. https://doi.org/10.1016/j.jclepro.2014.10.070
  • Wijayasundara, M., Crawford, R. H., & Mendis, P. (2017). Comparative assessment of embodied energy of recycled aggregate concrete. Journal of Cleaner Production, 152, 406–419.
  • Shrestha, J. K. (2021). Assessment of energy demand and greenhouse gas emissions in low-rise building systems: Case study of five building systems built after the Gorkha Earthquake in Nepal. Journal of Building Engineering, 34, 101831. https://doi.org/10.1016/j.jobe.2020.101831.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Atık Yönetimi, Azaltma, Yeniden Kullanım ve Geri Dönüşüm, İnşaat Mühendisliğinde Sayısal Modelleme, Yapı Malzemeleri
Bölüm Makaleler
Yazarlar

Muhammed Ulucan 0000-0001-7629-6846

Erken Görünüm Tarihi 27 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 18 Ocak 2025
Kabul Tarihi 26 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 11 Sayı: 1

Kaynak Göster

APA Ulucan, M. (2025). Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi. International Journal of Pure and Applied Sciences, 11(1), 108-119. https://doi.org/10.29132/ijpas.1622266
AMA Ulucan M. Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi. International Journal of Pure and Applied Sciences. Haziran 2025;11(1):108-119. doi:10.29132/ijpas.1622266
Chicago Ulucan, Muhammed. “Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi Ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi”. International Journal of Pure and Applied Sciences 11, sy. 1 (Haziran 2025): 108-19. https://doi.org/10.29132/ijpas.1622266.
EndNote Ulucan M (01 Haziran 2025) Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi. International Journal of Pure and Applied Sciences 11 1 108–119.
IEEE M. Ulucan, “Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi”, International Journal of Pure and Applied Sciences, c. 11, sy. 1, ss. 108–119, 2025, doi: 10.29132/ijpas.1622266.
ISNAD Ulucan, Muhammed. “Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi Ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi”. International Journal of Pure and Applied Sciences 11/1 (Haziran 2025), 108-119. https://doi.org/10.29132/ijpas.1622266.
JAMA Ulucan M. Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi. International Journal of Pure and Applied Sciences. 2025;11:108–119.
MLA Ulucan, Muhammed. “Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi Ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi”. International Journal of Pure and Applied Sciences, c. 11, sy. 1, 2025, ss. 108-19, doi:10.29132/ijpas.1622266.
Vancouver Ulucan M. Kendiliğinden Yerleşen Harçların Mekanik-Çevresel Sonuçlarının İncelenmesi ve Tepki Yüzeyi Metodu Tabanlı Modellenmesi. International Journal of Pure and Applied Sciences. 2025;11(1):108-19.

154501544915448154471544615445