In this study, the rational system
\begin{equation*}
x_{n+1}=\frac{\alpha _{1}+\beta _{1}y_{n-1}}{a_{1}+b_{1}y_{n}}, \quad y_{n+1}=\frac{\alpha _{2}+\beta_{2}x_{n-1}}{a_{2}+b_{2}x_{n}}, \quad n\in\mathbb{N}_{0},
\end{equation*}
where $\alpha_{i}$, $\beta_{i}$, $a_{i}$, $b_{i}$, $(i=1,2)$, and $x_{-j}$, $y_{-j}$, $(j=0,1)$, are positive real numbers, is defined and its qualitative behavior is discussed. The system in question is a two-dimensional extension of an old difference equation in the literature. The results obtained generalize the results in the literature on the equation in question.
Boundedness and persistence equilibrium point globally asymptotically stability periodicity rate of convergence system of difference equations.
Birincil Dil | İngilizce |
---|---|
Konular | Uygulamalı Matematik (Diğer) |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 18 Aralık 2024 |
Gönderilme Tarihi | 7 Ekim 2024 |
Kabul Tarihi | 11 Aralık 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 6 Sayı: 2 |