Araştırma Makalesi
BibTex RIS Kaynak Göster

Analysis of Life Cycle Inventory Data of Pistachio Production through Cobb-Douglas Analogy and Forecasting with ARIMA Model

Yıl 2025, Cilt: 8 Sayı: 1, 35 - 42, 30.06.2025
https://doi.org/10.46876/ja.1676926

Öz

Pistachio production holds significant economic importance for Türkiye. This study analyzes the life cycle inventory (LCI) data of pistachio production by using the Cobb-Douglas production function, and utilizes the Cobb-Douglas function to examine the relationship between inputs (human labor, machinery, diesel fuel, fertilizers, chemicals and manure) and pistachio production output. Fertilizers and diesel fuel are recognized as the two most energy-intensive inputs, accounting for 65.3% of total energy use. Total energy input for pistachio production yields a value of 24583.34 MJ ha-1. The regression analysis indicates high R² values of 0.9998 for the first set of variables (human labor, machinery and diesel fuel) and 0.9763 for the second set (fertilizers, chemicals and manure), demonstrating a very strong correlation between the inputs and pistachio output, and the Cobb-Douglas production function fits the data extremely well. The Autoregressive Integrated Moving Average (ARIMA) model is employed to forecast pistachio production for the period 2023-2030, using annual pistachio production data from 1961 to 2022. The ARIMA(1, 2, 2) model is identified as the most suitable model for forecasting pistachio production in Türkiye, based on its optimal statistical performance. Forecasted pistachio production values generated using the ARIMA(1, 2, 2) model are in good agreement with historical trends for the pistachio production. The ARIMA(1, 2, 2) model predicts that pistachio production will exceed 270000 tons by 2030. The results of this study are expected to provide a guidance to pistachio producers and policymakers in making decisions for sustainable pistachio production.

Kaynakça

  • Afshar, R. K., Alipour, A., Hashemi, M., Jovini, M. A., & Pimentel, D. (2013). Energy inputs-yield relationship and sensitivity analysis of pistachio (Pistacia vera L.) production in Markazi Region of Iran. Spanish Journal of Agricultural Research, 11(3), 661-669. https://doi.org/10.5424/sjar/2013113-3877
  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100
  • Bars, T., Uçum, İ., & Akbay, C. (2018). ARIMA modeli ile Türkiye fındık üretim projeksiyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21, 154-160. https://doi.org/10.18016/ksutarimdoga.v21i41625.473029
  • Başer, U., Bozoğlu, M., Eroğlu, N. A., & Topuz, B. K. (2018). Forecasting chestnut production and export of Turkey using ARIMA model. Turkish Journal of Forecasting, 2(2), 27-33. https://doi.org/10.34110/forecasting.482789
  • Box, G. E., & Jenkins, G. M. (1973). Some comments on a paper by Chatfield and Prothero and on a review by Kendall. Journal of the Royal Statistical Society. Series A (General), 136(3), 337-352. https://www.jstor.org/stable/2344995?seq=1
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. 5th Edition. John Wiley and Sons, Hoboken, NJ, USA.
  • Brentrup, F., Küsters, J., Kuhlmann, H., & Lammel, J. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20(3), 247-264. https://doi.org/10.1016/S1161-0301(03)00024-8
  • Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd Edition. Springer Science and Business Media, New York, NY, USA.
  • Celik, S., Karadas, K., & Eyduran, E. (2017). Forecasting the production of groundnut in Turkey using ARIMA model. The Journal of Animal and Plant Sciences, 27(3), 920-928.
  • Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., & Battese, G. E. (2005). An Introduction to Efficiency and Productivity Analysis. 2nd Edition. Springer Science and Business Media, New York, NY, USA.
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431. https://doi.org/10.2307/2286348
  • FAOSTAT (2023). Crops and livestock products domain. Retrieved November 3, 2024, from https://www.fao.org/faostat/en/#data/QCL
  • Houthakker, H. S. (1955). The Pareto distribution and the Cobb-Douglas production function in activity analysis. The Review of Economic Studies, 23(1), 27-31. https://doi.org/10.2307/2296148
  • i Canals, L. M., Romanya, J., & Cowell, S. J. (2007). Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in Life Cycle Assessment (LCA). Journal of Cleaner Production, 15(15), 1426-1440. https://doi.org/10.1016/j.jclepro.2006.05.005
  • Külekçi, M., & Aksoy, A. (2013). Input–output energy analysis in pistachio production of Turkey. Environmental Progress and Sustainable Energy, 32(1), 128-133. https://doi.org/10.1002/ep.10613
  • Ozdemir, M., Ozen, B. F., Dock, L. L., & Floros, J. D. (2008). Optimization of osmotic dehydration of diced green peppers by response surface methodology. LWT-Food Science and Technology, 41(10), 2044-2050. https://doi.org/10.1016/j.lwt.2008.01.010
  • Özdemir, F., & Aksoy, A. (2024). Pistachio production quantity estimate 2022–2030: Evidence from leading countries and Türkiye using the ARIMA model. Applied Fruit Science, 66(6), 2269-2277. https://doi.org/10.1007/s10341-024-01198-2
  • Öztep, R., & Işın, F. (2023). ARMA modeli ile Türkiye Antep fıstığı üretimi tahmini. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(4), 878-887. https://doi.org/10.18016/ksutarimdoga.vi.1163930
  • Pimentel, D. (1992). Energy inputs in production agriculture. Energy in farm production. In Energy in World Agriculture, Vol. 6, pp. 13-29, Fluck, R. C. Editor. Elsevier, Amsterdam, The Netherlands. https://doi.org/10.1016/b978-0-444-88681-1.50007-7
  • Python (2025). Python for Windows, version 3.12.10, Python Software Foundation, Beaverton, OR, USA.
  • Sağlam, C., Tobi, I., Küp, F., & Çevik, M. Y. (2012). An input-output energy analysis in pistachio nut production: A case study for Southeastern Anotolia Region of Turkey. African Journal of Biotechnology, 11(8), 1868-1871. https://doi.org/10.5897/AJB11.2296
  • Say, A. (2024). Badem üretiminde verimlilik ve sürdürülebilirlik: Projeksiyon temelli bir yaklaşım. Journal of Agriculture, 7(2), 177-183. https://doi.org/10.46876/ja.1603578
  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136
  • Singh, H., Mishra, D., & Nahar, N. M. (2002). Energy use pattern in production agriculture of a typical village in arid zone, India––part I. Energy Conversion and Management, 43(16), 2275-2286. https://doi.org/10.1016/s0196-8904(01)00161-3
  • Uzundumlu, A. S., Pınar, V., Tosun, N. E., & Kumbasaroğlu, H. (2024). Global pistachio production forecasts for 2020–2025. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(5), 1105-1115. https://doi.org/10.18016/ksutarimdoga.vi.1397897
  • Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods. 2nd edition. Pearson Education, New York, NY, USA.

COBB-DOUGLAS ANALOJİSİ İLE ANTEP FISTIĞI ÜRETİMİNİN YAŞAM DÖNGÜSÜ ENVANTER VERİLERİNİN ANALİZİ VE ARIMA MODELİ İLE TAHMİNİ

Yıl 2025, Cilt: 8 Sayı: 1, 35 - 42, 30.06.2025
https://doi.org/10.46876/ja.1676926

Öz

Antep fıstığı üretimi Türkiye için önemli bir ekonomik değerdir. Bu çalışmada, Cobb-Douglas üretim fonksiyonu kullanılarak Antep fıstığı üretiminin yaşam döngüsü envanteri (LCI) verileri analiz edilmiş ve insan emeği, makine, dizel yakıt, gübreler, kimyasallar ve hayvan gübresi girdileri ile Antep fıstığı üretim verileri arasındaki ilişkiyi anlamak için Cobb-Douglas fonksiyonundan yararlanılmıştır. Yaşam döngüsü değerlendirmesi (LCA), girdilerin Antep fıstığı üretim verimi üzerindeki etkilerinin kapsamlı olarak değerlendirmesine olanak sağlamıştır. Bununla beraber, 1961 ile 2022 yılları arasındaki yıllık Antep fıstığı üretim verileri kullanılarak zaman serisi analizine dayalı olarak 2023-2030 dönemi için Antep fıstığı üretimini tahmin etmek amacıyla ARIMA modeli kullanılmıştır. ARIMA modeli, Antep fıstığı üretiminin 2030 yılına kadar 270000 tonun üzerine çıkmasının beklendiğini ortaya koymuştur. Bu çalışmada elde edilen sonuçların Antep fıstığı üreticilerine ve politika belirleyicilere sürdürülebilir Antep fıstığı üretimi için karar almada rehberlik etmesi beklenmektedir.

Kaynakça

  • Afshar, R. K., Alipour, A., Hashemi, M., Jovini, M. A., & Pimentel, D. (2013). Energy inputs-yield relationship and sensitivity analysis of pistachio (Pistacia vera L.) production in Markazi Region of Iran. Spanish Journal of Agricultural Research, 11(3), 661-669. https://doi.org/10.5424/sjar/2013113-3877
  • Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19(6), 716-723. https://doi.org/10.1109/TAC.1974.1100
  • Bars, T., Uçum, İ., & Akbay, C. (2018). ARIMA modeli ile Türkiye fındık üretim projeksiyonu. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 21, 154-160. https://doi.org/10.18016/ksutarimdoga.v21i41625.473029
  • Başer, U., Bozoğlu, M., Eroğlu, N. A., & Topuz, B. K. (2018). Forecasting chestnut production and export of Turkey using ARIMA model. Turkish Journal of Forecasting, 2(2), 27-33. https://doi.org/10.34110/forecasting.482789
  • Box, G. E., & Jenkins, G. M. (1973). Some comments on a paper by Chatfield and Prothero and on a review by Kendall. Journal of the Royal Statistical Society. Series A (General), 136(3), 337-352. https://www.jstor.org/stable/2344995?seq=1
  • Box, G. E., Jenkins, G. M., Reinsel, G. C., & Ljung, G. M. (2015). Time Series Analysis: Forecasting and Control. 5th Edition. John Wiley and Sons, Hoboken, NJ, USA.
  • Brentrup, F., Küsters, J., Kuhlmann, H., & Lammel, J. (2004). Environmental impact assessment of agricultural production systems using the life cycle assessment methodology: I. Theoretical concept of a LCA method tailored to crop production. European Journal of Agronomy, 20(3), 247-264. https://doi.org/10.1016/S1161-0301(03)00024-8
  • Burnham, K. P., & Anderson, D. R. (2002). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. 2nd Edition. Springer Science and Business Media, New York, NY, USA.
  • Celik, S., Karadas, K., & Eyduran, E. (2017). Forecasting the production of groundnut in Turkey using ARIMA model. The Journal of Animal and Plant Sciences, 27(3), 920-928.
  • Coelli, T. J., Rao, D. S. P., O'Donnell, C. J., & Battese, G. E. (2005). An Introduction to Efficiency and Productivity Analysis. 2nd Edition. Springer Science and Business Media, New York, NY, USA.
  • Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366), 427-431. https://doi.org/10.2307/2286348
  • FAOSTAT (2023). Crops and livestock products domain. Retrieved November 3, 2024, from https://www.fao.org/faostat/en/#data/QCL
  • Houthakker, H. S. (1955). The Pareto distribution and the Cobb-Douglas production function in activity analysis. The Review of Economic Studies, 23(1), 27-31. https://doi.org/10.2307/2296148
  • i Canals, L. M., Romanya, J., & Cowell, S. J. (2007). Method for assessing impacts on life support functions (LSF) related to the use of ‘fertile land’ in Life Cycle Assessment (LCA). Journal of Cleaner Production, 15(15), 1426-1440. https://doi.org/10.1016/j.jclepro.2006.05.005
  • Külekçi, M., & Aksoy, A. (2013). Input–output energy analysis in pistachio production of Turkey. Environmental Progress and Sustainable Energy, 32(1), 128-133. https://doi.org/10.1002/ep.10613
  • Ozdemir, M., Ozen, B. F., Dock, L. L., & Floros, J. D. (2008). Optimization of osmotic dehydration of diced green peppers by response surface methodology. LWT-Food Science and Technology, 41(10), 2044-2050. https://doi.org/10.1016/j.lwt.2008.01.010
  • Özdemir, F., & Aksoy, A. (2024). Pistachio production quantity estimate 2022–2030: Evidence from leading countries and Türkiye using the ARIMA model. Applied Fruit Science, 66(6), 2269-2277. https://doi.org/10.1007/s10341-024-01198-2
  • Öztep, R., & Işın, F. (2023). ARMA modeli ile Türkiye Antep fıstığı üretimi tahmini. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(4), 878-887. https://doi.org/10.18016/ksutarimdoga.vi.1163930
  • Pimentel, D. (1992). Energy inputs in production agriculture. Energy in farm production. In Energy in World Agriculture, Vol. 6, pp. 13-29, Fluck, R. C. Editor. Elsevier, Amsterdam, The Netherlands. https://doi.org/10.1016/b978-0-444-88681-1.50007-7
  • Python (2025). Python for Windows, version 3.12.10, Python Software Foundation, Beaverton, OR, USA.
  • Sağlam, C., Tobi, I., Küp, F., & Çevik, M. Y. (2012). An input-output energy analysis in pistachio nut production: A case study for Southeastern Anotolia Region of Turkey. African Journal of Biotechnology, 11(8), 1868-1871. https://doi.org/10.5897/AJB11.2296
  • Say, A. (2024). Badem üretiminde verimlilik ve sürdürülebilirlik: Projeksiyon temelli bir yaklaşım. Journal of Agriculture, 7(2), 177-183. https://doi.org/10.46876/ja.1603578
  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 461-464. https://doi.org/10.1214/aos/1176344136
  • Singh, H., Mishra, D., & Nahar, N. M. (2002). Energy use pattern in production agriculture of a typical village in arid zone, India––part I. Energy Conversion and Management, 43(16), 2275-2286. https://doi.org/10.1016/s0196-8904(01)00161-3
  • Uzundumlu, A. S., Pınar, V., Tosun, N. E., & Kumbasaroğlu, H. (2024). Global pistachio production forecasts for 2020–2025. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 27(5), 1105-1115. https://doi.org/10.18016/ksutarimdoga.vi.1397897
  • Wei, W. W. S. (2006). Time Series Analysis: Univariate and Multivariate Methods. 2nd edition. Pearson Education, New York, NY, USA.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarım Ekonomisi (Diğer), Tarım Sistemleri Analizi ve Modellemesi, Tarımsal Üretim Sistemleri Simulasyonu
Bölüm Araştırma Makaleleri
Yazarlar

Murat Özdemir 0000-0001-9025-3068

Hüseyin Yağmur 0009-0004-6894-1402

Bilal Emin Kaya 0009-0006-1297-8606

Erken Görünüm Tarihi 26 Haziran 2025
Yayımlanma Tarihi 30 Haziran 2025
Gönderilme Tarihi 29 Nisan 2025
Kabul Tarihi 25 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 8 Sayı: 1

Kaynak Göster

APA Özdemir, M., Yağmur, H., & Kaya, B. E. (2025). Analysis of Life Cycle Inventory Data of Pistachio Production through Cobb-Douglas Analogy and Forecasting with ARIMA Model. Journal of Agriculture, 8(1), 35-42. https://doi.org/10.46876/ja.1676926

İletişim; 
 Tel : 0531 245 65 86