Yıl 2025,
Cilt: 1 Sayı: 2, 1 - 10, 12.08.2025
Lazreg Hadji
,
Nafissa Zouatnia
Burak İkinci
Kaynakça
- Koizumi, M. (1993). The concept of FGM. Ceramic Transactions, Functionally Gradient Materials, 34(1), 3–10.
- Suresh, S. & Mortensen, A. (1998). Fundamentals of Functionally Graded Materials, IOM Communications, London.
- Koizumi, M. (1997). FGM activities in Japan. Composite Part B: Engineering, 28(1-2), 1–4. DOI: 10.1016/S1359-8368(96)00016-9
- Suresh, S. & Mortensen, A. (1997). Functionally graded metals and metal ceramic composites 2: thermomechanical behaviour. International Materials Reviews., 42(3), 85–116. DOI: 10.1179/imr.1997.42.3.85
- Tanigawa, Y. (1995), Some basic thermoelastic problems for nonhomogeneous structural materials. Applied. Mechanice Reviews, 48(6), 287–300.
- Cheng, Z. Q. & Batra, R. C. (2000), Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates. Journal of Sound and Vibration, 229(4), 879–895. DOI: 10.1006/jsvi.1999.2525
- Reddy, J. N. (2000). Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 47(1-3), 663–684.
- Praveen, G. V. & Reddy, J. N. (1998). Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 35(33), 4457–4476. DOI:.1016/S0020-7683(97)00253-9
- Pan, E. & Han, F. (2005). Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science, 43(3-4), 321–339. DOI: 10.1016/j.ijengsci.2004.09.006
- Zhu, J., Lai, Z., Yin, Z., Jeon, J., & Lee, S. (2001), Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys. 68, 130–135. DOI: 10.1016/S0254-0584(00)00355-2
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W., & Hoffman, M.: (2012), Free vibration analysis of layered functionally graded beams with experimental validation. Mater. Des., 36, 182–190. DOI: 10.1016/j.matdes.2011.10.049
- Wattanasakulpong, N., Ungbhakorn, V. (2014). Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology, 32(1), 111–120. DOI: 10.1016/j.ast.2013.12.002.
- Ould Larbi, L., Saad, M., Zouatnia, N., Hadji, L., & Sayyad, A. S. (2024). A simple refined plate theory for buckling problems of in-plane bi-directional functionally graded plates with porosity under various boundary conditions. Mechanics of Advanced Materials and Structures, 1–10. DOI: 10.1080/15376494.2024.2346946.
- Draouche, K., Ait Amar Meziane, M., Hadji, L., Ait Atmane, H., Bennai, R., & Madan, R. (2024). Effect of porosity and boundary conditions on dynamic characteristics of cracked plates made of functionally graded materials. Advances in Concrete Construction, 18(3), 2024, 175-190. DOI: 10.12989/acc.2024.18.3.175.
- Ait Atmane, H., Tounsi, A. & Bernard, F. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int J Mech Mater Des, 13, 71–84 (2017). DOI: 10.1007/s10999-015-9318-x.
- Ould Larbi, L., Saad, M., Zouatnia, N., Hadji, L., & Sayyad, A. S. (2024). A simple refined plate theory for buckling problems of in-plane bi-directional functionally graded plates with porosity under various boundary conditions. Mechanics of Advanced Materials and Structures, 32(3), 403–412. DOI: 10.1080/15376494.2024.2346946.
- Nebab, M., Dahmane, M., Belqassim, A., Atmane, H. A., Bernard, F., Benadouda, & M., Hadji, L. (2023). Fundamental frequencies of cracked FGM beams with influence of porosity and Winkler/Pasternak/Kerr foundation support using a new quasi-3D HSDT. Mechanics of Advanced Materials and Structures, 31(28), 10639–10651. DOI: 10.1080/15376494.2023.2294371
- Daikh, A.A. & Zenkour, A.M. (2019). Effect of porosity on the bending analysis of various functionally graded sandwich plates. Mater. Res. Express, 6, 065703. DOI: 10.1088/2053-1591/ab0971
- Hadji, L., Ait Atmane, H., Tounsi, A., Mechab, I., & Adda Bedia, E.A. (2011), Free vibration of functionally graded sandwich plates using four-variable refined plate theory, Appl. Math. Mech. -Engl. Ed., 32(7), 925–942 (2011). DOI: 10.1007/s10483-011-1470-9.
- Zenkour, A. M. (2005). A comprehensive analysis of functionally graded sandwich plates: Part 2—Buckling and free vibration. International Journal of Solids and Structures, 42(18-19), 5243-5258. DOI: 10.1016/j.ijsolstr.2005.02.016.
- Daikh, A. A., & Zenkour, A. M. (2019). Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Materials Research Express, 6(11), 115707. DOI: 10.1088/2053-1591/ab48a9
Buckling analysis of porous power-law and sigmoid functionally graded sandwich plates
Yıl 2025,
Cilt: 1 Sayı: 2, 1 - 10, 12.08.2025
Lazreg Hadji
,
Nafissa Zouatnia
Burak İkinci
Öz
In this study, an advanced shear deformation plate theory is proposed to analyze the buckling behaviour of functionally graded sandwich plates. A novel definition of porosity distribution which accounts for both material composition and sandwich plate architecture, is included. The material properties of the functionally graded material layers are assumed to vary continuously through the plate thickness, described by either a power-law or sigmoid function based on the volume fractions of materials. The core is a homogeneous ceramic layer, while the outer layers on both sides are considered functionally graded across thickness. The virtual displacement principle is used to formulate the governing equations. The Navier method is utilized to derive a closed-form solution for a simply supported rectangular plate. Numerical results are provided to demonstrate the influence of material distribution, sandwich plate geometry, and porosity on the buckling loads of FG sandwich plates. The proposed theory is compared with results from previous studies to validate the accuracy and reliability. The proposed theory is accurate and simple in solving the buckling behavior of porous power-law and sigmoid functionally graded sandwich plates FGM plates.
Kaynakça
- Koizumi, M. (1993). The concept of FGM. Ceramic Transactions, Functionally Gradient Materials, 34(1), 3–10.
- Suresh, S. & Mortensen, A. (1998). Fundamentals of Functionally Graded Materials, IOM Communications, London.
- Koizumi, M. (1997). FGM activities in Japan. Composite Part B: Engineering, 28(1-2), 1–4. DOI: 10.1016/S1359-8368(96)00016-9
- Suresh, S. & Mortensen, A. (1997). Functionally graded metals and metal ceramic composites 2: thermomechanical behaviour. International Materials Reviews., 42(3), 85–116. DOI: 10.1179/imr.1997.42.3.85
- Tanigawa, Y. (1995), Some basic thermoelastic problems for nonhomogeneous structural materials. Applied. Mechanice Reviews, 48(6), 287–300.
- Cheng, Z. Q. & Batra, R. C. (2000), Exact correspondence between eigenvalues of membranes and functionally graded simply supported polygonal plates. Journal of Sound and Vibration, 229(4), 879–895. DOI: 10.1006/jsvi.1999.2525
- Reddy, J. N. (2000). Analysis of functionally graded plates. International Journal for Numerical Methods in Engineering, 47(1-3), 663–684.
- Praveen, G. V. & Reddy, J. N. (1998). Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates. International Journal of Solids and Structures, 35(33), 4457–4476. DOI:.1016/S0020-7683(97)00253-9
- Pan, E. & Han, F. (2005). Exact solution for functionally graded and layered magneto-electro-elastic plates. International Journal of Engineering Science, 43(3-4), 321–339. DOI: 10.1016/j.ijengsci.2004.09.006
- Zhu, J., Lai, Z., Yin, Z., Jeon, J., & Lee, S. (2001), Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Mater. Chem. Phys. 68, 130–135. DOI: 10.1016/S0254-0584(00)00355-2
- Wattanasakulpong, N., Prusty, B.G., Kelly, D.W., & Hoffman, M.: (2012), Free vibration analysis of layered functionally graded beams with experimental validation. Mater. Des., 36, 182–190. DOI: 10.1016/j.matdes.2011.10.049
- Wattanasakulpong, N., Ungbhakorn, V. (2014). Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities. Aerospace Science and Technology, 32(1), 111–120. DOI: 10.1016/j.ast.2013.12.002.
- Ould Larbi, L., Saad, M., Zouatnia, N., Hadji, L., & Sayyad, A. S. (2024). A simple refined plate theory for buckling problems of in-plane bi-directional functionally graded plates with porosity under various boundary conditions. Mechanics of Advanced Materials and Structures, 1–10. DOI: 10.1080/15376494.2024.2346946.
- Draouche, K., Ait Amar Meziane, M., Hadji, L., Ait Atmane, H., Bennai, R., & Madan, R. (2024). Effect of porosity and boundary conditions on dynamic characteristics of cracked plates made of functionally graded materials. Advances in Concrete Construction, 18(3), 2024, 175-190. DOI: 10.12989/acc.2024.18.3.175.
- Ait Atmane, H., Tounsi, A. & Bernard, F. Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations. Int J Mech Mater Des, 13, 71–84 (2017). DOI: 10.1007/s10999-015-9318-x.
- Ould Larbi, L., Saad, M., Zouatnia, N., Hadji, L., & Sayyad, A. S. (2024). A simple refined plate theory for buckling problems of in-plane bi-directional functionally graded plates with porosity under various boundary conditions. Mechanics of Advanced Materials and Structures, 32(3), 403–412. DOI: 10.1080/15376494.2024.2346946.
- Nebab, M., Dahmane, M., Belqassim, A., Atmane, H. A., Bernard, F., Benadouda, & M., Hadji, L. (2023). Fundamental frequencies of cracked FGM beams with influence of porosity and Winkler/Pasternak/Kerr foundation support using a new quasi-3D HSDT. Mechanics of Advanced Materials and Structures, 31(28), 10639–10651. DOI: 10.1080/15376494.2023.2294371
- Daikh, A.A. & Zenkour, A.M. (2019). Effect of porosity on the bending analysis of various functionally graded sandwich plates. Mater. Res. Express, 6, 065703. DOI: 10.1088/2053-1591/ab0971
- Hadji, L., Ait Atmane, H., Tounsi, A., Mechab, I., & Adda Bedia, E.A. (2011), Free vibration of functionally graded sandwich plates using four-variable refined plate theory, Appl. Math. Mech. -Engl. Ed., 32(7), 925–942 (2011). DOI: 10.1007/s10483-011-1470-9.
- Zenkour, A. M. (2005). A comprehensive analysis of functionally graded sandwich plates: Part 2—Buckling and free vibration. International Journal of Solids and Structures, 42(18-19), 5243-5258. DOI: 10.1016/j.ijsolstr.2005.02.016.
- Daikh, A. A., & Zenkour, A. M. (2019). Free vibration and buckling of porous power-law and sigmoid functionally graded sandwich plates using a simple higher-order shear deformation theory. Materials Research Express, 6(11), 115707. DOI: 10.1088/2053-1591/ab48a9