Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 1 Sayı: 2, 31 - 37, 12.08.2025

Öz

Kaynakça

  • Saleh, T.A. (2020). Nanomaterials: classification, properties, and environmental toxicities. Environmental Technology & Innovation, 20, 101067. DOI: 10.1016/j.eti.2020.101067
  • Albanese, A., Tang, P.S., Chan, W.C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1–16. DOI: 10.1146/annurev-bioeng-071811-150124
  • Loos, M. (2015). Carbon Nanotube Reinforced Composites. Elsevier.
  • Sun, X., Zhang, Y., Chen, G., Gai, Z. (2017). Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress. Energies, 10(3), 345. DOI: 10.3390/en10030345
  • Muench, F. (2018). Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts. Catalysts, 8(12), 597. DOI: 10.3390/catal8120597
  • Burhan, H., et al. (2023). Highly Efficient Carbon Hybrid Supported Catalysts Using Nano –Architecture As Anode Catalysts For Direct Methanol Fuel Cells. International Journal of Hydrogen Energy, 48(17), 6657–6665. DOI: 10.1016/j.ijhydene.2021.12.141
  • Gleiter, H. (1989). Nanocrystalline materials. Progress in Materials Science, 33(4), 223-315. DOI: 10.1016/0079-6425(89)90001-7
  • Watanabe, H. (1986). The Physics and Fabrikation of Microstructures and Microdevices (edited by Kelly M. J. and Weisbuch C.). Springer-Verlag, Berlin, p. 158.
  • Inoshıta, T., Watanabe, H. (1987). Microclusters (edited by Sugano, S., Nishina, Y., Ohnishi, S.). Springer-Verlag, Tokyo, p. 281.
  • An, Y., et al. (2021). Dealloying: An Effective Method for Scalable Fabrication of 0D, 1D, 2D, 3D Materials and Its Application in Energy Storage. Nano Today, 37, 101094. DOI: 10.1016/j.nantod.2021.101094
  • Arenal, R., Lopez‐ Bezanilla, A. (2015). Boron Nitride Materials: An Overview From 0D to 3D Structures. Wires Computational Molecular Science, 5(4), 299–309. DOI: 10.1002/wcms.1219
  • Minoli, D. (2005). Nanotechnology applications to telecommunications and networking. 1st ed., John Wiley and Sons.
  • Hornyak, G.L., Tibbals, H.F., Dutta, J., Moore, J.J. (2009). Introduction to nanoscience and nanotechnology. Taylor and Francis, LLC.
  • Drexler, K. E. (1986). Engines of Creation: The Coming Era of Nanotechnology.
  • Surface Sciences., C. Bai Scanning Tunneling Microscopy and Its Applications, Second Revised Edition, Shanghai Scientific & Technical Publishers.
  • Eiger, D.M., Schweizer E. K. (1990). Positioning single atoms with a scanning tunneling microscope. Nature, 344, 524-526. DOI: 10.1038/344524a0
  • Collins, P.G., Avouris, P. (2000). Nanotubes for electronics. Scientific American, 62(283), 69. DOI: 10.1038/scientificamerican1200-62
  • Miller, J.C., Serrato, R.M., Represas-Cardenas, J.M., Kundahl, G. (2004). The handbook of nanotechnology business, policy, and intellectual property law. 1st ed., Wiley.
  • Madhumitha, G., Roopan, S.M. (2013). Devastated crops: Multifunctional efficacy for the production of nanoparticles. Journal of Nanomaterials, 1, 951858. DOI: 10.1155/2013/951858
  • Ijaz, I., Gilani, E., Nazir, A., Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 59–81. DOI: 10.1080/17518253.2020.1802517
  • Rothemund, P.W.K. (2006). Folding dna to create nanoscale shapes and patterns. Nature, 440, 297-302. DOI: 10.1038/nature04586
  • Hulla, J.E., Sahu, S.C., Hayes, A.W. (2015). Nanotechnology: History and future. Human & Experimental Toxicology, 34(12), 1318-1321. DOI: 10.1177/0960327115603588
  • Pagliaro, M. (2011). Nano-Age: How Nanotechnology Changes Our Future. John Wiley & Sons.
  • Alavi, M., Varma, R.S. (2021). Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellulose, 28, 8295–8311. DOI: 10.1007/s10570-021-04067-3
  • Singh, M., Thakur, V., Kumar, V., Raj, M., Gupta, S., Devi, N., Upadhyay, S.K., Macho, M., Banerjee, A., Ewe, D., Saurav, K. (2022). Silver nanoparticles and its mechanistic insight for chronic wound healing: review on recent progress. Molecules, 27(17), 5587. DOI: 10.3390/molecules27175587
  • Haidari, H., Garg, S., Vasilev, K., Kopecki, Z., Cowin, A.J. (2020). Silver-based wound dressings: current issues and future developments for treating bacterial infections. Wound Practice and Research, 28(4), 173-180. DOI: 10.33235/wpr.28.4.173-180
  • Roldo, M., Fatouros, D.G. (2013). Biomedical applications of carbon nanotubes. Annual Reports Section C-
  • Kesharwani, P., Ghanghoria R., Jain N. K. (2012). Carbon nanotube exploration in cancer cell lines. Drug Discovery Today, 17, 1023–1030. DOI: 10.1016/j.drudis.2012.05.003
  • Hosseini, S.M., Mohammadnejad, J., Salamat, S., Beiram Zadeh, Z., Tanhaei, M., Ramakrishna, S. (2023). Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Materials Today Chemistry, 29, 101400. DOI: 10.1016/J.MTCHEM.2023.101400
  • Yap, K.M., Sekar, M., Fuloria, S., Wu, Y.S., Gan, S.H., Mat Rani, N.N.I., Subramaniyan, V., Kokare, C., Lum, P.T., Begum, M.Y., Mani, S., Meenakshi, D.U., Sathasivam, K.V., Fuloria, N.K. (2021). Drug delivery of natural products through nanocarriers for effective breast cancer therapy: a comprehensive review of literature. International Journal of Nanomedicine, 16, 7891–7941. DOI: 10.2147/IJN.S328135
  • Das, S., Dey, M.K., Devireddy, R., Gartia, M.R. (2024). Biomarkers in cancer detection, diagnosis, and prognosis. Sensors, 24(1), 37. DOI: 10.3390/S24010037
  • Tiwari, H., et al. (2023). Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering, 10, 760. DOI: 10.3390/BIOENGINEERING10070760
  • Jingxuan, H. (2024). Nanomaterials in aerospace: Revolutionizing flight and exploration through nanoscale advancements. Applied and Computational Engineering, 60, 1-5. DOI: 10.54254/2755-2721/60/20240821
  • Tiwary, A., Kumar, R., Chohan, J.S. (2022). A review on characteristics of composite and advanced materials used for aerospace applications. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2021.06.276
  • Norkhairunnisa, M., Chai, Hua, T., Sapuan, S.M., Ilyas, R.A. (2022). Evolution of aerospace composite materials. In Advanced composites in aerospace engineering applications, (pp. 367- 385), Cham: Springer International Publishing. DOI: 10.1007/978-3-030-88192-4_18
  • Clarke, A.C. (1979). The Space Elevator: ‘Thought Experiment’, or Key to the Universe, Advanced Earth Oriented Applied Science Technology 1:39.
  • Edwards, B.C., Westling, E.A. (2002). The Space Elevator, San Jose: Spa geo.
  • Nathan, A., Ahnood, A., Cole, M. T., Lee, S., Suzuki, Y., Hiralal, P., Bonaccorso, F., Hasan, T., Garcia Gancedo, L., Dyadyusha, A. (2012). Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the IEEE, 100(13), 1486-1517.
  • Imazu, N., Fujigaya, T., Nakashima, N. (2014). Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes. Science & Technology of Advanced Materials, 15 (2), 025005. DOI: 10.1088/1468-6996/15/2/025005
  • An, S., Lee, J., Kim, Y., Kim, T., Jin, D., Min, H., Chung, H., Kim, S.S. (2010). 47.2: 2.8-Inch WQVGA flexible AMOLED using high performance low temperature polysilicon TFT on plastic substrates. In 48th Annual SID Symposium, Seminar, and Exhibition 2010, Display Week 2010; Blackwell Publishing Ltd.: Oxford, UK, Volume 41, pp. 706–709. DOI: 10.1889/1.3500566
  • Züttel, A., Sudan, P., Mauron, Ph., Kiyobayashi, T., Emmenegger, Ch., Schlapbach, L. (2002). Hydrogen storage in carbon nanostructures. International Journal of Hydrogen Energy, 27, 203–212. DOI: 10.1016/S0360-3199(01)00108-2
  • Schimmel, H.G., Kearley, G.J., Nijkamp, M.G., Visserl, C.T., Jong de, K.P., Mulder, F.M. (2003). Hydrogen adsorption in carbon nanostructures compared. Materials Science Engineering B, 108, 124–129. DOI: 10.1016/j.mseb.2003.10.091
  • Dresselhaus, M.S., Williams, K.A., Eklund, P.C. (1999). Hydrogen adsorption in carbon materials. MRS Bull, 24, 45–50. DOI: 10.1557/S0883769400053458
  • Aithal, P.S., Shubhrajyotsna, A. (2018). Nanotechnology based Innovations and Human Life Comfortability –Are we Marching towards Immortality. International Journal of Applied Engineering and Management Letters, 2(2), 71-86. DOI: 10.5281/zenodo.1451498
  • Aithal, P. S., Shubhrajyotsna, A. (2018). Study of various General-Purpose Technologies and their contribution towards developing Sustainable Society. International Journal of Management, Technology, and Social Sciences, 3(2), 16-33. DOI: 10.5281/zenodo.1409476
  • Pereira, C., Pereira, A.M., Freire, C., Pinto, T.V., Costa, R.S., Teixeira, J.S. (2020). Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. In: Handbook of Functionalized Nanomaterials for Industrial Applications, Mustansar Hussain, C., Ed. Elsevier, p. 611–714. DOI: 10.1016/b978-0-12-816787-8.00021-1
  • Chen, J., Zhan, Y., Wang Y., Han, D., Tao, B., Luo, Z., et al. (2018). Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomaterialia, 80, 154–168. DOI: 10.1016/j.actbio.2018.09.013
  • Yetişen, A.K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M.R., Hinestroza, J.P., Skorobogatiy, M., Khademhosseini, A., Yun, S.H. (2016). Nanotechnology in Textiles. ACS Nano, 10(3), 3042-3068. DOI: 10.1021/acsnano.5b08176
  • Saad, E.R. (2021). Applications of Nanotechnology in Production of Smart Sportswear. Journal of Architecture, Arts and Humanities, 2(1), 681-694. DOI: 10.21608/mjaf.2020.46501.1954
  • Harifi, T., Montazer, M. (2017). Application of Nanotechnology in Sports Clothing and Flooring for Enhanced Sports Activities, Performance, Efficiency and Comfort: A Review. Journal of Industrial Textiles, 46(5), 1147–1169. DOI: 10.1177/1528083715601512
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. DOI: 10.1038/354056a0
  • Kaushik, B.K., Majumder, M.K. (2015). Carbon nanotube based VLSI interconnects. Analysis and design, New Delhi: Springer India, pp. 1-14. DOI: 10.1007/978-81-322-2047-3_1
  • Singh, I., Rehni, A.K., Pradeep, K., Manoj, K., Hassan Y.A. (2009). Carbon Nanotubes: Synthesis, Properties and Pharmaceutical Applications. Fullerenes Nanotubes and Carbon Nanostructures, 361-377. DOI: 10.1080/15363830903008018
  • Lee, J., Kim, T., Jung, Y., Jung, K., Park, J., Lee, D.M., Kim, S.M. (2016). High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration, Nanoscale, 8(45), 18972-18979. DOI: 10.1039/C6NR06479E
  • Arunachalam, S., Gupta, A.A., Izquierdo, R., Nabki, F. (2018). Suspended carbon nanotubes for humidity sensing. Sensors, 18(5), 1655. DOI: 10.3390/s18051655
  • Xu, J.L., Dai, R.X., Xin, Y., Sun, Y.L., Li, X., Yu, Y.X., Ren, T.L. (2017). Efficient and reversible electron doping of semiconductor-enriched single-walled carbon nanotubes by using decamethylcobaltocene. Scientific Reports, 7(1):, 1-10. DOI: 10.1038/s41598-017-05967-w
  • Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, KH. (2018). Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 64, 219-253. DOI: 10.1016/j.pecs.2017.10.005 [58] Yu, MF., Files, BS., Arepalli, S., Ruoff, RS. (2000). Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters, 84(24), 5552. DOI: 10.1103/PhysRevLett.84.5552
  • Tostenson, E.T., Ren, Z.F., Chou, T.W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composite Science and Technology, 61. DOI: 10.1016/S0266-3538(01)00094-X
  • Krishnan, A., Shandilya, S., Gupta, P., Balu, H. (2020). A Review on Applications of Carbon Nanotubes in Automobiles. International Journal of Mechanical Engineering and Technology, 11, 204-210. DOI: 10.34218/IJMET.11.1.2020.018
  • Taub, A., Luo, A. (2015). Advanced lightweight materials and manufacturing processes for automotive applications. MRS Bulletin, 40, 1045-1054. DOI: 10.1557/mrs.2015.268
  • Danafar, F., Kalantari, M. (2018). A review of natural rubber nanocomposites based on carbon nanotubes. Journal of Rubber Research, 21, 293–310. DOI: 10.1007/bf03449176
  • Saifuddin, N., Raziah, AZ., Junizah, AR. (2013). Carbon nanotubes: a review on structure and their interaction with proteins. Journal of Chemistry, 676815. DOI: 10.1155/2013/676815
  • Amal, M. K. E., Mahmoud, M. F. (2007). Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design, 28, 2394-2401. DOI: 10.1016/j.matdes.2006.09.022
  • Civalek, Ö., Dastjerdi, S., Akbaş, Ş. D., Akgöz, B. (2021). Vibration analysis of carbon nanotube-reinforced composite microbeams. Mathematical Methods in the Applied Sciences, 1–17. DOI: 10.1002/mma.7069
  • Ke, L.L., Yang, J., Kitipornchai, S. (2010). Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Composite Structures, 92(3), 676-683. DOI: 10.1016/j.compstruct.2009.09.024
  • Yas, M.H., Heshmati, M. (2012). Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Applied Mathematical Modelling, 36(4), 1371-1394. DOI: 10.1016/j.apm.2011.08.037
  • Yas, M.H., Samadi, N. (2012). Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. International Journal of Pressure Vessels and Piping, 98, 119-128. DOI: 10.1016/j.ijpvp.2012.07.012
  • Uzun, B., Yaylı, M.Ö. (2024). Free Vibration of a Carbon Nanotube-Reinforced Nanowire/Nanobeam with Movable Ends. Journal of Vibration Engineering and Technology, 12, 6847–6863. DOI: 10.1007/s42417-024-01287-2
  • Wattanasakulpong, N., Ungbhakorn, V. (2013). Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Computational Materials Science, 71, 201-208. DOI: 10.1016/j.commatsci.2013.01.028
  • Ozdemir, O., Esen, I., Ural, H. (2023). Vibration response of rotating carbon nanotube reinforced composites in thermal environment. Steel and Composite Structures, 47, 1-17. DOI: 10.12989/scs.2023.47.1.001
  • Civalek, Ö., Akbaş, Ş. D., Akgöz, B., Dastjerdi, S. (2021). Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials, 11(3), 571. DOI: 10.3390/nano11030571
  • Akbas, S.D., Numanoglu, H.M., Akgöz, B., Civalek, Ö. (2022). Application of Newmark Average Acceleration and Ritz Methods ‎on Dynamical Analysis of Composite Beams under a Moving Load. Journal of Applied and Computational Mechanics, 8(2), 764-773. DOI: 10.22055/jacm.2022.39345.3393
  • Avcar, M., Hadji, L., Civalek, Ö. (2023). The influence of non-linear carbon nanotube reinforcement on the natural frequencies of composite beams, Advances in Nano Research, 14(5), 421-433. DOI: 10.12989/anr.2023.14.5.421
  • Amjad, A., Rahman, A.A.A., Awais, H., Zainol Abidin, M.S., Khan J. (2022). A review investigating the influence of nanofiller addition on the mechanical, thermal and water absorption properties of cellulosic fibre reinforced polymer composite. Journal of Industrial Textiles, 51(1), 65S-100S. DOI: 10.1177/15280837211057580
  • Kumar, Y.K., Lohchab, D.S. (2016). Influence of aviation fuel on mechanical properties of glass fiber-reinforced plastic composite. International Advanced Research Journal in Science, Engineering and Technology, 3(4), 58-65. DOI: 10.17148/IARJSET.2016.3413
  • Chawla, N., Chawla, K.K. (2006). Metal Matrix Composites. Springer, NY, USA. DOI: 10.1007/978-1-4614-9548-2
  • Safri, S., Sultan, M., Jawaid, M., Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: a review. Composites Part B-Engineering, 133, 112–121. DOI: 10.1016/j.compositesb.2017.09.008
  • Ekka, KK., Chauhan, SR. Varun. (2014). Dry sliding wear characteristics of SiC and Al2O3 nanoparticulate aluminium matrix composite using Taguchi technique. Arabian Journal for Science and Engineering, 40, 571–581. DOI: 10.1007/s13369-014-1528-2
  • Kok, M. (2005). Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology, 161, 381–387. DOI: 10.1016/j.jmatprotec.2004.07.068
  • Mistry, JM., Gohil, PP. (2018). Research review of diversified reinforcement on aluminium metal matrix composites: fabrication processes and mechanical characterization. Science and Engineering of Composite Materials, 25(4), 633-647. DOI: 10.1515/secm-2016-0278
  • Ruggles-Wrenn, M.B., Boucher N, Przybyla C. (2018). Fatigue of three advanced SiC/SiC ceramic matrix composites at 1200°C in air and in steam. International Journal of Applied Ceramic Technology, 15, 3-15. DOI: 10.1111/ijac.12773
  • Shrivastava, S., Rajak, D. K., Joshi, T., Singh D. K., Mondal, D. P. (2024). Ceramic Matrix Composites: Classifications, Manufacturing Properties and Applications. Ceramics, 7(2), 652-679. DOI:
  • Nagaraj, N., Balasubramaniam, S., Venkataraman, V., Manickam, R., Nagarajan, R., Sikiru Oluwarotimi, I. (2020). Effect of cellulosic filler loading on mechanical and thermal properties of date palm seed/vinyl ester composites. International Journal of Biological Macromolecules, 147, 53–66. DOI: 10.1016/j.ijbiomac.2019.11.247
  • Shiva Kumar, K., Chennakesava Reddy, A. (2020). Investigation on mechanical properties and wear performance of Nylon-6/Boron Nitride polymer composites by using Taguchi Technique. Results in Materials, 5, 100070. DOI: 10.1016/j.rinma.2020.100070
  • Al-Oqla, F.M., Sapuan, S.M. (2014). Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, 347–354. DOI: 10.1016/j.jclepro.2013.10.050
  • Dalmis, R., Köktaş, S., Seki, Y., Kılınç, A.Ç. (2020). Characterization of a new natural cellulosebased fiber from Hierochloe Odarata. Cellulose, 27, 127–139. DOI: 10.1007/s10570-019-02779-1
  • Ravichandran, M., Balasubramanian, M., Chairman, CA., Pritima, D., Dhinakaran, V., Stalin, B. (2020). Recent developments in polymer matrix composites–a review. IOP Conference Series: Materials Science and Engineering, 988(1), 012096. DOI: 10.1088/1757-899X/988/1/012096

A brief review on carbon nanotube-reinforced composites

Yıl 2025, Cilt: 1 Sayı: 2, 31 - 37, 12.08.2025

Öz

With the development of technology, scientists can now process atoms at the atomic scale. This
enabled the development of nanotechnology. The development of nanotechnology has led to the
production of some superior materials at micro and nano scales. Carbon nanotubes are an
indispensable product for composite materials due to their high thermal properties, high
electrical properties and high mechanical properties. Carbon nanotube-reinforced composites,
which find their place in many areas such as engineering structures, the aerospace industry,
medicine, and military applications, are a material that provides convenience for humanity. The
developing world contributes to the development of humanity with its constant innovation and
new discoveries every day. In this study, the properties of carbon nanotube reinforced
composites, their areas of use, and their contributions to humans and the future were examined.

Kaynakça

  • Saleh, T.A. (2020). Nanomaterials: classification, properties, and environmental toxicities. Environmental Technology & Innovation, 20, 101067. DOI: 10.1016/j.eti.2020.101067
  • Albanese, A., Tang, P.S., Chan, W.C. (2012). The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annual Review of Biomedical Engineering, 14, 1–16. DOI: 10.1146/annurev-bioeng-071811-150124
  • Loos, M. (2015). Carbon Nanotube Reinforced Composites. Elsevier.
  • Sun, X., Zhang, Y., Chen, G., Gai, Z. (2017). Application of Nanoparticles in Enhanced Oil Recovery: A Critical Review of Recent Progress. Energies, 10(3), 345. DOI: 10.3390/en10030345
  • Muench, F. (2018). Metal Nanotube/Nanowire-Based Unsupported Network Electrocatalysts. Catalysts, 8(12), 597. DOI: 10.3390/catal8120597
  • Burhan, H., et al. (2023). Highly Efficient Carbon Hybrid Supported Catalysts Using Nano –Architecture As Anode Catalysts For Direct Methanol Fuel Cells. International Journal of Hydrogen Energy, 48(17), 6657–6665. DOI: 10.1016/j.ijhydene.2021.12.141
  • Gleiter, H. (1989). Nanocrystalline materials. Progress in Materials Science, 33(4), 223-315. DOI: 10.1016/0079-6425(89)90001-7
  • Watanabe, H. (1986). The Physics and Fabrikation of Microstructures and Microdevices (edited by Kelly M. J. and Weisbuch C.). Springer-Verlag, Berlin, p. 158.
  • Inoshıta, T., Watanabe, H. (1987). Microclusters (edited by Sugano, S., Nishina, Y., Ohnishi, S.). Springer-Verlag, Tokyo, p. 281.
  • An, Y., et al. (2021). Dealloying: An Effective Method for Scalable Fabrication of 0D, 1D, 2D, 3D Materials and Its Application in Energy Storage. Nano Today, 37, 101094. DOI: 10.1016/j.nantod.2021.101094
  • Arenal, R., Lopez‐ Bezanilla, A. (2015). Boron Nitride Materials: An Overview From 0D to 3D Structures. Wires Computational Molecular Science, 5(4), 299–309. DOI: 10.1002/wcms.1219
  • Minoli, D. (2005). Nanotechnology applications to telecommunications and networking. 1st ed., John Wiley and Sons.
  • Hornyak, G.L., Tibbals, H.F., Dutta, J., Moore, J.J. (2009). Introduction to nanoscience and nanotechnology. Taylor and Francis, LLC.
  • Drexler, K. E. (1986). Engines of Creation: The Coming Era of Nanotechnology.
  • Surface Sciences., C. Bai Scanning Tunneling Microscopy and Its Applications, Second Revised Edition, Shanghai Scientific & Technical Publishers.
  • Eiger, D.M., Schweizer E. K. (1990). Positioning single atoms with a scanning tunneling microscope. Nature, 344, 524-526. DOI: 10.1038/344524a0
  • Collins, P.G., Avouris, P. (2000). Nanotubes for electronics. Scientific American, 62(283), 69. DOI: 10.1038/scientificamerican1200-62
  • Miller, J.C., Serrato, R.M., Represas-Cardenas, J.M., Kundahl, G. (2004). The handbook of nanotechnology business, policy, and intellectual property law. 1st ed., Wiley.
  • Madhumitha, G., Roopan, S.M. (2013). Devastated crops: Multifunctional efficacy for the production of nanoparticles. Journal of Nanomaterials, 1, 951858. DOI: 10.1155/2013/951858
  • Ijaz, I., Gilani, E., Nazir, A., Bukhari, A. (2020). Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews, 13(3), 59–81. DOI: 10.1080/17518253.2020.1802517
  • Rothemund, P.W.K. (2006). Folding dna to create nanoscale shapes and patterns. Nature, 440, 297-302. DOI: 10.1038/nature04586
  • Hulla, J.E., Sahu, S.C., Hayes, A.W. (2015). Nanotechnology: History and future. Human & Experimental Toxicology, 34(12), 1318-1321. DOI: 10.1177/0960327115603588
  • Pagliaro, M. (2011). Nano-Age: How Nanotechnology Changes Our Future. John Wiley & Sons.
  • Alavi, M., Varma, R.S. (2021). Antibacterial and wound healing activities of silver nanoparticles embedded in cellulose compared to other polysaccharides and protein polymers. Cellulose, 28, 8295–8311. DOI: 10.1007/s10570-021-04067-3
  • Singh, M., Thakur, V., Kumar, V., Raj, M., Gupta, S., Devi, N., Upadhyay, S.K., Macho, M., Banerjee, A., Ewe, D., Saurav, K. (2022). Silver nanoparticles and its mechanistic insight for chronic wound healing: review on recent progress. Molecules, 27(17), 5587. DOI: 10.3390/molecules27175587
  • Haidari, H., Garg, S., Vasilev, K., Kopecki, Z., Cowin, A.J. (2020). Silver-based wound dressings: current issues and future developments for treating bacterial infections. Wound Practice and Research, 28(4), 173-180. DOI: 10.33235/wpr.28.4.173-180
  • Roldo, M., Fatouros, D.G. (2013). Biomedical applications of carbon nanotubes. Annual Reports Section C-
  • Kesharwani, P., Ghanghoria R., Jain N. K. (2012). Carbon nanotube exploration in cancer cell lines. Drug Discovery Today, 17, 1023–1030. DOI: 10.1016/j.drudis.2012.05.003
  • Hosseini, S.M., Mohammadnejad, J., Salamat, S., Beiram Zadeh, Z., Tanhaei, M., Ramakrishna, S. (2023). Theranostic polymeric nanoparticles as a new approach in cancer therapy and diagnosis: a review. Materials Today Chemistry, 29, 101400. DOI: 10.1016/J.MTCHEM.2023.101400
  • Yap, K.M., Sekar, M., Fuloria, S., Wu, Y.S., Gan, S.H., Mat Rani, N.N.I., Subramaniyan, V., Kokare, C., Lum, P.T., Begum, M.Y., Mani, S., Meenakshi, D.U., Sathasivam, K.V., Fuloria, N.K. (2021). Drug delivery of natural products through nanocarriers for effective breast cancer therapy: a comprehensive review of literature. International Journal of Nanomedicine, 16, 7891–7941. DOI: 10.2147/IJN.S328135
  • Das, S., Dey, M.K., Devireddy, R., Gartia, M.R. (2024). Biomarkers in cancer detection, diagnosis, and prognosis. Sensors, 24(1), 37. DOI: 10.3390/S24010037
  • Tiwari, H., et al. (2023). Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering, 10, 760. DOI: 10.3390/BIOENGINEERING10070760
  • Jingxuan, H. (2024). Nanomaterials in aerospace: Revolutionizing flight and exploration through nanoscale advancements. Applied and Computational Engineering, 60, 1-5. DOI: 10.54254/2755-2721/60/20240821
  • Tiwary, A., Kumar, R., Chohan, J.S. (2022). A review on characteristics of composite and advanced materials used for aerospace applications. Materials Today: Proceedings. DOI: 10.1016/j.matpr.2021.06.276
  • Norkhairunnisa, M., Chai, Hua, T., Sapuan, S.M., Ilyas, R.A. (2022). Evolution of aerospace composite materials. In Advanced composites in aerospace engineering applications, (pp. 367- 385), Cham: Springer International Publishing. DOI: 10.1007/978-3-030-88192-4_18
  • Clarke, A.C. (1979). The Space Elevator: ‘Thought Experiment’, or Key to the Universe, Advanced Earth Oriented Applied Science Technology 1:39.
  • Edwards, B.C., Westling, E.A. (2002). The Space Elevator, San Jose: Spa geo.
  • Nathan, A., Ahnood, A., Cole, M. T., Lee, S., Suzuki, Y., Hiralal, P., Bonaccorso, F., Hasan, T., Garcia Gancedo, L., Dyadyusha, A. (2012). Flexible Electronics: The Next Ubiquitous Platform. Proceedings of the IEEE, 100(13), 1486-1517.
  • Imazu, N., Fujigaya, T., Nakashima, N. (2014). Fabrication of flexible transparent conductive films from long double-walled carbon nanotubes. Science & Technology of Advanced Materials, 15 (2), 025005. DOI: 10.1088/1468-6996/15/2/025005
  • An, S., Lee, J., Kim, Y., Kim, T., Jin, D., Min, H., Chung, H., Kim, S.S. (2010). 47.2: 2.8-Inch WQVGA flexible AMOLED using high performance low temperature polysilicon TFT on plastic substrates. In 48th Annual SID Symposium, Seminar, and Exhibition 2010, Display Week 2010; Blackwell Publishing Ltd.: Oxford, UK, Volume 41, pp. 706–709. DOI: 10.1889/1.3500566
  • Züttel, A., Sudan, P., Mauron, Ph., Kiyobayashi, T., Emmenegger, Ch., Schlapbach, L. (2002). Hydrogen storage in carbon nanostructures. International Journal of Hydrogen Energy, 27, 203–212. DOI: 10.1016/S0360-3199(01)00108-2
  • Schimmel, H.G., Kearley, G.J., Nijkamp, M.G., Visserl, C.T., Jong de, K.P., Mulder, F.M. (2003). Hydrogen adsorption in carbon nanostructures compared. Materials Science Engineering B, 108, 124–129. DOI: 10.1016/j.mseb.2003.10.091
  • Dresselhaus, M.S., Williams, K.A., Eklund, P.C. (1999). Hydrogen adsorption in carbon materials. MRS Bull, 24, 45–50. DOI: 10.1557/S0883769400053458
  • Aithal, P.S., Shubhrajyotsna, A. (2018). Nanotechnology based Innovations and Human Life Comfortability –Are we Marching towards Immortality. International Journal of Applied Engineering and Management Letters, 2(2), 71-86. DOI: 10.5281/zenodo.1451498
  • Aithal, P. S., Shubhrajyotsna, A. (2018). Study of various General-Purpose Technologies and their contribution towards developing Sustainable Society. International Journal of Management, Technology, and Social Sciences, 3(2), 16-33. DOI: 10.5281/zenodo.1409476
  • Pereira, C., Pereira, A.M., Freire, C., Pinto, T.V., Costa, R.S., Teixeira, J.S. (2020). Nanoengineered textiles: from advanced functional nanomaterials to groundbreaking high-performance clothing. In: Handbook of Functionalized Nanomaterials for Industrial Applications, Mustansar Hussain, C., Ed. Elsevier, p. 611–714. DOI: 10.1016/b978-0-12-816787-8.00021-1
  • Chen, J., Zhan, Y., Wang Y., Han, D., Tao, B., Luo, Z., et al. (2018). Chitosan/silk fibroin modified nanofibrous patches with mesenchymal stem cells prevent heart remodeling post-myocardial infarction in rats. Acta Biomaterialia, 80, 154–168. DOI: 10.1016/j.actbio.2018.09.013
  • Yetişen, A.K., Qu, H., Manbachi, A., Butt, H., Dokmeci, M.R., Hinestroza, J.P., Skorobogatiy, M., Khademhosseini, A., Yun, S.H. (2016). Nanotechnology in Textiles. ACS Nano, 10(3), 3042-3068. DOI: 10.1021/acsnano.5b08176
  • Saad, E.R. (2021). Applications of Nanotechnology in Production of Smart Sportswear. Journal of Architecture, Arts and Humanities, 2(1), 681-694. DOI: 10.21608/mjaf.2020.46501.1954
  • Harifi, T., Montazer, M. (2017). Application of Nanotechnology in Sports Clothing and Flooring for Enhanced Sports Activities, Performance, Efficiency and Comfort: A Review. Journal of Industrial Textiles, 46(5), 1147–1169. DOI: 10.1177/1528083715601512
  • Iijima, S. (1991). Helical microtubules of graphitic carbon. Nature, 354, 56-58. DOI: 10.1038/354056a0
  • Kaushik, B.K., Majumder, M.K. (2015). Carbon nanotube based VLSI interconnects. Analysis and design, New Delhi: Springer India, pp. 1-14. DOI: 10.1007/978-81-322-2047-3_1
  • Singh, I., Rehni, A.K., Pradeep, K., Manoj, K., Hassan Y.A. (2009). Carbon Nanotubes: Synthesis, Properties and Pharmaceutical Applications. Fullerenes Nanotubes and Carbon Nanostructures, 361-377. DOI: 10.1080/15363830903008018
  • Lee, J., Kim, T., Jung, Y., Jung, K., Park, J., Lee, D.M., Kim, S.M. (2016). High-strength carbon nanotube/carbon composite fibers via chemical vapor infiltration, Nanoscale, 8(45), 18972-18979. DOI: 10.1039/C6NR06479E
  • Arunachalam, S., Gupta, A.A., Izquierdo, R., Nabki, F. (2018). Suspended carbon nanotubes for humidity sensing. Sensors, 18(5), 1655. DOI: 10.3390/s18051655
  • Xu, J.L., Dai, R.X., Xin, Y., Sun, Y.L., Li, X., Yu, Y.X., Ren, T.L. (2017). Efficient and reversible electron doping of semiconductor-enriched single-walled carbon nanotubes by using decamethylcobaltocene. Scientific Reports, 7(1):, 1-10. DOI: 10.1038/s41598-017-05967-w
  • Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N., Tankeshwar, K., Kim, KH. (2018). Carbon nanotubes: A potential material for energy conversion and storage. Progress in Energy and Combustion Science, 64, 219-253. DOI: 10.1016/j.pecs.2017.10.005 [58] Yu, MF., Files, BS., Arepalli, S., Ruoff, RS. (2000). Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Physical Review Letters, 84(24), 5552. DOI: 10.1103/PhysRevLett.84.5552
  • Tostenson, E.T., Ren, Z.F., Chou, T.W. (2001). Advances in the science and technology of carbon nanotubes and their composites: a review. Composite Science and Technology, 61. DOI: 10.1016/S0266-3538(01)00094-X
  • Krishnan, A., Shandilya, S., Gupta, P., Balu, H. (2020). A Review on Applications of Carbon Nanotubes in Automobiles. International Journal of Mechanical Engineering and Technology, 11, 204-210. DOI: 10.34218/IJMET.11.1.2020.018
  • Taub, A., Luo, A. (2015). Advanced lightweight materials and manufacturing processes for automotive applications. MRS Bulletin, 40, 1045-1054. DOI: 10.1557/mrs.2015.268
  • Danafar, F., Kalantari, M. (2018). A review of natural rubber nanocomposites based on carbon nanotubes. Journal of Rubber Research, 21, 293–310. DOI: 10.1007/bf03449176
  • Saifuddin, N., Raziah, AZ., Junizah, AR. (2013). Carbon nanotubes: a review on structure and their interaction with proteins. Journal of Chemistry, 676815. DOI: 10.1155/2013/676815
  • Amal, M. K. E., Mahmoud, M. F. (2007). Carbon nanotube reinforced composites: Potential and current challenges. Materials & Design, 28, 2394-2401. DOI: 10.1016/j.matdes.2006.09.022
  • Civalek, Ö., Dastjerdi, S., Akbaş, Ş. D., Akgöz, B. (2021). Vibration analysis of carbon nanotube-reinforced composite microbeams. Mathematical Methods in the Applied Sciences, 1–17. DOI: 10.1002/mma.7069
  • Ke, L.L., Yang, J., Kitipornchai, S. (2010). Nonlinear free vibration of functionally graded carbon nanotube-reinforced composite beams. Composite Structures, 92(3), 676-683. DOI: 10.1016/j.compstruct.2009.09.024
  • Yas, M.H., Heshmati, M. (2012). Dynamic analysis of functionally graded nanocomposite beams reinforced by randomly oriented carbon nanotube under the action of moving load. Applied Mathematical Modelling, 36(4), 1371-1394. DOI: 10.1016/j.apm.2011.08.037
  • Yas, M.H., Samadi, N. (2012). Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. International Journal of Pressure Vessels and Piping, 98, 119-128. DOI: 10.1016/j.ijpvp.2012.07.012
  • Uzun, B., Yaylı, M.Ö. (2024). Free Vibration of a Carbon Nanotube-Reinforced Nanowire/Nanobeam with Movable Ends. Journal of Vibration Engineering and Technology, 12, 6847–6863. DOI: 10.1007/s42417-024-01287-2
  • Wattanasakulpong, N., Ungbhakorn, V. (2013). Analytical solutions for bending, buckling and vibration responses of carbon nanotube-reinforced composite beams resting on elastic foundation. Computational Materials Science, 71, 201-208. DOI: 10.1016/j.commatsci.2013.01.028
  • Ozdemir, O., Esen, I., Ural, H. (2023). Vibration response of rotating carbon nanotube reinforced composites in thermal environment. Steel and Composite Structures, 47, 1-17. DOI: 10.12989/scs.2023.47.1.001
  • Civalek, Ö., Akbaş, Ş. D., Akgöz, B., Dastjerdi, S. (2021). Forced Vibration Analysis of Composite Beams Reinforced by Carbon Nanotubes. Nanomaterials, 11(3), 571. DOI: 10.3390/nano11030571
  • Akbas, S.D., Numanoglu, H.M., Akgöz, B., Civalek, Ö. (2022). Application of Newmark Average Acceleration and Ritz Methods ‎on Dynamical Analysis of Composite Beams under a Moving Load. Journal of Applied and Computational Mechanics, 8(2), 764-773. DOI: 10.22055/jacm.2022.39345.3393
  • Avcar, M., Hadji, L., Civalek, Ö. (2023). The influence of non-linear carbon nanotube reinforcement on the natural frequencies of composite beams, Advances in Nano Research, 14(5), 421-433. DOI: 10.12989/anr.2023.14.5.421
  • Amjad, A., Rahman, A.A.A., Awais, H., Zainol Abidin, M.S., Khan J. (2022). A review investigating the influence of nanofiller addition on the mechanical, thermal and water absorption properties of cellulosic fibre reinforced polymer composite. Journal of Industrial Textiles, 51(1), 65S-100S. DOI: 10.1177/15280837211057580
  • Kumar, Y.K., Lohchab, D.S. (2016). Influence of aviation fuel on mechanical properties of glass fiber-reinforced plastic composite. International Advanced Research Journal in Science, Engineering and Technology, 3(4), 58-65. DOI: 10.17148/IARJSET.2016.3413
  • Chawla, N., Chawla, K.K. (2006). Metal Matrix Composites. Springer, NY, USA. DOI: 10.1007/978-1-4614-9548-2
  • Safri, S., Sultan, M., Jawaid, M., Jayakrishna, K. (2018). Impact behaviour of hybrid composites for structural applications: a review. Composites Part B-Engineering, 133, 112–121. DOI: 10.1016/j.compositesb.2017.09.008
  • Ekka, KK., Chauhan, SR. Varun. (2014). Dry sliding wear characteristics of SiC and Al2O3 nanoparticulate aluminium matrix composite using Taguchi technique. Arabian Journal for Science and Engineering, 40, 571–581. DOI: 10.1007/s13369-014-1528-2
  • Kok, M. (2005). Production and mechanical properties of Al2O3 particle-reinforced 2024 aluminium alloy composites. Journal of Materials Processing Technology, 161, 381–387. DOI: 10.1016/j.jmatprotec.2004.07.068
  • Mistry, JM., Gohil, PP. (2018). Research review of diversified reinforcement on aluminium metal matrix composites: fabrication processes and mechanical characterization. Science and Engineering of Composite Materials, 25(4), 633-647. DOI: 10.1515/secm-2016-0278
  • Ruggles-Wrenn, M.B., Boucher N, Przybyla C. (2018). Fatigue of three advanced SiC/SiC ceramic matrix composites at 1200°C in air and in steam. International Journal of Applied Ceramic Technology, 15, 3-15. DOI: 10.1111/ijac.12773
  • Shrivastava, S., Rajak, D. K., Joshi, T., Singh D. K., Mondal, D. P. (2024). Ceramic Matrix Composites: Classifications, Manufacturing Properties and Applications. Ceramics, 7(2), 652-679. DOI:
  • Nagaraj, N., Balasubramaniam, S., Venkataraman, V., Manickam, R., Nagarajan, R., Sikiru Oluwarotimi, I. (2020). Effect of cellulosic filler loading on mechanical and thermal properties of date palm seed/vinyl ester composites. International Journal of Biological Macromolecules, 147, 53–66. DOI: 10.1016/j.ijbiomac.2019.11.247
  • Shiva Kumar, K., Chennakesava Reddy, A. (2020). Investigation on mechanical properties and wear performance of Nylon-6/Boron Nitride polymer composites by using Taguchi Technique. Results in Materials, 5, 100070. DOI: 10.1016/j.rinma.2020.100070
  • Al-Oqla, F.M., Sapuan, S.M. (2014). Natural fiber reinforced polymer composites in industrial applications: Feasibility of date palm fibers for sustainable automotive industry. Journal of Cleaner Production, 66, 347–354. DOI: 10.1016/j.jclepro.2013.10.050
  • Dalmis, R., Köktaş, S., Seki, Y., Kılınç, A.Ç. (2020). Characterization of a new natural cellulosebased fiber from Hierochloe Odarata. Cellulose, 27, 127–139. DOI: 10.1007/s10570-019-02779-1
  • Ravichandran, M., Balasubramanian, M., Chairman, CA., Pritima, D., Dhinakaran, V., Stalin, B. (2020). Recent developments in polymer matrix composites–a review. IOP Conference Series: Materials Science and Engineering, 988(1), 012096. DOI: 10.1088/1757-899X/988/1/012096
Toplam 87 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kompozit ve Hibrit Malzemeler
Bölüm Research Article
Yazarlar

Levent Turan 0000-0002-2414-5242

Bekir Akgöz 0000-0003-2097-2555

Yayımlanma Tarihi 12 Ağustos 2025
Gönderilme Tarihi 4 Şubat 2025
Kabul Tarihi 12 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 1 Sayı: 2

Kaynak Göster

APA Turan, L., & Akgöz, B. (2025). A brief review on carbon nanotube-reinforced composites. Journal of Ceramics and Composites, 1(2), 31-37.