Derleme
BibTex RIS Kaynak Göster

EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON miRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION

Yıl 2025, Cilt: 88 Sayı: 2, 164 - 171, 28.04.2025
https://doi.org/10.26650/IUITFD.1631708

Öz

Ovarian cancer remains a leading cause of gynaecological cancerrelated deaths, driven by its late-stage diagnosis, high metastatic potential, and frequent development of chemoresistance. Current therapeutic strategies often fail to address the intricate mechanisms underlying tumour progression, necessitating innovative approaches. Curcumin, a bioactive polyphenol derived from Curcuma longa, has emerged as a potent epigenetic regulator with multifaceted anticancer properties. This review highlights curcumin’s ability to modulate key epigenetic mechanisms such as microRNA (miRNA/miR) regulation, histone modifications, and DNA methylation, which are central to ovarian cancer pathogenesis. Curcumin selectively reprograms miRNA networks, restoring tumour-suppressive miRNAs while downregulating oncogenic miRNAs, thereby mitigating epithelial-mesenchymal transition and chemoresistance. In addition, curcumin inhibits histone deacetylase (HDACs) and EZH2-mediated histone methylation, reactivating critical tumoursuppressor genes like BRCA1. Through its suppression of DNA methyltransferase (DNMT) activity, curcumin reverses promoter hypermethylation, further enhancing tumour-suppressor gene expression. These synergistic epigenetic modulations disrupt oncogenic pathways, improve chemotherapy sensitivity, and restore the immune recognition of tumour cells. Despite its promise, poor bioavailability limits the clinical translation of curcumin, but advanced formulations, including nanoparticles and liposomes, overcome this limitation. Further research is essential to optimise delivery systems, elucidate long-term epigenetic effects, and validate therapeutic efficacy through clinical trials. This review underscores curcumin’s potential to enhance current ovarian cancer therapies by addressing the critical epigenetic mechanisms involved in tumour progression and resistance.

Kaynakça

  • López-Portugués C, Montes-Bayón M, Díez P. Biomarkers in ovarian cancer: towards personalized medicine. Proteomes 2024;12(1):8. [CrossRef] google scholar
  • Lutkiewicz K, Bieleninik Ł, Kaloeti DVS, Bidzan M. Editorial: Reproductive health and well-being from a life span perspective. Front Psychol 2023;14:1289603. [CrossRef] google scholar
  • Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong ST, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A Review in the theme: Cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol 2015;309(7):C444-56. [CrossRef] google scholar
  • Kigawa J. New strategy for overcoming resistance to chemotherapy of ovarian cancer. Yonago Acta Med 2013;56:43-50. google scholar
  • Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review). Oncol Rep 2022;47(4):82. [CrossRef] google scholar
  • Cancer Research UK. Stage 4 ovarian cancer. 2025 Jan 19. https://www.cancerresearchuk.org/about-cancer/ovarian-cancer/stages-grades/stage-4. google scholar
  • Cancer Research UK. Turmeric and cancer. 2025 Jan 19. https://www.cancerresearchuk.org/about-cancer/treatment/ complementary-alternative-therapies/individual-therapies/ turmeric google scholar
  • Farghadani R, Naidu R. Curcumin: Modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers (Basel) 2021;13:3427. [CrossRef] google scholar
  • Ravindran F, Mhatre A, Koroth J, Narayan S, Choudhary B. Curcumin modulates cell type-specific miRNA networks to induce cytotoxicity in ovarian cancer cells. Life Sci 2023;334:122224. [CrossRef] google scholar
  • Ülker EB, Aktaş EÇ, Seyhan MF, Isbir T, Billur D, Timirci-Kahraman Ö. Effects of curcumin and its analogue desmethoxycurcumin on miR-133b and its target gene GSTP-1 in cisplatin-resistant ovarian cancer cells. Anticancer Res 2024;44(12):5351-9. [CrossRef] google scholar
  • Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, et al. Molecular targets for the management of cancer using curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother 2021;135:111078. [CrossRef] google scholar
  • Liu X, Qi M, Li X, Wang J, Wang M. Curcumin: a natural organic component that plays a multi-faceted role in ovarian cancer. J Ovarian Res 2023;16:47. [CrossRef] google scholar
  • Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011;10:12. [CrossRef] google scholar
  • Nara K, Taguchi A, Yamamoto T, Hara K, Tojima Y, Honjoh H, et al. Heterogeneous effects of cytotoxic chemotherapies for platinum-resistant ovarian cancer. Int J Clin Oncol 2023;28(9):1207-17. [CrossRef] google scholar
  • Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010;3:11. [CrossRef] google scholar
  • Farghadani R, Naidu R. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer. Int J Mol Sci 2022;23(4):2144. [CrossRef] google scholar
  • Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014;4:64. [CrossRef] google scholar
  • Golmohammadi M, Zamanian MY, Al-Ani AM, Jabbar TL, Kareem AK, Aghaei ZH, et al. Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review. Animal Model Exp Med 2024;7(6):853-867. [CrossRef] google scholar
  • Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 2013;4(3):176-85. [CrossRef] google scholar
  • Harrington BS, Annunziata CM. NF-κB Signaling in ovarian cancer. Cancers (Basel) 2019;11(8):1182. [CrossRef] google scholar
  • Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A key player in cancer signaling. Biomolecules 2024;14(3):342. [CrossRef] google scholar
  • Liu S, Zhou S, Wang B, Jia Z. Effects of curcumin nanoparticles on the proliferation and migration of human ovarian cancer cells assessed through the NF-κB/PRL-3 signaling pathway. Int Immunopharmacol 2024;141:112964. [CrossRef] google scholar
  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149(5):1060–72. [CrossRef] google scholar
  • Zhang Y, Yu C, Peng C, Peng F. Potential roles and mechanisms of curcumin and its derivatives in the regulation of ferroptosis. Int J Biol Sci 2024;20(12):4838-52. [CrossRef] google scholar
  • Li L, Qiu C, Hou M, Wang X, Huang C, Zou J, et al. Ferroptosis in ovarian cancer: A novel therapeutic strategy. Front Oncol 2021;11:665945. [CrossRef] google scholar
  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017;171(2):273-85. [CrossRef] google scholar
  • Tang S, Chen L. The recent advancements of ferroptosis of gynecological cancer. Cancer Cell Int 2024;24(1):351. [CrossRef] google scholar
  • Kapper C, Oppelt P, Arbeithuber B, Gyunesh AA, Vilusic I, Stelzl P, et al. Targeting ferroptosis in ovarian cancer: Novel strategies to overcome chemotherapy resistance. Life Sci 2024;349:122720. [CrossRef] google scholar
  • Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, et al. HCAR1/MCT1 Regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep 2020;33(10):108487. [CrossRef] google scholar
  • Shi M, Zhang MJ, Yu Y, Ou R, Wang Y, Li H, et al. Curcumin derivative NL01 induces ferroptosis in ovarian cancer cells via HCAR1/MCT1 signaling. Cell Signal 2023;109:110791. [CrossRef] google scholar
  • Kwon MJ, Shin YK. Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 2011;12(2):983-1008. [CrossRef] google scholar
  • Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr 2011;6(2):93-108. [CrossRef] google scholar
  • Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother 2021;138:111528. [CrossRef] google scholar
  • Zhao SF, Zhang X, Zhang XJ, Shi XQ, Yu ZJ, Kan QC. Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev 2014;15(8):3363-8. [CrossRef] google scholar
  • Ravindran F, Koroth J, Manjunath M, Narayan S, Choudhary B. Curcumin derivative ST09 modulates the miR-199a-5p/DDR1 axis and regulates proliferation and migration in ovarian cancer cells. Sci Rep 2021;11(1):23025. [CrossRef] google scholar
  • Sun S, Fang H. Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis. J Ovarian Res 2021;14(1):158. [CrossRef] google scholar
  • Zhang J, Liu J, Xu X, Li L. Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol 2017;79(3):479-87. [CrossRef] google scholar
  • Zhao J, Pan Y, Li X, Zhang X, Xue Y, Wang T, et al. Dihydroartemisinin and curcumin synergistically induce apoptosis in SKOV3 cells Via upregulation of MiR-124 targeting midkine. Cell Physiol Biochem 2017;43(2):589-601. [CrossRef] google scholar
  • Vijayalakshmi P, Gowdham M, Dinesh DC, Sibiya A, Vaseeharan B, Selvaraj C. Unveiling the guardians of the genome: The dynamic role of histones in DNA organization and disease. Adv Protein Chem Struct Biol 2025;143:39-68. [CrossRef] google scholar
  • Skrzypczak M, Wolinska E, Adaszek Ł, Ortmann O, Treeck O. Epigenetic modulation of estrogen receptor signaling in ovarian cancer. Int J Mol Sci 2024;26(1):166. [CrossRef] google scholar
  • Yen HY, Tsao CW, Lin YW, Kuo CC, Tsao CH, Liu CY. Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep 2019;9(1):17267. [CrossRef] google scholar
  • Al-Yousef N, Shinwari Z, Al-Shahrani B, Al-Showimi M, Al-Moghrabi N. Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines. Oncol Rep 2020;43(3):827-38. [CrossRef] google scholar
  • Hassan FU, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A, et al. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front Genet 2019;10:514. [CrossRef] google scholar
  • Irshad R, Husain M. Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021;417:115467. [CrossRef] google scholar
  • Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, et al. Role of epigenetic modulation in neurodegenerative diseases: implications of phytochemical interventions. Antioxidants (Basel) 2024;13(5):606. [CrossRef] google scholar
  • Kumar V, Kesharwani R, Patel DK, Verma A, Mehanna MG, Mohammad A, et al. Epigenetic impact of curcumin and thymoquinone on cancer therapeutics. Curr Med Chem. Published online April 4, 2024. doi:10.2174/010929867328 8542240327112351. [CrossRef] google scholar
  • Hegde M, Kumar A, Girisa S, Aswani BS, Vishwa R, Sethi G, et al. Nanoformulations of curcumin: An alliance for effective cancer therapeutics. Food Biosci 2023;56:103095. [CrossRef] google scholar
  • Hosokawa M, Seiki R, Iwakawa S, Ogawara KI. Combination of azacytidine and curcumin is a potential alternative in decitabine-resistant colorectal cancer cells with attenuated deoxycytidine kinase. Biochem Biophys Res Commun 2021;578:157-62. [CrossRef] google scholar

OVER KANSERİNDE KURKUMİN İLE EPİGENETİK DÜZENLEME: miRNA AĞLARI, HISTON MODİFİKASYONLARI VE DNA METİLASYONU ÜZERİNE BİR İNCELEME

Yıl 2025, Cilt: 88 Sayı: 2, 164 - 171, 28.04.2025
https://doi.org/10.26650/IUITFD.1631708

Öz

Over kanseri, geç evrede teşhis edilmesi, yüksek metastaz potansiyeli ve genellikle gelişen kemoterapi direnci nedeniyle, jinekolojik kanserlerden kaynaklanan ölümlerin başlıca nedenlerinden biri olmaya devam etmektedir. Mevcut tedavi yaklaşımları, tümör ilerlemesinin altında yatan karmaşık mekanizmaları yeterince ele alamamakta ve bu durum yenilikçi stratejilere olan ihtiyacı ortaya koymaktadır. Zerdeçalın (Curcuma longa) biyoaktif bir polifenolü olan kurkumin, çok yönlü anti-kanser özellikleri ile güçlü bir epigenetik düzenleyici olarak öne çıkmıştır. Bu derlemede, kurkuminin over kanseri patogenezinde önemli rol oynayan mikroRNA (miRNA/ miR) düzenlemesi, histon modifikasyonları ve DNA metilasyonu gibi temel epigenetik mekanizmaları nasıl modüle ettiğine dikkat çekilmektedir. Kurkumin, tümör baskılayıcı miRNA'ları yukarı regüle ederken, onkojenik miRNA'ları aşağı regüle ederek miRNA ağlarını seçici şekilde yeniden programlamaktadır. Bu sayede, epitelmezenkimal dönüşümü ve kemoterapi direncini azaltabilmektedir. Ayrıca, kurkumin, histon deasetilazları (HDAC'ler) ve EZH2 aracılı histon metilasyonunu inhibe ederek, BRCA1 gibi kritik tümör baskılayıcı genlerin yeniden aktivasyonunu sağlamaktadır. DNA metiltransferaz (DNMT) aktivitesini baskılayarak, promotör hipermetilasyonunu tersine çevirmekte ve tümör baskılayıcı gen ekspresyonunu artırmaktadır. Kurkuminden kaynaklanan bu sinerjik epigenetik düzenlemeler, onkojenik yolları engellemekte, kemoterapi duyarlılığını artırmakta ve tümör hücrelerinin bağışıklık sistemi tarafından tanınmasını sağlamaktadır. Ancak, kurkuminin terapötik potansiyeli düşük biyoyararlanımı nedeniyle sınırlıdır; bu durum, nanopartiküller ve lipozomlar gibi yenilikçi formülasyonlarla aşılmaya çalışılmaktadır. İlaç dağıtım sistemlerinin optimize edilmesi, uzun vadeli epigenetik etkilerin daha iyi anlaşılması ve klinik çalışmalarla terapötik etkinliğin doğrulanması için daha fazla araştırmaya ihtiyaç vardır. Bu derleme, kurkuminin tümör progresyonu ve direncinde rol oynayan kritik epigenetik mekanizmaları inceleyerek, over kanseri tedavisine katkı sağlama potansiyelini vurgulamaktadır.

Kaynakça

  • López-Portugués C, Montes-Bayón M, Díez P. Biomarkers in ovarian cancer: towards personalized medicine. Proteomes 2024;12(1):8. [CrossRef] google scholar
  • Lutkiewicz K, Bieleninik Ł, Kaloeti DVS, Bidzan M. Editorial: Reproductive health and well-being from a life span perspective. Front Psychol 2023;14:1289603. [CrossRef] google scholar
  • Yeung TL, Leung CS, Yip KP, Au Yeung CL, Wong ST, Mok SC. Cellular and molecular processes in ovarian cancer metastasis. A Review in the theme: Cell and molecular processes in cancer metastasis. Am J Physiol Cell Physiol 2015;309(7):C444-56. [CrossRef] google scholar
  • Kigawa J. New strategy for overcoming resistance to chemotherapy of ovarian cancer. Yonago Acta Med 2013;56:43-50. google scholar
  • Yang L, Xie HJ, Li YY, Wang X, Liu XX, Mai J. Molecular mechanisms of platinum-based chemotherapy resistance in ovarian cancer (Review). Oncol Rep 2022;47(4):82. [CrossRef] google scholar
  • Cancer Research UK. Stage 4 ovarian cancer. 2025 Jan 19. https://www.cancerresearchuk.org/about-cancer/ovarian-cancer/stages-grades/stage-4. google scholar
  • Cancer Research UK. Turmeric and cancer. 2025 Jan 19. https://www.cancerresearchuk.org/about-cancer/treatment/ complementary-alternative-therapies/individual-therapies/ turmeric google scholar
  • Farghadani R, Naidu R. Curcumin: Modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers (Basel) 2021;13:3427. [CrossRef] google scholar
  • Ravindran F, Mhatre A, Koroth J, Narayan S, Choudhary B. Curcumin modulates cell type-specific miRNA networks to induce cytotoxicity in ovarian cancer cells. Life Sci 2023;334:122224. [CrossRef] google scholar
  • Ülker EB, Aktaş EÇ, Seyhan MF, Isbir T, Billur D, Timirci-Kahraman Ö. Effects of curcumin and its analogue desmethoxycurcumin on miR-133b and its target gene GSTP-1 in cisplatin-resistant ovarian cancer cells. Anticancer Res 2024;44(12):5351-9. [CrossRef] google scholar
  • Sultana S, Munir N, Mahmood Z, Riaz M, Akram M, Rebezov M, et al. Molecular targets for the management of cancer using curcuma longa Linn. phytoconstituents: A Review. Biomed Pharmacother 2021;135:111078. [CrossRef] google scholar
  • Liu X, Qi M, Li X, Wang J, Wang M. Curcumin: a natural organic component that plays a multi-faceted role in ovarian cancer. J Ovarian Res 2023;16:47. [CrossRef] google scholar
  • Wilken R, Veena MS, Wang MB, Srivatsan ES. Curcumin: A review of anti-cancer properties and therapeutic activity in head and neck squamous cell carcinoma. Mol Cancer 2011;10:12. [CrossRef] google scholar
  • Nara K, Taguchi A, Yamamoto T, Hara K, Tojima Y, Honjoh H, et al. Heterogeneous effects of cytotoxic chemotherapies for platinum-resistant ovarian cancer. Int J Clin Oncol 2023;28(9):1207-17. [CrossRef] google scholar
  • Yallapu MM, Maher DM, Sundram V, Bell MC, Jaggi M, Chauhan SC. Curcumin induces chemo/radio-sensitization in ovarian cancer cells and curcumin nanoparticles inhibit ovarian cancer cell growth. J Ovarian Res 2010;3:11. [CrossRef] google scholar
  • Farghadani R, Naidu R. Curcumin as an enhancer of therapeutic efficiency of chemotherapy drugs in breast cancer. Int J Mol Sci 2022;23(4):2144. [CrossRef] google scholar
  • Porta C, Paglino C, Mosca A. Targeting PI3K/Akt/mTOR signaling in cancer. Front Oncol 2014;4:64. [CrossRef] google scholar
  • Golmohammadi M, Zamanian MY, Al-Ani AM, Jabbar TL, Kareem AK, Aghaei ZH, et al. Targeting STAT3 signaling pathway by curcumin and its analogues for breast cancer: A narrative review. Animal Model Exp Med 2024;7(6):853-867. [CrossRef] google scholar
  • Fan Y, Mao R, Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Cell 2013;4(3):176-85. [CrossRef] google scholar
  • Harrington BS, Annunziata CM. NF-κB Signaling in ovarian cancer. Cancers (Basel) 2019;11(8):1182. [CrossRef] google scholar
  • Liu H, Li X, Shi Y, Ye Z, Cheng X. Protein Tyrosine Phosphatase PRL-3: A key player in cancer signaling. Biomolecules 2024;14(3):342. [CrossRef] google scholar
  • Liu S, Zhou S, Wang B, Jia Z. Effects of curcumin nanoparticles on the proliferation and migration of human ovarian cancer cells assessed through the NF-κB/PRL-3 signaling pathway. Int Immunopharmacol 2024;141:112964. [CrossRef] google scholar
  • Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 2012;149(5):1060–72. [CrossRef] google scholar
  • Zhang Y, Yu C, Peng C, Peng F. Potential roles and mechanisms of curcumin and its derivatives in the regulation of ferroptosis. Int J Biol Sci 2024;20(12):4838-52. [CrossRef] google scholar
  • Li L, Qiu C, Hou M, Wang X, Huang C, Zou J, et al. Ferroptosis in ovarian cancer: A novel therapeutic strategy. Front Oncol 2021;11:665945. [CrossRef] google scholar
  • Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, et al. Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell 2017;171(2):273-85. [CrossRef] google scholar
  • Tang S, Chen L. The recent advancements of ferroptosis of gynecological cancer. Cancer Cell Int 2024;24(1):351. [CrossRef] google scholar
  • Kapper C, Oppelt P, Arbeithuber B, Gyunesh AA, Vilusic I, Stelzl P, et al. Targeting ferroptosis in ovarian cancer: Novel strategies to overcome chemotherapy resistance. Life Sci 2024;349:122720. [CrossRef] google scholar
  • Zhao Y, Li M, Yao X, Fei Y, Lin Z, Li Z, et al. HCAR1/MCT1 Regulates tumor ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep 2020;33(10):108487. [CrossRef] google scholar
  • Shi M, Zhang MJ, Yu Y, Ou R, Wang Y, Li H, et al. Curcumin derivative NL01 induces ferroptosis in ovarian cancer cells via HCAR1/MCT1 signaling. Cell Signal 2023;109:110791. [CrossRef] google scholar
  • Kwon MJ, Shin YK. Epigenetic regulation of cancer-associated genes in ovarian cancer. Int J Mol Sci 2011;12(2):983-1008. [CrossRef] google scholar
  • Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. Genes Nutr 2011;6(2):93-108. [CrossRef] google scholar
  • Hussen BM, Hidayat HJ, Salihi A, Sabir DK, Taheri M, Ghafouri-Fard S. MicroRNA: A signature for cancer progression. Biomed Pharmacother 2021;138:111528. [CrossRef] google scholar
  • Zhao SF, Zhang X, Zhang XJ, Shi XQ, Yu ZJ, Kan QC. Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev 2014;15(8):3363-8. [CrossRef] google scholar
  • Ravindran F, Koroth J, Manjunath M, Narayan S, Choudhary B. Curcumin derivative ST09 modulates the miR-199a-5p/DDR1 axis and regulates proliferation and migration in ovarian cancer cells. Sci Rep 2021;11(1):23025. [CrossRef] google scholar
  • Sun S, Fang H. Curcumin inhibits ovarian cancer progression by regulating circ-PLEKHM3/miR-320a/SMG1 axis. J Ovarian Res 2021;14(1):158. [CrossRef] google scholar
  • Zhang J, Liu J, Xu X, Li L. Curcumin suppresses cisplatin resistance development partly via modulating extracellular vesicle-mediated transfer of MEG3 and miR-214 in ovarian cancer. Cancer Chemother Pharmacol 2017;79(3):479-87. [CrossRef] google scholar
  • Zhao J, Pan Y, Li X, Zhang X, Xue Y, Wang T, et al. Dihydroartemisinin and curcumin synergistically induce apoptosis in SKOV3 cells Via upregulation of MiR-124 targeting midkine. Cell Physiol Biochem 2017;43(2):589-601. [CrossRef] google scholar
  • Vijayalakshmi P, Gowdham M, Dinesh DC, Sibiya A, Vaseeharan B, Selvaraj C. Unveiling the guardians of the genome: The dynamic role of histones in DNA organization and disease. Adv Protein Chem Struct Biol 2025;143:39-68. [CrossRef] google scholar
  • Skrzypczak M, Wolinska E, Adaszek Ł, Ortmann O, Treeck O. Epigenetic modulation of estrogen receptor signaling in ovarian cancer. Int J Mol Sci 2024;26(1):166. [CrossRef] google scholar
  • Yen HY, Tsao CW, Lin YW, Kuo CC, Tsao CH, Liu CY. Regulation of carcinogenesis and modulation through Wnt/β-catenin signaling by curcumin in an ovarian cancer cell line. Sci Rep 2019;9(1):17267. [CrossRef] google scholar
  • Al-Yousef N, Shinwari Z, Al-Shahrani B, Al-Showimi M, Al-Moghrabi N. Curcumin induces re-expression of BRCA1 and suppression of γ synuclein by modulating DNA promoter methylation in breast cancer cell lines. Oncol Rep 2020;43(3):827-38. [CrossRef] google scholar
  • Hassan FU, Rehman MS, Khan MS, Ali MA, Javed A, Nawaz A, et al. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front Genet 2019;10:514. [CrossRef] google scholar
  • Irshad R, Husain M. Natural products in the reprogramming of cancer epigenetics. Toxicol Appl Pharmacol 2021;417:115467. [CrossRef] google scholar
  • Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, et al. Role of epigenetic modulation in neurodegenerative diseases: implications of phytochemical interventions. Antioxidants (Basel) 2024;13(5):606. [CrossRef] google scholar
  • Kumar V, Kesharwani R, Patel DK, Verma A, Mehanna MG, Mohammad A, et al. Epigenetic impact of curcumin and thymoquinone on cancer therapeutics. Curr Med Chem. Published online April 4, 2024. doi:10.2174/010929867328 8542240327112351. [CrossRef] google scholar
  • Hegde M, Kumar A, Girisa S, Aswani BS, Vishwa R, Sethi G, et al. Nanoformulations of curcumin: An alliance for effective cancer therapeutics. Food Biosci 2023;56:103095. [CrossRef] google scholar
  • Hosokawa M, Seiki R, Iwakawa S, Ogawara KI. Combination of azacytidine and curcumin is a potential alternative in decitabine-resistant colorectal cancer cells with attenuated deoxycytidine kinase. Biochem Biophys Res Commun 2021;578:157-62. [CrossRef] google scholar
Toplam 48 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sağlık Hizmetleri ve Sistemleri (Diğer)
Bölüm Derleme
Yazarlar

Özlem Timirci Kahraman 0000-0002-2641-5613

Deryanaz Billur 0000-0002-6079-8224

Esin Bayralı Ülker 0000-0001-8457-1430

Yayımlanma Tarihi 28 Nisan 2025
Gönderilme Tarihi 3 Şubat 2025
Kabul Tarihi 7 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 88 Sayı: 2

Kaynak Göster

APA Timirci Kahraman, Ö., Billur, D., & Bayralı Ülker, E. (2025). EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON miRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION. Journal of Istanbul Faculty of Medicine, 88(2), 164-171. https://doi.org/10.26650/IUITFD.1631708
AMA Timirci Kahraman Ö, Billur D, Bayralı Ülker E. EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON miRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION. İst Tıp Fak Derg. Nisan 2025;88(2):164-171. doi:10.26650/IUITFD.1631708
Chicago Timirci Kahraman, Özlem, Deryanaz Billur, ve Esin Bayralı Ülker. “EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON MiRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION”. Journal of Istanbul Faculty of Medicine 88, sy. 2 (Nisan 2025): 164-71. https://doi.org/10.26650/IUITFD.1631708.
EndNote Timirci Kahraman Ö, Billur D, Bayralı Ülker E (01 Nisan 2025) EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON miRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION. Journal of Istanbul Faculty of Medicine 88 2 164–171.
IEEE Ö. Timirci Kahraman, D. Billur, ve E. Bayralı Ülker, “EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON miRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION”, İst Tıp Fak Derg, c. 88, sy. 2, ss. 164–171, 2025, doi: 10.26650/IUITFD.1631708.
ISNAD Timirci Kahraman, Özlem vd. “EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON MiRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION”. Journal of Istanbul Faculty of Medicine 88/2 (Nisan 2025), 164-171. https://doi.org/10.26650/IUITFD.1631708.
JAMA Timirci Kahraman Ö, Billur D, Bayralı Ülker E. EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON miRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION. İst Tıp Fak Derg. 2025;88:164–171.
MLA Timirci Kahraman, Özlem vd. “EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON MiRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION”. Journal of Istanbul Faculty of Medicine, c. 88, sy. 2, 2025, ss. 164-71, doi:10.26650/IUITFD.1631708.
Vancouver Timirci Kahraman Ö, Billur D, Bayralı Ülker E. EPIGENETIC REGULATION BY CURCUMIN IN OVARIAN CANCER: A FOCUS ON miRNA NETWORKS, HISTONE MODIFICATIONS AND DNA METHYLATION. İst Tıp Fak Derg. 2025;88(2):164-71.

Contact information and address

Addressi: İ.Ü. İstanbul Tıp Fakültesi Dekanlığı, Turgut Özal Cad. 34093 Çapa, Fatih, İstanbul, TÜRKİYE

Email: itfdergisi@istanbul.edu.tr

Phone: +90 212 414 21 61