Araştırma Makalesi
BibTex RIS Kaynak Göster

Solid-State Synthesis of Li2ZrO3 and the Thermochemical Modelling of the Process

Yıl 2025, Cilt: 2 Sayı: 1, 7 - 12, 22.04.2025

Öz

In the present study, the solid-state synthesis of lithium zirconate (Li₂ZrO₃), a promising high-temperature CO₂ sorbent, was investigated. The effects of calcination temperature and duration on the synthesis process were analysed, and the thermochemical modelling of the reaction was done to predict the optimal experimental conditions. Lithium carbonate (Li₂CO₃) and zirconium oxide (ZrO₂) were utilized as raw materials, and the reactions were performed under air atmosphere with temperatures ranging from 650°C to 1050°C. X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses revealed that nearly pure Li₂ZrO₃ could be achieved at temperatures above 750°C for reaction durations of at least 2 hours. The findings also highlighted the formation of monoclinic-Li₂ZrO₃ at elevated temperatures. This study demonstrates the efficiency of the solid-state synthesis method for producing Li₂ZrO₃ and provides insights into the thermochemical behaviour of the process, facilitating its potential application in CO₂ capture technologies.

Teşekkür

The authors thank to Maria Teresa Izquierdo Pantoja (Instituto de Carboquímica, CSIC) and Yakup Yürektürk (Bursa Technical University) for assistance in characterization stage.

Kaynakça

  • Afandi, N., Satgunam, M., Mahalingam, S., Manap, A., Nagi, F., Liu, W., Johan, R. B., Turan, A., Tan, A.W., & Yunus, S. (2024). Review on the modifications of natural and industrial waste CaO based sorbent of calcium looping with enhanced CO2 capture capacity. Heliyon, 10(5), e27119.
  • Benzesik, K., Turan, A., Sonmez, S., Izquierdo, M. T., & Yucel, O. (2022). Solution combustion synthesis derived Li4SiO4 for post-combustion carbon capture. Separation Science and Technology. 58(3),573–585. https://doi.org/10.1080/01496395.2022.2136577
  • Garcia, S., Fernandez, E.S., Stewart, A.J., & Maroto-Valer, M.M. (2017). Process Integration of Post-combustion CO2 Capture with Li4SiO4/Li2CO3 Looping in a NGCC Plant. Energy Procedia. 114,2611–2617. https://doi.org/10.1016/j.egypro.2017.03.1421
  • Guo, X., Ding, L., Ren, J., & Yang, H. (2017). Preparation and CO2 capture properties of nanocrystalline Li2ZrO3 via an epoxide-mediated sol–gel process. Journal of Sol-Gel Science and Technology. 81, 844–849. https://doi.org/10.1007/s10971-016-4233-7
  • Ida, J.I., & Lin, Y.S. (2003). Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental Science & Technology Journal. 37, 1999–2004. https://doi.org/10.1021/es0259032
  • Izquierdo, M.T., Turan, A., García, S., & Maroto-Valer, M.M. (2018). Optimization of Li4SiO4 synthesis conditions by a solid state method for maximum CO2 capture at high temperature. Journal of Materials Chemistry A. 6, 3249–3257. https://doi.org/10.1039/c7ta08738a
  • Mete, F.K., Benzesik, K., Turan, A., Izquierdo, M.T., & Yucel, O. (2024) Carbon Capture Performance Enhancement of Solid State Synthesized Li4SiO4 Powders by Using Different Kind Steel Slags as SiO2 Source. Bulletin of Materials Science and Metallurgy. 1, 23-30.
  • Nair, B.N., Yamaguchi, T., Kawamura, H., Nakao, S.I., & Nakagawa, K. (2004). Processing of lithium zirconate for applications in carbon dioxide separation: Structure and properties of the powders. Journal of the American Ceramic Society. 87, 68–74. https://doi.org/10.1111/j.1551-2916.2004.00068.x
  • Natalia, V., Rahmawati, F., & Purwanto, A. (2018). Crystal Structure Analysis of Lithium Zirconate Prepared from Local Sand at a various ratio of Li2CO3 to ZrO2. Journal of Materials and Environmental Science. 9, 1152–1158. https://doi.org/10.26872/jmes.2018.9.4.126
  • Roine, A. HSC Chemistry [Software], Metso, Pori (2023). The software is available at www.metso.com/hsc. Wang, C., Dou, B., Song, Y., Chen, H., Xu, Y., & Xie, B. (2014). High Temperature CO2 Sorption on Li2ZrO3 Based Sorbents. Industrial & Engineering Chemistry Research. 53, 12744–15752.
  • Xiao Q., Liu, Y., Zhong, Y., & Zhu, W. (2011). A citrate sol–gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. Journal of Materials Chemistry, 21, 3838-3842.
  • Xiao, Q., Tang, X., Liu, Y., Zhong, Y., & Zhu, W. (2013). Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Frontiers of Chemical Science and Engineering. 7, 297–302. https://doi.org/10.1007/s11705-013-1346-1
  • Yi, K.B., & Eriksen, D.Ø. (2006). Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science and Technology. 41, 283–296. https://doi.org/10.1080/01496390500496884
  • Yin, X.S., Li, S.P., Zhang, Q.H., & Yu, J.G. (2010). Synthesis and CO2 adsorption characteristics of lithium zirconates with high lithia content. Journal of the American Ceramic Society. 93, 2837–2842. https://doi.org/10.1111/j.1551-2916.2010.03769.x
  • Zhang, Y., Gao, Y., Pfeiffer, H., Louis, B., Sun, L., O’Hare, D., & Wang, Q. (2019). Recent advances in lithium containing ceramic based sorbents for high-temperature CO2 capture. Journal of Materials Chemistry A. 7, 7962–8005. https://doi.org/10.1039/c8ta08932a

Li2ZrO3'ün Katı Hal Sentezi ve Prosesin Termokimyasal Modellenmesi

Yıl 2025, Cilt: 2 Sayı: 1, 7 - 12, 22.04.2025

Öz

Mevcut çalışmada, ümit verici bir yüksek sıcaklık CO₂ sorbenti olan lityum zirkonatın (Li₂ZrO₃) katı hal sentezi araştırılmıştır. Kalsinasyon sıcaklığının ve süresinin sentez süreci üzerindeki etkileri analiz edilmiş ve optimum deneysel koşulları tahmin etmek için reaksiyonun termokimyasal modellemesi yapılmıştır. Lityum karbonat (Li₂CO₃) ve zirkonyum oksit (ZrO₂) hammadde olarak kullanılmış ve reaksiyonlar 650°C ile 1050°C arasındaki sıcaklıklarda hava atmosferi altında gerçekleştirilmiştir. X-ışını difraksiyon (XRD) ve taramalı elektron mikroskobu (SEM) analizleri, en az 2 saatlik reaksiyon süreleri boyunca 750°C'nin üzerindeki sıcaklıklarda neredeyse saf Li₂ZrO₃ elde edilebileceğini ortaya koymuştur. Bulgular ayrıca yüksek sıcaklıklarda monoklinik-Li₂ZrO₃ oluşumunu da vurgulamıştır. Bu çalışma, Li₂ZrO₃ üretiminde katı hal sentez yönteminin verimliliğini göstermekte ve sürecin termokimyasal davranışına ilişkin öngörüler sunarak, CO₂ yakalama teknolojilerindeki potansiyel uygulamasını kolaylaştırmaktadır.

Kaynakça

  • Afandi, N., Satgunam, M., Mahalingam, S., Manap, A., Nagi, F., Liu, W., Johan, R. B., Turan, A., Tan, A.W., & Yunus, S. (2024). Review on the modifications of natural and industrial waste CaO based sorbent of calcium looping with enhanced CO2 capture capacity. Heliyon, 10(5), e27119.
  • Benzesik, K., Turan, A., Sonmez, S., Izquierdo, M. T., & Yucel, O. (2022). Solution combustion synthesis derived Li4SiO4 for post-combustion carbon capture. Separation Science and Technology. 58(3),573–585. https://doi.org/10.1080/01496395.2022.2136577
  • Garcia, S., Fernandez, E.S., Stewart, A.J., & Maroto-Valer, M.M. (2017). Process Integration of Post-combustion CO2 Capture with Li4SiO4/Li2CO3 Looping in a NGCC Plant. Energy Procedia. 114,2611–2617. https://doi.org/10.1016/j.egypro.2017.03.1421
  • Guo, X., Ding, L., Ren, J., & Yang, H. (2017). Preparation and CO2 capture properties of nanocrystalline Li2ZrO3 via an epoxide-mediated sol–gel process. Journal of Sol-Gel Science and Technology. 81, 844–849. https://doi.org/10.1007/s10971-016-4233-7
  • Ida, J.I., & Lin, Y.S. (2003). Mechanism of high-temperature CO2 sorption on lithium zirconate. Environmental Science & Technology Journal. 37, 1999–2004. https://doi.org/10.1021/es0259032
  • Izquierdo, M.T., Turan, A., García, S., & Maroto-Valer, M.M. (2018). Optimization of Li4SiO4 synthesis conditions by a solid state method for maximum CO2 capture at high temperature. Journal of Materials Chemistry A. 6, 3249–3257. https://doi.org/10.1039/c7ta08738a
  • Mete, F.K., Benzesik, K., Turan, A., Izquierdo, M.T., & Yucel, O. (2024) Carbon Capture Performance Enhancement of Solid State Synthesized Li4SiO4 Powders by Using Different Kind Steel Slags as SiO2 Source. Bulletin of Materials Science and Metallurgy. 1, 23-30.
  • Nair, B.N., Yamaguchi, T., Kawamura, H., Nakao, S.I., & Nakagawa, K. (2004). Processing of lithium zirconate for applications in carbon dioxide separation: Structure and properties of the powders. Journal of the American Ceramic Society. 87, 68–74. https://doi.org/10.1111/j.1551-2916.2004.00068.x
  • Natalia, V., Rahmawati, F., & Purwanto, A. (2018). Crystal Structure Analysis of Lithium Zirconate Prepared from Local Sand at a various ratio of Li2CO3 to ZrO2. Journal of Materials and Environmental Science. 9, 1152–1158. https://doi.org/10.26872/jmes.2018.9.4.126
  • Roine, A. HSC Chemistry [Software], Metso, Pori (2023). The software is available at www.metso.com/hsc. Wang, C., Dou, B., Song, Y., Chen, H., Xu, Y., & Xie, B. (2014). High Temperature CO2 Sorption on Li2ZrO3 Based Sorbents. Industrial & Engineering Chemistry Research. 53, 12744–15752.
  • Xiao Q., Liu, Y., Zhong, Y., & Zhu, W. (2011). A citrate sol–gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. Journal of Materials Chemistry, 21, 3838-3842.
  • Xiao, Q., Tang, X., Liu, Y., Zhong, Y., & Zhu, W. (2013). Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures. Frontiers of Chemical Science and Engineering. 7, 297–302. https://doi.org/10.1007/s11705-013-1346-1
  • Yi, K.B., & Eriksen, D.Ø. (2006). Low temperature liquid state synthesis of lithium zirconate and its characteristics as a CO2 sorbent. Separation Science and Technology. 41, 283–296. https://doi.org/10.1080/01496390500496884
  • Yin, X.S., Li, S.P., Zhang, Q.H., & Yu, J.G. (2010). Synthesis and CO2 adsorption characteristics of lithium zirconates with high lithia content. Journal of the American Ceramic Society. 93, 2837–2842. https://doi.org/10.1111/j.1551-2916.2010.03769.x
  • Zhang, Y., Gao, Y., Pfeiffer, H., Louis, B., Sun, L., O’Hare, D., & Wang, Q. (2019). Recent advances in lithium containing ceramic based sorbents for high-temperature CO2 capture. Journal of Materials Chemistry A. 7, 7962–8005. https://doi.org/10.1039/c8ta08932a
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Mühendisliği (Diğer)
Bölüm Araştırma Makaleleri
Yazarlar

Ece Özkan

Mehmet Buğdaycı 0000-0001-6276-9251

Serkan Başlayıcı 0000-0002-7933-5887

Murat Alkan 0000-0002-5588-4793

Levent Öncel

Kağan Benzeşik

Umay Çınarlı Yavaş 0000-0001-5374-8352

Ahmet Turan 0000-0002-7578-1089

Yayımlanma Tarihi 22 Nisan 2025
Gönderilme Tarihi 25 Aralık 2024
Kabul Tarihi 3 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 2 Sayı: 1

Kaynak Göster

APA Özkan, E., Buğdaycı, M., Başlayıcı, S., Alkan, M., vd. (2025). Solid-State Synthesis of Li2ZrO3 and the Thermochemical Modelling of the Process. ITU Journal of Metallurgy and Materials Engineering, 2(1), 7-12.