Araştırma Makalesi
BibTex RIS Kaynak Göster

DÜŞÜK GÜÇLÜ ELEKTRİKLİ ARAÇLAR İÇİN AKI TERSLEYEN MOTOR (ATM) TASARIMI VE OPTİMİZASYONU

Yıl 2025, Cilt: 13 Sayı: 2, 412 - 425, 27.06.2025
https://doi.org/10.21923/jesd.1590064

Öz

Son zamanlarda elektrikli araçlarda (EA) tahrik motoru olarak kullanılacak elektrik makineleri üzerine çalışmalar devam etmektedir. EA’larda yaygın olarak Fırçasız Doğru Akım Motorları (FDAM), Anahtarlamalı Relüktans Motorlar (ARM) gibi motorlar kullanılmaya başlanmıştır. FDAM motorlar kolay kontrolü ve yüksek güç yoğunluğu sağlamasına rağmen, rotorunda bulunan mıknatıs sayısının fazla olması sebebiyle yüksek maliyetlidir. Belirli bir gücün üzerinde üretilmemeleri, sürücü ve konum sensörü gerektirmeleri ayrıca yüksek frekanslı osilasyonlara sahip olmaları gibi dezavantajlara sahiptir. ARM’lerde ise basit yapıda ve sağlam olmasına rağmen kontrolünün karışık olması, düşük verim ve gürültü-titreşim gibi unsurlar dezavantaj olarak karşımıza çıkmaktadır. Bu tip motorların avantaj ve dezavantajlarını düşündüğümüzde bu iki motorun geliştirilmiş veya hibritleştirilmiş hali olan Akı Tersleyen Motor (ATM) bulunmaktadır. ATM’de mıknatıslar azaltılmış olarak stator dişlerinin üstüne yerleştirilmiştir. Motor kontrolünde ise akı çevrimleri kullanılmaktadır. Bu makalede 350 W güç ve 500 d/d hız ile çalışan Akı Tersleyen Motor (ATM) tasarımı yapılmıştır. Parametrik ve optimizasyon analizleri ile tork, tork dalgalanması, verim, vuruntu torku gibi parametrelerde iyileştirmeler yapılmıştır. Manyetik sınırlamaların içinde kalındığı gösterilerek tasarım çalışması sonlandırılmıştır.

Kaynakça

  • Ahn, J., Choi, J.H., Kim, S., 2008. Parametric variance consideration in speed control of single-phase flux reversal machine. IET Electric Power Applications. 2008;2(4):266-274.
  • Anonim, 2024a. https://www.iea.org/reports/world-energy-outlook-2024. Erişim tarihi: 07.10.2024
  • Anonim, 2024b. European Federation for Transport and Environment AISBL. Erişim tarihi: 07.10.2024
  • Anonim, 2024c. https://www.transportenvironment.org/topics/cars. Erişim tarihi: 15.10.2024
  • Anonim, 2024d. https://www.ibrahimcayiroglu.com/Dokumanlar/OptimizasyonTeknikleri/OptimizasyonTeknikleri-5.Hafta-Genetik_Algoritma.pdf. Erişim tarihi: 01.11.2024
  • Bharathi, M., Kumar, M.K., Sekhar, O.C., Ramamoorty, M., 2019. A Review of Recent Advancements in Flux Reversal Permanent Magnet Machine (FRPMM), International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-7, Issue-6, March 2019.
  • Boldea, I., Wang, C., Nasar, S.A., 1999. Design of a Three- Phase Flux Reversal Machine. Electric Machines &Power Systems, 27:8, 849-863, DOI: 10.1080/073135699268885.
  • Burke, E.K., Elliman, D.G., Weare, R.F., 1994. A genetic algorithm based university timetabling system. International Conference on Computer Technologies in Education, Crimea, Ukraine, 1, 35–40.
  • Deodhart, R.P., Andemon, S., Boldeag, I., Miller, T.J., 1996. The flux-reversal machine: a new brushless doubly-salient permanent-magnet machine. IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, 2, 786-793 vol.2.
  • Deodhart, R.P., Andersson, S., Boldea, I., Miller, T.J., 1997. The flux-reversal machine: A new brushless doubly-salient permanent-magnet machine. IEEE Transactions on Industry Applications. 1997;33(4):925-934.
  • Gao, Y., Qu, R., Li, D., Li, J., 2017. Torque Performance Analysis of Three-Phase Flux Reversal Machines. IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2110-2119, May-June 2017, doi: 10.1109/TIA.2017.2677356.
  • Gao, Y., Li, D., Qu, R., Li, J., 2017. Design Procedure of Flux Reversal Permanent Magnet Machines. IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4232-4241, Sept.-Oct. 2017, doi: 10.1109/TIA.2017.2695980.
  • Gao, Y., Liu, Y., 2021. Flux Reversal Machine Design. IntechOpen. doi: 10.5772/intechopen.92428.
  • Gruber, W., Bäck, W., Amrhein, W., 2011. Design and implementation of a wheel hub motor for an electric scooter. 2011 IEEE Vehicle Power and Propulsion Conference (pp. 1-6), IEEE.
  • Gör, H., Dalcalı, A., 2024. Design and optimization of a high-performance multi-barrier IPMS motor for an electric scooter and bicycle. Royal Society open science, 11(3), 231650.
  • Gysen, B. L. J., Ilhan, E., Meessen, K. J., Paulides, J. J. H., Lomonova, E. A., 2010. Modeling of Flux Switching Permanent Magnet Machines With Fourier Analysis. IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1499-1502, June 2010, doi: 10.1109/TMAG.2009.2039921.
  • Kim, T.H., Lee, J., 2004. A study of the design for the flux reversal machine. IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 2053-2055, July 2004, doi: 10.1109/TMAG.2004.832488
  • Kim, T.H., Won, S.H., Bong K., Lee, J., 2005. Reduction of cogging torque in flux-reversal machine by rotor teeth pairing. IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3964-3966, Oct. 2005, doi: 10.1109/TMAG.2005.855182.
  • Liao, Y., Liang, F., Lipo, T.A., 1995. A novel permanent magnet motor with doubly salient structure. IEEE Transactions on Industry Applications, vol. 31, no. 5, pp. 1069-1078, Sept.-Oct. 1995, doi: 10.1109/28.464521.
  • Lee, J.Y., Woo, B.C., Kim, J.M., Oh, H.S., 2017. In-wheel motor design for an electric scooter. Journal of Electrical Engineering and Technology, 12(6), 2307-2316.
  • More, D.S., Fernandes, B.G., 2007. Novel three phase flux reversal machine with full pitch winding. International Conference on Power Electronics. 2007. pp. 1007-1012.
  • Omaç, Z., 2022. Investigation of an Outer Rotor In-Wheel Switched Reluctance Motor for Electric Vehicles by Finite Element Method. Turkish Journal of Science and Technology, 17(1), 55-64. https://doi.org/10.55525/tjst.1057940.
  • Pyrhönen, J., Jokinen, T., Hrabovcova, V., 2014. Design of rotating electrical machines. ISBN 978-1-118-58157-5.
  • Ravi, N., Ekram, S., Mahajan, D., 2006. Design and development of a in-wheel brushless DC motor drive for an electric scooter. 2006 International Conference on Power Electronic, Drives and Energy Systems (pp. 1-4), IEEE.
  • Shenoy, K.L., Kumar, M.S., 2016. Design topology and electromagnetic field analysis of Permanent Magnet Brushless DC motor for electric scooter application. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 1541-1545), IEEE.
  • Sheth, N.K., Rajagopal, K.R., 2007. Performance of flux reversal motor at various rotor pole arcs. International Conference on Electrical Machines and Systems. 2007. pp. 1517-1522.
  • Sinaga, D., Sembiring, M.A.R., Salman, R., Sinuraya, A., Hernando, B., Aulia, M.A., 2024. Performance Analysis of Lithium-Ion Batteries on Electric Bike With 350 W BLDC Motor. Proceedings of the 5th International Conference on Innovation in Education, Science, and Culture, ICIESC 2023, 24 October 2023, Medan, Indonesia.
  • Song, B.M., Chang, K.C., Choi, J.Y., 2010. Design of an outer-rotor-type permanent magnet motor for electric scooter propulsion systems. The 2010 International Power Electronics Conference-ECCE ASIA- (pp. 2763-2742), IEEE.
  • Sriwannarat, W., Seangwong, P., Siritaratiwat, A., Fernando, N., Dechgummarn, Y., Khunkitti, P., 2021. Electromagnetic Torque Improvement of Doubly Salient Permanent Magnet Machine Using Pole Ratio Adjustment Technique. Front. Energy Res. 9:726164. doi: 10.3389/fenrg.2021.72616.
  • Wang, C., Nasar, S.A, Boldea, I., 1999. High speed control scheme of flux reversal machine. International Conference on Electric Machines and Drives. 1999. pp. 779-781.
  • Yuefeng, L., Feng, L., Lipo, T. A., 1995. A novel permanent magnet motor with doubly salient structure. IEEE Transactions on Industry Applications, vol. 31, no. 5, pp. 1069-1078, Sept.-Oct. 1995, doi: 10.1109/28.464521.

DESIGN AND OPTIMIZATION OF FLUX REVERSAL MOTOR (FRM) FOR LOW POWER ELECTRIC VEHICLES

Yıl 2025, Cilt: 13 Sayı: 2, 412 - 425, 27.06.2025
https://doi.org/10.21923/jesd.1590064

Öz

Recently, studies on electric machines to be used as drive motors in electric vehicles (EVs) have been ongoing. Motors such as Brushless Direct Current Motors (BLDC) and Switched Reluctance Motors (SRM) have begun to be widely used in EVs. Although BLDC motors provide easy control and high power density, they are costly due to the large number of magnets in their rotors. They have disadvantages such as not being produced above a certain power, requiring a driver and position sensor, and having high-frequency oscillations. In SRMs, although they are simple and robust, their control is complicated, low efficiency, and noise-vibration are disadvantages. When we consider the advantages and disadvantages of these types of motors, there is a developed or hybridized version of these two motors, the Flux Reversal Motor (FRM). In FRM, the magnets are placed on the stator teeth in a reduced manner. Flux loops are used in motor control. In this article, a Flux Reversal Motor (FRM) operating with 350 W power and 500 rpm speed has been designed. Parametric and optimization analyses have improved parameters such as torque, torque ripple, efficiency, cogging torque, etc. The design study was concluded by demonstrating that the magnetic limitations were met.

Kaynakça

  • Ahn, J., Choi, J.H., Kim, S., 2008. Parametric variance consideration in speed control of single-phase flux reversal machine. IET Electric Power Applications. 2008;2(4):266-274.
  • Anonim, 2024a. https://www.iea.org/reports/world-energy-outlook-2024. Erişim tarihi: 07.10.2024
  • Anonim, 2024b. European Federation for Transport and Environment AISBL. Erişim tarihi: 07.10.2024
  • Anonim, 2024c. https://www.transportenvironment.org/topics/cars. Erişim tarihi: 15.10.2024
  • Anonim, 2024d. https://www.ibrahimcayiroglu.com/Dokumanlar/OptimizasyonTeknikleri/OptimizasyonTeknikleri-5.Hafta-Genetik_Algoritma.pdf. Erişim tarihi: 01.11.2024
  • Bharathi, M., Kumar, M.K., Sekhar, O.C., Ramamoorty, M., 2019. A Review of Recent Advancements in Flux Reversal Permanent Magnet Machine (FRPMM), International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-7, Issue-6, March 2019.
  • Boldea, I., Wang, C., Nasar, S.A., 1999. Design of a Three- Phase Flux Reversal Machine. Electric Machines &Power Systems, 27:8, 849-863, DOI: 10.1080/073135699268885.
  • Burke, E.K., Elliman, D.G., Weare, R.F., 1994. A genetic algorithm based university timetabling system. International Conference on Computer Technologies in Education, Crimea, Ukraine, 1, 35–40.
  • Deodhart, R.P., Andemon, S., Boldeag, I., Miller, T.J., 1996. The flux-reversal machine: a new brushless doubly-salient permanent-magnet machine. IAS '96. Conference Record of the 1996 IEEE Industry Applications Conference Thirty-First IAS Annual Meeting, 2, 786-793 vol.2.
  • Deodhart, R.P., Andersson, S., Boldea, I., Miller, T.J., 1997. The flux-reversal machine: A new brushless doubly-salient permanent-magnet machine. IEEE Transactions on Industry Applications. 1997;33(4):925-934.
  • Gao, Y., Qu, R., Li, D., Li, J., 2017. Torque Performance Analysis of Three-Phase Flux Reversal Machines. IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2110-2119, May-June 2017, doi: 10.1109/TIA.2017.2677356.
  • Gao, Y., Li, D., Qu, R., Li, J., 2017. Design Procedure of Flux Reversal Permanent Magnet Machines. IEEE Transactions on Industry Applications, vol. 53, no. 5, pp. 4232-4241, Sept.-Oct. 2017, doi: 10.1109/TIA.2017.2695980.
  • Gao, Y., Liu, Y., 2021. Flux Reversal Machine Design. IntechOpen. doi: 10.5772/intechopen.92428.
  • Gruber, W., Bäck, W., Amrhein, W., 2011. Design and implementation of a wheel hub motor for an electric scooter. 2011 IEEE Vehicle Power and Propulsion Conference (pp. 1-6), IEEE.
  • Gör, H., Dalcalı, A., 2024. Design and optimization of a high-performance multi-barrier IPMS motor for an electric scooter and bicycle. Royal Society open science, 11(3), 231650.
  • Gysen, B. L. J., Ilhan, E., Meessen, K. J., Paulides, J. J. H., Lomonova, E. A., 2010. Modeling of Flux Switching Permanent Magnet Machines With Fourier Analysis. IEEE Transactions on Magnetics, vol. 46, no. 6, pp. 1499-1502, June 2010, doi: 10.1109/TMAG.2009.2039921.
  • Kim, T.H., Lee, J., 2004. A study of the design for the flux reversal machine. IEEE Transactions on Magnetics, vol. 40, no. 4, pp. 2053-2055, July 2004, doi: 10.1109/TMAG.2004.832488
  • Kim, T.H., Won, S.H., Bong K., Lee, J., 2005. Reduction of cogging torque in flux-reversal machine by rotor teeth pairing. IEEE Transactions on Magnetics, vol. 41, no. 10, pp. 3964-3966, Oct. 2005, doi: 10.1109/TMAG.2005.855182.
  • Liao, Y., Liang, F., Lipo, T.A., 1995. A novel permanent magnet motor with doubly salient structure. IEEE Transactions on Industry Applications, vol. 31, no. 5, pp. 1069-1078, Sept.-Oct. 1995, doi: 10.1109/28.464521.
  • Lee, J.Y., Woo, B.C., Kim, J.M., Oh, H.S., 2017. In-wheel motor design for an electric scooter. Journal of Electrical Engineering and Technology, 12(6), 2307-2316.
  • More, D.S., Fernandes, B.G., 2007. Novel three phase flux reversal machine with full pitch winding. International Conference on Power Electronics. 2007. pp. 1007-1012.
  • Omaç, Z., 2022. Investigation of an Outer Rotor In-Wheel Switched Reluctance Motor for Electric Vehicles by Finite Element Method. Turkish Journal of Science and Technology, 17(1), 55-64. https://doi.org/10.55525/tjst.1057940.
  • Pyrhönen, J., Jokinen, T., Hrabovcova, V., 2014. Design of rotating electrical machines. ISBN 978-1-118-58157-5.
  • Ravi, N., Ekram, S., Mahajan, D., 2006. Design and development of a in-wheel brushless DC motor drive for an electric scooter. 2006 International Conference on Power Electronic, Drives and Energy Systems (pp. 1-4), IEEE.
  • Shenoy, K.L., Kumar, M.S., 2016. Design topology and electromagnetic field analysis of Permanent Magnet Brushless DC motor for electric scooter application. 2016 International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT) (pp. 1541-1545), IEEE.
  • Sheth, N.K., Rajagopal, K.R., 2007. Performance of flux reversal motor at various rotor pole arcs. International Conference on Electrical Machines and Systems. 2007. pp. 1517-1522.
  • Sinaga, D., Sembiring, M.A.R., Salman, R., Sinuraya, A., Hernando, B., Aulia, M.A., 2024. Performance Analysis of Lithium-Ion Batteries on Electric Bike With 350 W BLDC Motor. Proceedings of the 5th International Conference on Innovation in Education, Science, and Culture, ICIESC 2023, 24 October 2023, Medan, Indonesia.
  • Song, B.M., Chang, K.C., Choi, J.Y., 2010. Design of an outer-rotor-type permanent magnet motor for electric scooter propulsion systems. The 2010 International Power Electronics Conference-ECCE ASIA- (pp. 2763-2742), IEEE.
  • Sriwannarat, W., Seangwong, P., Siritaratiwat, A., Fernando, N., Dechgummarn, Y., Khunkitti, P., 2021. Electromagnetic Torque Improvement of Doubly Salient Permanent Magnet Machine Using Pole Ratio Adjustment Technique. Front. Energy Res. 9:726164. doi: 10.3389/fenrg.2021.72616.
  • Wang, C., Nasar, S.A, Boldea, I., 1999. High speed control scheme of flux reversal machine. International Conference on Electric Machines and Drives. 1999. pp. 779-781.
  • Yuefeng, L., Feng, L., Lipo, T. A., 1995. A novel permanent magnet motor with doubly salient structure. IEEE Transactions on Industry Applications, vol. 31, no. 5, pp. 1069-1078, Sept.-Oct. 1995, doi: 10.1109/28.464521.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Elektrik Makineleri ve Sürücüler
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Harun Serhat Gerçekcioğlu 0000-0003-0058-7529

Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 23 Kasım 2024
Kabul Tarihi 18 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Gerçekcioğlu, H. S. (2025). DÜŞÜK GÜÇLÜ ELEKTRİKLİ ARAÇLAR İÇİN AKI TERSLEYEN MOTOR (ATM) TASARIMI VE OPTİMİZASYONU. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(2), 412-425. https://doi.org/10.21923/jesd.1590064