Araştırma Makalesi
BibTex RIS Kaynak Göster

Tirsi Balığı Silajının Besin İçeriği ve Yağ Asidi Kompozisyonu

Yıl 2025, Cilt: 10 Sayı: 4, 345 - 351
https://doi.org/10.35229/jaes.1666709

Öz

İnsan tüketimine sunulamamış balıkların ve su ürünleri işleme sanayi atıklarının, balık silajı olarak yem hammaddesine dönüştürülmesi, kaynakların etkin ve sürdürülebilir kullanımını sağlayan çevre dostu bir yöntemdir. Bu çalışmada, insan gıdası olarak değerlendirilememiş tirsi balıklarından, formik asit uygulamasıyla balık silajı üretimi yapılmış ve üretilen silajın besin içeriği ve yağ asidi kompozisyonu incelenmiştir. Silajların kuru madde içeriği %26,14 ile %26,63 arasında, ham protein miktarı %73,79 ile %78.55 arasında, yağ miktarı ise %5,09 ile %5,46 arasında değişim göstermiştir. Düşük dozda formik asit kullanılarak üretilen silajlarda ham protein miktarının düştüğü belirlenmiştir (p<0,05). Silajların toplam tekli doymamış yağ asidi (MUFA) değeri %18,56 ile 19,63 arasında, toplam çoklu doymamış yağ asidi (PUFA) değeri ise %24,74 ile %26,35 arasında değişim göstermiştir. Oleik asit (C18:1n9) %12,91 ile %14,27 arasında değişen miktarıyla baskın MUFA, DHA (C22:6n3) ise %16,39 ile %17,54 arasında değişen miktarıyla baskın PUFA olarak tespit edilmiştir. Farklı asit oranlarına sahip silajlarda ƩSFA, ƩMUFA, ƩPUFA, Ʃn3 ve Ʃn6 değerlerinin istatistiksel olarak benzer olduğu görülmüştür (p>0.05). Üretilen silajların özellikle ham protein ve PUFA içeriği, tirsi balığı silajının balık yemlerinde kullanılabileceğini göstermiştir. Değerli besin içeriğine sahip balık silajının yem hammaddesi olarak kullanılması, hem ekonomik kazanç sağlayacak hem de çevrenin korunmasına katkıda bulunacaktır.

Kaynakça

  • Ahmed, N., Thompson, S., & Glaser, M. (2019). Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environmental Management, 63, 159-172. DOI: 10.1007/s00267-018-1117-3
  • Alwan, S.R., Buckley, D.J., & O'Connor, T.P. (1993). Silage from fish waste: Chemical and cicrobiological aspects. Irish Journal of Agricultural and Food Research, 32(1), 75-81.
  • AOAC. (1990). Official methods of analysis. Association of Official Analytical Chemists (AOAC), Washington, D.C., USA.
  • AOAC. (2006). Crude protein in meat. In Official methods of analysis (17th ed.) 984.13. Gaithersburg, Association of Official Analytical Chemists (AOAC), Washington, D.C., USA.
  • Bayraklı, B. (2023). Utilization of fish by-products for sustainable aquaculture: Nutritional analysis of fishmeal derived from the by-products of Oncorhynchus mykiss. Menba Journal of Fisheries Faculty, 9(2), 8-14. DOI: 10.58626/menba.1360875
  • Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911- 917. DOI: 10.1139/o59-099
  • Cerim, H., Yapici, S., Reis, İ., & Ates, C. (2022). Southern aegean sea trawl fishery; Discard ratio and mortality of targeted species. Thalassas: An International Journal of Marine Sciences, 38,157- 169. DOI: 10.1007/s41208-021-00388-z
  • Goddard, J.S., & Al-Yahyai, D.S.S. (2001). Chemical and nutritional characteristics of dried sardine silage. Journal of Aquatic Food Product Technology, 10(4), 39-50. DOI: 10.1300/J030v10n04_04
  • Güllü, K., Güzel, S., & Tezel, R. (2015). Producing silage from the industrial waste of fisheries. Ekoloji, 24(95), 40-48. DOI: 10.5053/ekoloji.2015.03
  • Guo, J., Swanepoel, A., Qiu, X., Reis, J., Rhodes, M., & Davis, D.A. (2020). Use of salmon by‐product meals as a replacement for anchovy meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 26, 490-501. DOI: 10.1111/anu.13011
  • Ichihara, K., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31, 535-539. DOI: 10.1007/BF02522648 ISO. (1990). Animal and vegetable fats and oils-analysis by gas chromatography of methyl esters of fatty acids. EN ISO 5508.
  • Kaykaç, M.H., Aydın, C., & Tosunoğlu, Z. (2020). Gillnets and entangling nets fishery in the Gulf of Fethiye. Journal of Anatolian Environmental and Animal Sciences, 5(4), 506-515. DOI: 10.35229/jaes.760334
  • Metin, C., Alparslan, Y., Ekşi, Z., & Baygar, T. (2022). Effects of different thawing methods on fatty acid composition of cultured sea bass (Dicentrarchus labrax Linnaeus, 1758). Ege Journal of Fisheries and Aquatic Sciences, 39(3), 206-214. DOI: 10.12714/egejfas.39.3.05
  • Olsen, R.L., & Toppe, J. (2017). Fish silage hydrolysates: Not only a feed nutrient, but also a useful feed additive. Trends in Food Science and Technology, 66, 93-97. DOI: 10.1016/j.tifs.2017.06.003
  • Özkütük, A.S., & Özyurt, G. (2022). Balık silajı üretimi için basit bir yöntem: İnokulum olarak yoğurt kullanımı. Ege Journal of Fisheries and Aquatic Sciences, 39(3),253-260. DOI: 10.12714/egejfas.39.3.11
  • Özyurt, G., Gökdoğan, S., Şimşek, A., Yuvka, I., Ergüven, M., & Kuley Boga, E. (2016). Fatty acid composition and biogenic amines in acidified and fermented fish silage: a comparison study. Archives of Animal Nutrition, 70(1), 72-86. DOI: 10.1080/1745039X.2015.1117696
  • Özyurt, G., Özkütük, A.S., Uçar, Y., Durmuş, M., & Ozogul, Y. (2019). Evaluation of the potential use of discard species for fish silage and assessment of its oils for human consumption. International Journal of Food Science and Technology, 54(4), 1081-1088. DOI: 10.1111/ijfs.13954
  • Parisi, G., Tulli, F., Fortina, R., Marino, R., Bani, P., Zotte, A.D., De Angelis, A., Piccolo, G., Pinotti, L., Schiavone, A., Terova, G., Prandini, A., Gasco, L., Roncarati, A., & Danieli, P.P. (2020). Protein hunger of the feed sector: The alternatives offered by the plant world. Italian Journal of Animal Science, 19, 1204-1225. DOI: /10.1080/1828051X.2020.1827993
  • Raeesi, R., Shabanpour, B., & Pourashouri, P. (2023). Use of fish waste to silage preparation and its application in animal nutrition. Online Journal of Animal and Feed Research, 13(2), 79-88. DOI: 10.51227/ojafr.2023.13
  • Ramasubburayan, R., Iyapparaj, P., Subhashini, K.J., Chandran, M.N., Palavesam, A., & Immanuel, G. (2013). Characterization and nutritional quality of formic acid silage developed from marine fishery waste and their potential utilization as feed stuff for common carp Cyprinus carpio Fingerlings. Turkish Journal of Fisheries and Aquatic Sciences, 13, 281-289. DOI: 10.4194/1303-2712-v13_2_10
  • Santana, T.M., Dantas, F.d.M., Monteiro Dos Santos, D.K., Kojima, J.T., Pastrana, Y.M., De Jesus, R.S., & Gonçalves, L.U. (2023). Fish viscera silage: Production, characterization, and digestibility of nutrients and energy for tambaqui juveniles. Fishes 8(2), 111. DOI: 10.3390/fishes8020111
  • Santana, T.M., Dantas, F.M., Prestes, A.G., Jerônimo, G.T., da Costa, J.I., dos Santos, D.K.M., Pastrana Y.M., Yamamoto F.Y., & Gonçalves, L.U. (2024). Evaluation and economic analysis of fermented fish viscera silage in diets for tambaqui (Colossoma macropomum) and its effects on the physical quality of pellets, growth performance, health parameters. Journal of Animal Physiology and Animal Nutrition, 108(6), 1665-1677. DOI: 10.1111/jpn.13999
  • Soto, J., Ipanaqué, W., La-Rosa, G., & Paiva, E. (2023). Spectral signature for quality assessment of anchovy fish meal (Engraulis Ringens) using partial least squares. IEEE Latin America Transactions, 21(2), 200-206. DOI: 10.1109/TLA.2023.10015212
  • Tezel, R., Güllü, K., Alişarlı, M., Ekici, K., & Güzel Ş. (2016). A study on chemical and microbiological composition of silage made of industrial fisheries processing waste. Mugla Journal of Science and Technology, 2(1), 30-37. DOI: 10.22531/muglajsci.269969
  • Turan, H., Kaya, Y., & Erkoyuncu, İ. (2007). Protein and lipid content and fatty acid composition of anchovy meal produced in Turkey. Turkish Journal of Veterinary and Animal Sciences, 31(2), 113-117.
  • Vidotti, R.M., Viegas, E.M.M., & Carneiro, D.J. (2003). Amino acid composition of processed fish silage using different raw materials, Animal Feed Science and Technology, 105, 199-204. DOI: 10.1016/S0377-8401(03)00056-7

Nutrient Content and Fatty Acid Composition of Twaite Shad Fish Silage

Yıl 2025, Cilt: 10 Sayı: 4, 345 - 351
https://doi.org/10.35229/jaes.1666709

Öz

The recycling of fish which cannot be used for human consumption and fish processing industry wastes into feed raw materials is an environmentally friendly method that ensures the efficient and sustainable use of resources. In this study, fish silage was prepared from twaite shad fish, which could not been utilised as human food, by using formic acid application and the nutrient content and fatty acid composition of the produced silages were investigated. The dry matter values of the silages varied between 26.14% and 26.63%, crude protein values between 73.79% and 78.55%, and fat values between 5.09% and 5.46%. It was determined that the amount of crude protein decreased in silages produced by using low doses of formic acid (p<0.05). Total mono unsaturated fatty acid (MUFA) value of the silages varied between 18.56 and 19.63% and total poly unsaturated fatty acid (PUFA) value varied between 24.74% and 26.35%. Oleic acid (C18:1n9) was the dominant MUFA with an amount ranging from 12.91% to 14.27% and Docosahexaenoic acid (DHA, C22:6n3) was the dominant PUFA with an amount ranging from 16.39% to 17.54%. ƩSFA, ƩMUFA, ƩPUFA, Ʃn3 and Ʃn6 values were statistically similar in silages with different acid ratios (p>0.05). Especially crude protein and PUFA content of the produced silages showed that twaite shad fish silage can be utilised in fish feed. The use of fish silage with valuable nutrient content as feed raw material will provide both economic gain and contribute to the protection of the environment.

Teşekkür

The author would like to thank Assoc. Prof. Dr. Yunus ALPARSLAN for his kind support in the laboratory analyses carried out within this study.

Kaynakça

  • Ahmed, N., Thompson, S., & Glaser, M. (2019). Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environmental Management, 63, 159-172. DOI: 10.1007/s00267-018-1117-3
  • Alwan, S.R., Buckley, D.J., & O'Connor, T.P. (1993). Silage from fish waste: Chemical and cicrobiological aspects. Irish Journal of Agricultural and Food Research, 32(1), 75-81.
  • AOAC. (1990). Official methods of analysis. Association of Official Analytical Chemists (AOAC), Washington, D.C., USA.
  • AOAC. (2006). Crude protein in meat. In Official methods of analysis (17th ed.) 984.13. Gaithersburg, Association of Official Analytical Chemists (AOAC), Washington, D.C., USA.
  • Bayraklı, B. (2023). Utilization of fish by-products for sustainable aquaculture: Nutritional analysis of fishmeal derived from the by-products of Oncorhynchus mykiss. Menba Journal of Fisheries Faculty, 9(2), 8-14. DOI: 10.58626/menba.1360875
  • Bligh, E.G., & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911- 917. DOI: 10.1139/o59-099
  • Cerim, H., Yapici, S., Reis, İ., & Ates, C. (2022). Southern aegean sea trawl fishery; Discard ratio and mortality of targeted species. Thalassas: An International Journal of Marine Sciences, 38,157- 169. DOI: 10.1007/s41208-021-00388-z
  • Goddard, J.S., & Al-Yahyai, D.S.S. (2001). Chemical and nutritional characteristics of dried sardine silage. Journal of Aquatic Food Product Technology, 10(4), 39-50. DOI: 10.1300/J030v10n04_04
  • Güllü, K., Güzel, S., & Tezel, R. (2015). Producing silage from the industrial waste of fisheries. Ekoloji, 24(95), 40-48. DOI: 10.5053/ekoloji.2015.03
  • Guo, J., Swanepoel, A., Qiu, X., Reis, J., Rhodes, M., & Davis, D.A. (2020). Use of salmon by‐product meals as a replacement for anchovy meal in practical diets for the Pacific white shrimp (Litopenaeus vannamei). Aquaculture Nutrition, 26, 490-501. DOI: 10.1111/anu.13011
  • Ichihara, K., Shibahara, A., Yamamoto, K., & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycerolipids. Lipids, 31, 535-539. DOI: 10.1007/BF02522648 ISO. (1990). Animal and vegetable fats and oils-analysis by gas chromatography of methyl esters of fatty acids. EN ISO 5508.
  • Kaykaç, M.H., Aydın, C., & Tosunoğlu, Z. (2020). Gillnets and entangling nets fishery in the Gulf of Fethiye. Journal of Anatolian Environmental and Animal Sciences, 5(4), 506-515. DOI: 10.35229/jaes.760334
  • Metin, C., Alparslan, Y., Ekşi, Z., & Baygar, T. (2022). Effects of different thawing methods on fatty acid composition of cultured sea bass (Dicentrarchus labrax Linnaeus, 1758). Ege Journal of Fisheries and Aquatic Sciences, 39(3), 206-214. DOI: 10.12714/egejfas.39.3.05
  • Olsen, R.L., & Toppe, J. (2017). Fish silage hydrolysates: Not only a feed nutrient, but also a useful feed additive. Trends in Food Science and Technology, 66, 93-97. DOI: 10.1016/j.tifs.2017.06.003
  • Özkütük, A.S., & Özyurt, G. (2022). Balık silajı üretimi için basit bir yöntem: İnokulum olarak yoğurt kullanımı. Ege Journal of Fisheries and Aquatic Sciences, 39(3),253-260. DOI: 10.12714/egejfas.39.3.11
  • Özyurt, G., Gökdoğan, S., Şimşek, A., Yuvka, I., Ergüven, M., & Kuley Boga, E. (2016). Fatty acid composition and biogenic amines in acidified and fermented fish silage: a comparison study. Archives of Animal Nutrition, 70(1), 72-86. DOI: 10.1080/1745039X.2015.1117696
  • Özyurt, G., Özkütük, A.S., Uçar, Y., Durmuş, M., & Ozogul, Y. (2019). Evaluation of the potential use of discard species for fish silage and assessment of its oils for human consumption. International Journal of Food Science and Technology, 54(4), 1081-1088. DOI: 10.1111/ijfs.13954
  • Parisi, G., Tulli, F., Fortina, R., Marino, R., Bani, P., Zotte, A.D., De Angelis, A., Piccolo, G., Pinotti, L., Schiavone, A., Terova, G., Prandini, A., Gasco, L., Roncarati, A., & Danieli, P.P. (2020). Protein hunger of the feed sector: The alternatives offered by the plant world. Italian Journal of Animal Science, 19, 1204-1225. DOI: /10.1080/1828051X.2020.1827993
  • Raeesi, R., Shabanpour, B., & Pourashouri, P. (2023). Use of fish waste to silage preparation and its application in animal nutrition. Online Journal of Animal and Feed Research, 13(2), 79-88. DOI: 10.51227/ojafr.2023.13
  • Ramasubburayan, R., Iyapparaj, P., Subhashini, K.J., Chandran, M.N., Palavesam, A., & Immanuel, G. (2013). Characterization and nutritional quality of formic acid silage developed from marine fishery waste and their potential utilization as feed stuff for common carp Cyprinus carpio Fingerlings. Turkish Journal of Fisheries and Aquatic Sciences, 13, 281-289. DOI: 10.4194/1303-2712-v13_2_10
  • Santana, T.M., Dantas, F.d.M., Monteiro Dos Santos, D.K., Kojima, J.T., Pastrana, Y.M., De Jesus, R.S., & Gonçalves, L.U. (2023). Fish viscera silage: Production, characterization, and digestibility of nutrients and energy for tambaqui juveniles. Fishes 8(2), 111. DOI: 10.3390/fishes8020111
  • Santana, T.M., Dantas, F.M., Prestes, A.G., Jerônimo, G.T., da Costa, J.I., dos Santos, D.K.M., Pastrana Y.M., Yamamoto F.Y., & Gonçalves, L.U. (2024). Evaluation and economic analysis of fermented fish viscera silage in diets for tambaqui (Colossoma macropomum) and its effects on the physical quality of pellets, growth performance, health parameters. Journal of Animal Physiology and Animal Nutrition, 108(6), 1665-1677. DOI: 10.1111/jpn.13999
  • Soto, J., Ipanaqué, W., La-Rosa, G., & Paiva, E. (2023). Spectral signature for quality assessment of anchovy fish meal (Engraulis Ringens) using partial least squares. IEEE Latin America Transactions, 21(2), 200-206. DOI: 10.1109/TLA.2023.10015212
  • Tezel, R., Güllü, K., Alişarlı, M., Ekici, K., & Güzel Ş. (2016). A study on chemical and microbiological composition of silage made of industrial fisheries processing waste. Mugla Journal of Science and Technology, 2(1), 30-37. DOI: 10.22531/muglajsci.269969
  • Turan, H., Kaya, Y., & Erkoyuncu, İ. (2007). Protein and lipid content and fatty acid composition of anchovy meal produced in Turkey. Turkish Journal of Veterinary and Animal Sciences, 31(2), 113-117.
  • Vidotti, R.M., Viegas, E.M.M., & Carneiro, D.J. (2003). Amino acid composition of processed fish silage using different raw materials, Animal Feed Science and Technology, 105, 199-204. DOI: 10.1016/S0377-8401(03)00056-7
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Balık Yetiştiriciliği
Bölüm Makaleler
Yazarlar

Rifat Tezel 0000-0002-0870-7049

Erken Görünüm Tarihi 15 Temmuz 2025
Yayımlanma Tarihi
Gönderilme Tarihi 27 Mart 2025
Kabul Tarihi 29 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 4

Kaynak Göster

APA Tezel, R. (2025). Nutrient Content and Fatty Acid Composition of Twaite Shad Fish Silage. Journal of Anatolian Environmental and Animal Sciences, 10(4), 345-351. https://doi.org/10.35229/jaes.1666709


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS