Araştırma Makalesi
BibTex RIS Kaynak Göster

Bacillus amyloliquefaciens N33’ün Biyokontrolde Kullanım Potansiyelinin Ortaya Çıkarılması

Yıl 2025, Cilt: 10 Sayı: 4, 360 - 365
https://doi.org/10.35229/jaes.1689328

Öz

Bitki hastalıklarının kontrolünde ve hasat sonrası meyve, sebze ve tahılların muhafazasında sentetik kimyasallar yerine biyokontrol ajanlarının kullanımı, sayısız avantajları göz önüne alındığında büyük bir ivme kazanmıştır. Mevcut çalışmada maruldan izole edilen Bacillus amiyloliquefaciens N33 suşunun Penicillium citrinum, P. expansum, P. verrucosum, P. digitatum, P. paneum, Fusarium graminearum ve Aspergillus fumigatus’a karşı antifungal etkinliği in vitro olarak test edilmiştir. Suş test edilen tüm funguslara karşı yüksek bir etkinlik göstermiş ve inhibisyon oranı %60,3-94,2 aralığında değişmiştir. En yüksek etkinlik meyvelerde hasat sonrası önemli kayıplara neden olan P. digitatum (%94,2) ve P. expansum’a (%82,5) karşı görülmüştür. Ayrıca N33 F. graminearum, P. digitatum, P. expansum ve P. paneum’a karşı sentetik fungusitten daha yüksek bir etkinlik göstermiştir. Elde edilen bulgular B. amiyloliquefaciens N33’ün farklı fungus türlerine karşı geniş spektrumlu bir biyolojik mücadele etmeni olabileceğini göstermektedir.

Kaynakça

  • Abbas, A., & Yli-Mattila, T. (2022). Biocontrol of Fusarium graminearum, a causal agent of Fusarium head blight of wheat, and deoxynivalenol accumulation: From in vitro to in planta. Toxins, 14(5), 299. DOI: 10.3390/toxins14050299
  • Albayrak, Ç.B. (2019). Bacillus Species as Biocontrol Agents for Fungal Plant Pathogens. In: Islam, M., Rahman, M., Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. DOI: 10.1007/978-3- 030-15175-1_13
  • Avan, M., Albastawisi, E.M., Levent, Y.D., İşlek, S., & Kotan, R. (2024). Evaluation of Bacillus amyloliquefaciens TV‐17C as a potential biocontrol agent for controlling postharvest Penicillium digitatum on orange. Journal of Phytopathology, 172(3), e13345. DOI: 10.1111/jph.13345
  • Baard, V., Bakare, O.O., Daniel, A.I., Nkomo, M., Gokul, A., Keyster, M., & Klein, A. (2023). Biocontrol potential of Bacillus subtilis and Bacillus tequilensis against four Fusarium species. Pathogens, 12(2), 254. DOI: 10.3390/pathogens12020254
  • Calvo, H., Marco, P., Blanco, D., Oria, R., & Venturini, M.E. (2017). Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food microbiology, 63, 101- 110. DOI: 10.1016/j.fm.2016.11.004
  • Chen, K., Tian, Z., Luo, Y., Cheng, Y., & Long, C.A. (2018). Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold. Phytopathology, 108(11), 1253-1262. DOI: 10.1094/PHYTO-01-17-0032-R
  • Cruz-Martín, M., Mena, E., Acosta-Suárez, M., Pichardo, T., Rodriguez, E., & Alvarado-Capó, Y. (2020). Protein compounds of Bacillus subtilis with in vitro antifungal activity against Pseudocercospora fijiensis (Morelet). Brazilian Journal of Microbiology, 51, 265-269. DOI: 10.1007/s42770-019-00136-9
  • Dadrasnia, A., Usman, M.M., Omar, R., Ismail, S., & Abdullah, R. (2020). Potential use of Bacillus genus to control of bananas diseases: Approaches toward high yield production and sustainable management. Journal of King Saud University-Science, 32(4), 2336-2342. DOI: 10.1016/j.jksus.2020.03.011
  • Deguine, J.P., Aubertot, J.N., Flor, R.J., Lescourret, F., Wyckhuys, K.A., & Ratnadass, A. (2021). Integrated pest management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 41(3), 38. DOI: 10.1007/s13593-021-00689-w
  • Dikbaş, N., Uçar, S., Tozlu, E., Kotan, M.Ş., & Kotan, R. (2023). Antifungal activity of partially purified bacterial chitinase against Alternaria alternata. Erwerbs-obstbau, 65(4), 761-766. DOI: 10.1007/s10341-022-00716-4
  • Dobrzyński, J., Jakubowska, Z., Kulkova, I., Kowalczyk, P., & Kramkowski, K. (2023). Biocontrol of fungal phytopathogens by Bacillus pumilus. Frontiers in Microbiology, 14, 1194606. DOI: 10.3389/fmicb.2023.1194606
  • Dukare, A.S., Singh, R.K., Jangra, R.K., & Bhushan, B. (2022). Non-fungicides-based promising technologies for managing post-production penicillium induced spoilage in horticultural commodities: a comprehensive review. Food Reviews International, 38(3), 227-267. DOI: 10.1080/87559129.2020.1727497
  • Huang, L.R., Ling, X.N., Peng, S.Y., Tan, M.H., Yan, L. Q., Liang, Y.Y., Li, G.H., & Li, K.T. (2023). A marine lipopeptides-producing Bacillus amyloliquefaciens HY2-1 with a broad-spectrum antifungal and antibacterial activity and its fermentation kinetics study. World Journal of Microbiology and Biotechnology, 39(8), 196. DOI: 10.1007/s11274-023- 03643-y
  • Jabnoun-Khiareddine, H., Aydi-Ben-Abdallah, R., & Daami- Remadi, M. (2023). Multi-species endophytic Bacillus for improved control of potato soilborne and tuber- borne diseases in Tunisia: from laboratory to field conditions. Egyptian Journal of Biological Pest Control, 33(1), 109. DOI: 10.1186/s41938-023-00753- 5
  • Krishnan, S.V., Nampoothiri, K.M., Suresh, A., Linh, N.T., Balakumaran, P.A., Pócsi, I., & Pusztahelyi, T. (2024). Fusarium biocontrol: antagonism and mycotoxin elimination by lactic acid bacteria. Frontiers in Microbiology, 14, 1260166. DOI: 10.3389/fmicb.2023.1260166
  • Li, X., Zhang, Y., Wei, Z., Guan, Z., Cai, Y., & Liao, X. (2016). Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis. PloS one, 11(9), e0162125. DOI: 10.1371/journal.pone.0162125
  • Liu, X., Cao, A., Yan, D., Ouyang, C., Wang, Q., & Li, Y. (2021). Overview of mechanisms and uses of biopesticides. International Journal of Pest Management, 67(1), 65-72. DOI: 10.1080/09670874.2019.1664789
  • Mosa, M.A., Youssef, K., Hamed, S.F., & Hashim, A.F. (2023). Antifungal activity of eco-safe nanoemulsions based on Nigella sativa oil against Penicillium verrucosum infecting maize seeds: Biochemical and physiological traits. Frontiers in microbiology, 13, 1108733. DOI: 10.3389/fmicb.2022.1108733
  • Saleh, A.E., Ul-Hassan, Z., Zeidan, R., Al-Shamary, N., Al- Yafei, T., Alnaimi, H., Salah Higazy, N., Migheli, Q., & Jaoua, S. (2021). Biocontrol activity of Bacillus megaterium BM344-1 against toxigenic fungi. ACS omega, 6(16), 10984-10990. DOI: 10.1021/acsomega.1c00816
  • Settier-Ramírez, L., López-Carballo, G., Hernández-Muñoz, P., Fontana, A., Strub, C., & Schorr-Galindo, S. (2021). New isolated Metschnikowia pulcherrima strains from apples for postharvest biocontrol of Penicillium expansum and patulin accumulation. Toxins, 13(6), 397. DOI: 10.3390/toxins13060397
  • Singh, A., Balhara, M.E.E.N.A.K.S.H.I., Singh, B.H.A. R.A.T., & Chhillar, A.K. (2015). In vitro evaluation of antifungal potential and electron microscopic studies of Bacillus amyloliquefaciens against Aspergillus species. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 316-320.
  • Soliman, S.A., Abdelhameed, R.E., & Metwally, R.A. (2023). In vivo and In vitro evaluation of the antifungal activity of the PGPR Bacillus amyloliquefaciens RaSh1 (MZ945930) against Alternaria alternata with growth promotion influences on Capsicum annuum L. plants. Microbial Cell Factories, 22(1), 70. DOI: 10.1186/s12934-023-02080-8
  • Soliman, S.A., Khaleil, M.M., & Metwally, R.A. (2022). Evaluation of the antifungal activity of Bacillus amyloliquefaciens and B. velezensis and characterization of the bioactive secondary metabolites produced against plant pathogenic fungi. Biology, 11(10), 1390. DOI: 10.3390/biology11101390
  • Tang, K.H.D. (2025). Effects of Microplastics on Bioavailability, Persistence and Toxicity of Plant Pesticides: An Agricultural Perspective. Agriculture, 15(4), 356. DOI: 10.3390/agriculture15040356
  • Trung, N.T., Thao, N.T., Le Thanh, N.S., Dai Nguyen, N.P., Tuyet, N.T.A., Cuong, N.T., Chan, S.S., Khoo, K.S., & Show, P.L. (2023). Antifungal activity of secondary metabolites purified from Bacillus subtilis isolated in Vietnam and evaluated on in vitro and in vivo models. International Biodeterioration & Biodegradation, 179, 105558. DOI: 10.1016/j.ibiod.2022.105558
  • Ul Hassan, Z., Al Thani, R., Alnaimi, H., Migheli, Q., & Jaoua, S. (2019). Investigation and application of Bacillus licheniformis volatile compounds for the biological control of toxigenic Aspergillus and Penicillium spp. ACS omega, 4(17), 17186-17193. DOI: 10.1021/acsomega.9b01638
  • Wang, Z., Sui, Y., Li, J., Tian, X., & Wang, Q. (2022). Biological control of postharvest fungal decays in citrus: a review. Critical Reviews in Food Science and Nutrition, 62(4), 861-870. DOI: 10.1080/10408398.2020.1829542
  • Wei, L., Yang, C., Cui, L., Jin, M., & Osei, R. (2023). Bacillus spp. isolated from pepper leaves and their function and inhibition of the fungal plant pathogen Colletotrichum scovillei. Egyptian Journal of Biological Pest Control, 33(1), 46. DOI: 10.1186/s41938-023-00686-z
  • Xie, S., Jiang, L., Wu, Q., Wan, W., Gan, Y., Zhao, L., & Wen, J. (2022). Maize root exudates recruit Bacillus amyloliquefaciens OR2-30 to inhibit Fusarium graminearum infection. Phytopathology®, 112(9), 1886-1893. DOI: 10.1094/PHYTO-01-22-0028-R
  • Xu, S., Wang, Y., Hu, J., Chen, X., Qiu, Y., Shi, J., Wang G., & Xu, J. (2021). Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control, 130, 108259. DOI: 10.1016/j.foodcont.2021.108259
  • Xu, X., Cheng, Y., Fang, Z., Yin, J., Shen, H., & Ma, D. (2022). Identification and utilization of a new Bacillus amyloliquefaciens XY-1 against Fusarium head blight. Frontiers in Plant Science, 13, 1055213. DOI: 10.3389/fpls.2022.1055213
  • Yi, Y., Luan, P., Fan, M., Wu, X., Sun, Z., Shang, Z., Yang, Y., & Li, C. (2024). Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides. International Journal of Food Microbiology, 422, 110821. DOI: 10.1016/j.ijfoodmicro.2024.110821
  • Zeidan, R., Hassan, Z. U., Ashfaq, M. Y., Al-Thani, R., & Jaoua, S. (2024). Investigation of heat-resistant antifungal agents from Bacillus amyloliquefaciens and Bacillus subtilis for biocontrol of mycotoxigenic fungi. Environmental Technology & Innovation, 36, 103748. DOI: 10.1016/j.eti.2024.103748
  • Zhao, W., Hong, S.Y., Kim, J.Y., & Om, A.S. (2024). Effects of temperature, pH, and relative humidity on the growth of Penicillium paneum OM1 isolated from pears and its patulin production. Fungal Biology, 128(4), 1885-1897. DOI: 10.1016/j.funbio.2024.05.005

Exploring the Potential of Bacillus amyloliquefaciens N33 in Biocontrol

Yıl 2025, Cilt: 10 Sayı: 4, 360 - 365
https://doi.org/10.35229/jaes.1689328

Öz

The use of biocontrol agents instead of synthetic chemicals in the control of plant diseases and post-harvest preservation of fruits, vegetables and cereals has gained great momentum given their numerous advantages. In the present study, the antifungal activity of Bacillus amiyloliquefaciens N33 strain isolated from lettuce was tested in vitro against Penicillium citrinum, P. expansum, P. verrucosum, P. digitatum, P. paneum, Fusarium graminearum and Aspergillus fumigatus. The strain showed a high activity against all tested fungi and the inhibition rate ranged between 60.3-94.2%. The highest activity was observed against P. digitatum (94.2%) and P. expansum (82.5%), which caused significant postharvest losses in fruits. In addition, N33 showed a higher activity against F. graminearum, P. digitatum, P. expansum and P. paneum than the synthetic fungicide. The findings indicate that B. amiyloliquefaciens N33 can be a broad spectrum biological control agent against different fungal species.

Kaynakça

  • Abbas, A., & Yli-Mattila, T. (2022). Biocontrol of Fusarium graminearum, a causal agent of Fusarium head blight of wheat, and deoxynivalenol accumulation: From in vitro to in planta. Toxins, 14(5), 299. DOI: 10.3390/toxins14050299
  • Albayrak, Ç.B. (2019). Bacillus Species as Biocontrol Agents for Fungal Plant Pathogens. In: Islam, M., Rahman, M., Pandey, P., Boehme, M., Haesaert, G. (eds) Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. DOI: 10.1007/978-3- 030-15175-1_13
  • Avan, M., Albastawisi, E.M., Levent, Y.D., İşlek, S., & Kotan, R. (2024). Evaluation of Bacillus amyloliquefaciens TV‐17C as a potential biocontrol agent for controlling postharvest Penicillium digitatum on orange. Journal of Phytopathology, 172(3), e13345. DOI: 10.1111/jph.13345
  • Baard, V., Bakare, O.O., Daniel, A.I., Nkomo, M., Gokul, A., Keyster, M., & Klein, A. (2023). Biocontrol potential of Bacillus subtilis and Bacillus tequilensis against four Fusarium species. Pathogens, 12(2), 254. DOI: 10.3390/pathogens12020254
  • Calvo, H., Marco, P., Blanco, D., Oria, R., & Venturini, M.E. (2017). Potential of a new strain of Bacillus amyloliquefaciens BUZ-14 as a biocontrol agent of postharvest fruit diseases. Food microbiology, 63, 101- 110. DOI: 10.1016/j.fm.2016.11.004
  • Chen, K., Tian, Z., Luo, Y., Cheng, Y., & Long, C.A. (2018). Antagonistic activity and the mechanism of Bacillus amyloliquefaciens DH-4 against citrus green mold. Phytopathology, 108(11), 1253-1262. DOI: 10.1094/PHYTO-01-17-0032-R
  • Cruz-Martín, M., Mena, E., Acosta-Suárez, M., Pichardo, T., Rodriguez, E., & Alvarado-Capó, Y. (2020). Protein compounds of Bacillus subtilis with in vitro antifungal activity against Pseudocercospora fijiensis (Morelet). Brazilian Journal of Microbiology, 51, 265-269. DOI: 10.1007/s42770-019-00136-9
  • Dadrasnia, A., Usman, M.M., Omar, R., Ismail, S., & Abdullah, R. (2020). Potential use of Bacillus genus to control of bananas diseases: Approaches toward high yield production and sustainable management. Journal of King Saud University-Science, 32(4), 2336-2342. DOI: 10.1016/j.jksus.2020.03.011
  • Deguine, J.P., Aubertot, J.N., Flor, R.J., Lescourret, F., Wyckhuys, K.A., & Ratnadass, A. (2021). Integrated pest management: good intentions, hard realities. A review. Agronomy for Sustainable Development, 41(3), 38. DOI: 10.1007/s13593-021-00689-w
  • Dikbaş, N., Uçar, S., Tozlu, E., Kotan, M.Ş., & Kotan, R. (2023). Antifungal activity of partially purified bacterial chitinase against Alternaria alternata. Erwerbs-obstbau, 65(4), 761-766. DOI: 10.1007/s10341-022-00716-4
  • Dobrzyński, J., Jakubowska, Z., Kulkova, I., Kowalczyk, P., & Kramkowski, K. (2023). Biocontrol of fungal phytopathogens by Bacillus pumilus. Frontiers in Microbiology, 14, 1194606. DOI: 10.3389/fmicb.2023.1194606
  • Dukare, A.S., Singh, R.K., Jangra, R.K., & Bhushan, B. (2022). Non-fungicides-based promising technologies for managing post-production penicillium induced spoilage in horticultural commodities: a comprehensive review. Food Reviews International, 38(3), 227-267. DOI: 10.1080/87559129.2020.1727497
  • Huang, L.R., Ling, X.N., Peng, S.Y., Tan, M.H., Yan, L. Q., Liang, Y.Y., Li, G.H., & Li, K.T. (2023). A marine lipopeptides-producing Bacillus amyloliquefaciens HY2-1 with a broad-spectrum antifungal and antibacterial activity and its fermentation kinetics study. World Journal of Microbiology and Biotechnology, 39(8), 196. DOI: 10.1007/s11274-023- 03643-y
  • Jabnoun-Khiareddine, H., Aydi-Ben-Abdallah, R., & Daami- Remadi, M. (2023). Multi-species endophytic Bacillus for improved control of potato soilborne and tuber- borne diseases in Tunisia: from laboratory to field conditions. Egyptian Journal of Biological Pest Control, 33(1), 109. DOI: 10.1186/s41938-023-00753- 5
  • Krishnan, S.V., Nampoothiri, K.M., Suresh, A., Linh, N.T., Balakumaran, P.A., Pócsi, I., & Pusztahelyi, T. (2024). Fusarium biocontrol: antagonism and mycotoxin elimination by lactic acid bacteria. Frontiers in Microbiology, 14, 1260166. DOI: 10.3389/fmicb.2023.1260166
  • Li, X., Zhang, Y., Wei, Z., Guan, Z., Cai, Y., & Liao, X. (2016). Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis. PloS one, 11(9), e0162125. DOI: 10.1371/journal.pone.0162125
  • Liu, X., Cao, A., Yan, D., Ouyang, C., Wang, Q., & Li, Y. (2021). Overview of mechanisms and uses of biopesticides. International Journal of Pest Management, 67(1), 65-72. DOI: 10.1080/09670874.2019.1664789
  • Mosa, M.A., Youssef, K., Hamed, S.F., & Hashim, A.F. (2023). Antifungal activity of eco-safe nanoemulsions based on Nigella sativa oil against Penicillium verrucosum infecting maize seeds: Biochemical and physiological traits. Frontiers in microbiology, 13, 1108733. DOI: 10.3389/fmicb.2022.1108733
  • Saleh, A.E., Ul-Hassan, Z., Zeidan, R., Al-Shamary, N., Al- Yafei, T., Alnaimi, H., Salah Higazy, N., Migheli, Q., & Jaoua, S. (2021). Biocontrol activity of Bacillus megaterium BM344-1 against toxigenic fungi. ACS omega, 6(16), 10984-10990. DOI: 10.1021/acsomega.1c00816
  • Settier-Ramírez, L., López-Carballo, G., Hernández-Muñoz, P., Fontana, A., Strub, C., & Schorr-Galindo, S. (2021). New isolated Metschnikowia pulcherrima strains from apples for postharvest biocontrol of Penicillium expansum and patulin accumulation. Toxins, 13(6), 397. DOI: 10.3390/toxins13060397
  • Singh, A., Balhara, M.E.E.N.A.K.S.H.I., Singh, B.H.A. R.A.T., & Chhillar, A.K. (2015). In vitro evaluation of antifungal potential and electron microscopic studies of Bacillus amyloliquefaciens against Aspergillus species. International Journal of Pharmacy and Pharmaceutical Sciences, 7, 316-320.
  • Soliman, S.A., Abdelhameed, R.E., & Metwally, R.A. (2023). In vivo and In vitro evaluation of the antifungal activity of the PGPR Bacillus amyloliquefaciens RaSh1 (MZ945930) against Alternaria alternata with growth promotion influences on Capsicum annuum L. plants. Microbial Cell Factories, 22(1), 70. DOI: 10.1186/s12934-023-02080-8
  • Soliman, S.A., Khaleil, M.M., & Metwally, R.A. (2022). Evaluation of the antifungal activity of Bacillus amyloliquefaciens and B. velezensis and characterization of the bioactive secondary metabolites produced against plant pathogenic fungi. Biology, 11(10), 1390. DOI: 10.3390/biology11101390
  • Tang, K.H.D. (2025). Effects of Microplastics on Bioavailability, Persistence and Toxicity of Plant Pesticides: An Agricultural Perspective. Agriculture, 15(4), 356. DOI: 10.3390/agriculture15040356
  • Trung, N.T., Thao, N.T., Le Thanh, N.S., Dai Nguyen, N.P., Tuyet, N.T.A., Cuong, N.T., Chan, S.S., Khoo, K.S., & Show, P.L. (2023). Antifungal activity of secondary metabolites purified from Bacillus subtilis isolated in Vietnam and evaluated on in vitro and in vivo models. International Biodeterioration & Biodegradation, 179, 105558. DOI: 10.1016/j.ibiod.2022.105558
  • Ul Hassan, Z., Al Thani, R., Alnaimi, H., Migheli, Q., & Jaoua, S. (2019). Investigation and application of Bacillus licheniformis volatile compounds for the biological control of toxigenic Aspergillus and Penicillium spp. ACS omega, 4(17), 17186-17193. DOI: 10.1021/acsomega.9b01638
  • Wang, Z., Sui, Y., Li, J., Tian, X., & Wang, Q. (2022). Biological control of postharvest fungal decays in citrus: a review. Critical Reviews in Food Science and Nutrition, 62(4), 861-870. DOI: 10.1080/10408398.2020.1829542
  • Wei, L., Yang, C., Cui, L., Jin, M., & Osei, R. (2023). Bacillus spp. isolated from pepper leaves and their function and inhibition of the fungal plant pathogen Colletotrichum scovillei. Egyptian Journal of Biological Pest Control, 33(1), 46. DOI: 10.1186/s41938-023-00686-z
  • Xie, S., Jiang, L., Wu, Q., Wan, W., Gan, Y., Zhao, L., & Wen, J. (2022). Maize root exudates recruit Bacillus amyloliquefaciens OR2-30 to inhibit Fusarium graminearum infection. Phytopathology®, 112(9), 1886-1893. DOI: 10.1094/PHYTO-01-22-0028-R
  • Xu, S., Wang, Y., Hu, J., Chen, X., Qiu, Y., Shi, J., Wang G., & Xu, J. (2021). Isolation and characterization of Bacillus amyloliquefaciens MQ01, a bifunctional biocontrol bacterium with antagonistic activity against Fusarium graminearum and biodegradation capacity of zearalenone. Food Control, 130, 108259. DOI: 10.1016/j.foodcont.2021.108259
  • Xu, X., Cheng, Y., Fang, Z., Yin, J., Shen, H., & Ma, D. (2022). Identification and utilization of a new Bacillus amyloliquefaciens XY-1 against Fusarium head blight. Frontiers in Plant Science, 13, 1055213. DOI: 10.3389/fpls.2022.1055213
  • Yi, Y., Luan, P., Fan, M., Wu, X., Sun, Z., Shang, Z., Yang, Y., & Li, C. (2024). Antifungal efficacy of Bacillus amyloliquefaciens ZK-9 against Fusarium graminearum and analysis of the potential mechanism of its lipopeptides. International Journal of Food Microbiology, 422, 110821. DOI: 10.1016/j.ijfoodmicro.2024.110821
  • Zeidan, R., Hassan, Z. U., Ashfaq, M. Y., Al-Thani, R., & Jaoua, S. (2024). Investigation of heat-resistant antifungal agents from Bacillus amyloliquefaciens and Bacillus subtilis for biocontrol of mycotoxigenic fungi. Environmental Technology & Innovation, 36, 103748. DOI: 10.1016/j.eti.2024.103748
  • Zhao, W., Hong, S.Y., Kim, J.Y., & Om, A.S. (2024). Effects of temperature, pH, and relative humidity on the growth of Penicillium paneum OM1 isolated from pears and its patulin production. Fungal Biology, 128(4), 1885-1897. DOI: 10.1016/j.funbio.2024.05.005
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ziraat Mühendisliği (Diğer)
Bölüm Makaleler
Yazarlar

Sevda Uçar 0000-0002-3612-457X

Şeyma Alım 0000-0001-6684-7974

Neslihan Dikbaş 0000-0001-9096-2761

Kağan Kökten 0000-0001-5403-5629

Erken Görünüm Tarihi 15 Temmuz 2025
Yayımlanma Tarihi
Gönderilme Tarihi 2 Mayıs 2025
Kabul Tarihi 2 Haziran 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 4

Kaynak Göster

APA Uçar, S., Alım, Ş., Dikbaş, N., Kökten, K. (2025). Exploring the Potential of Bacillus amyloliquefaciens N33 in Biocontrol. Journal of Anatolian Environmental and Animal Sciences, 10(4), 360-365. https://doi.org/10.35229/jaes.1689328


13221            13345           13349              13352              13353              13354          13355    13356   13358   13359   13361     13363   13364                crossref1.png            
         Paperity.org                                  13369                                         EBSCOHost                                                        Scilit                                                    CABI   
JAES/AAS-Journal of Anatolian Environmental and Animal Sciences/Anatolian Academic Sciences&Anadolu Çevre ve Hayvancılık Dergisi/Anadolu Akademik Bilimler-AÇEH/AAS