Araştırma Makalesi
BibTex RIS Kaynak Göster

DÜŞÜK ŞİDDETLİ ORMAN YANGINLARININ BÜYÜK SU KÜTLELERİ ÜZERİNDEKİ ETKİSİ: SU KALİTESİ VE DEZENFEKSİYON YAN ÜRÜNÜ ÖNCÜLLERİ

Yıl 2025, Cilt: 13 Sayı: 2, 582 - 593, 27.06.2025
https://doi.org/10.21923/jesd.1645533

Öz

Literatürdeki çalışmalar, orta ve yüksek şiddetli orman yangınlarının akarsu sistemlerindeki çeşitli su kalitesi (SQ) parametreleri üzerindeki etkilerini değerlendirmeye odaklanmıştır. Buna karşılık, bu çalışma, yangından etkilenmiş bir havzanın aşağısında bulunan, nispeten düşük çözünmüş organik karbon (ÇOK) içeriğine sahip bir rezervuarda, düşük şiddetli orman yangınlarının seçili SQ parametreleri ve belirli dezenfeksiyon yan ürünleri (DYU) oluşum potansiyelleri üzerindeki etkilerini incelemektedir. Sonuçlar, yangın sonrası ilk yüzey suyu akışlarının, yanmış su toplama havzası boyunca gelen yüzey akışını toplayan derelerde su kalitesine olumsuz etki yaptığını göstermiştir. Özellikle bulanıklık (%150’ye kadar), aromatik ÇOK (%98’e kadar), amonyak (10 kata kadar) ve reaktif fosfor (%113’e kadar) konsantrasyonlarında belirgin artışlar gözlemlenmiştir. Çalışmada değerlendirilen DBP oluşum potansiyellerinin (trihalometanlar [THM’ler], haloasetik asitler [HAA’lar] ve halonitrometanlar [HAN’lar]) konsantrasyonlarının, numune toplama noktalarından bağımsız olarak, temel olarak su numunelerinin ÇOK içeriği tarafından kontrol edildiği tespit edilmiştir. Ancak N-nitrosaminler (NDMA) için farklı bir eğilim gözlenmiştir. Bununla birlikte, düşük şiddetli yangının etkisinin rezervuarın çıkış noktasında sınırlı olduğu ya da SQ parametreleri üzerinde herhangi bir etkisinin olmadığı belirlenmiştir. Ayrıca, su kaynağındaki su kalitesinde meydana gelen bozulmanın, 2-3 ay içinde önemli ölçüde iyileşerek nihayetinde rezervuarın tahliye noktasında gözlemlenen seviyelere ulaştığı tespit edilmiştir. Sonuç olarak, bu çalışmanın bulguları, düşük şiddetli yangınlara maruz kalan su toplama havzalarının, su sağladığı büyük su kütleli su toplama göletlerinde önemli bir su kalitesi değişimine yol açmadığını göstermiştir.

Kaynakça

  • Abney, R.B., Berhe, A.A., 2018. Pyrogenic carbon erosion: Implications for stock and persistence of pyrogenic carbon in soil. Front Earth Sci (Lausanne). https://doi.org/10.3389/feart.2018.00026
  • Agbeshie, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R., 2022. A review of the effects of forest fire on soil properties. J For Res (Harbin). https://doi.org/10.1007/s11676-022-01475-4
  • Battle, J., Golladay, S.W., 2003. Prescribed fire’s impact on water quality of depressional wetlands in southwestern Georgia. American Midland Naturalist 150, 15–25. https://doi.org/10.1674/0003-0031(2003)150[0015:PFIOWQ]2.0.CO;2
  • Becker, W.C., Hohner, A., Rosario-Ortiz, F., DeWolfe, J., 2018. Preparing for Wildfires and Extreme Weather: Plant Design and Operation Recommendations. J Am Water Works Assoc 110, 32–40. https://doi.org/10.1002/awwa.1113
  • Beita-Sandí, W., Ersan, M.S., Uzun, H., Karanfil, T., 2016. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption. Water Res 88. https://doi.org/10.1016/j.watres.2015.10.062
  • Bertani, I., Obenour, D.R., Steger, C.E., Stow, C.A., Gronewold, A.D., Scavia, D., 2016. Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie. J Great Lakes Res 42. https://doi.org/10.1016/j.jglr.2016.04.002
  • Bladon, K.D., Silins, U., Wagner, M.J., Stone, M., Emelko, M.B., Mendoza, C.A., Devito, K.J., Boon, S., 2008. Wildfire impacts on nitrogen concentration and production from headwater streams in southern Alberta’s Rocky Mountains. Canadian Journal of Forest Research 38, 2359–2371. https://doi.org/10.1139/X08-071
  • Buts, Y., Kraynyuk, O., Senchykhin, Y., 2023. HEAVY METALS IN SOILS OF PINE FORESTS AFTER PYROGEN INFLUENCE. Sloboda Scientific Journal. Natural Sciences. https://doi.org/10.32782/naturalspu/2023.1.1
  • Chen, H., Tsai, K.P., Liu, Y., Tolić, N., Burton, S.D., Chu, R., Karanfil, T., Chow, A.T., 2021. Characterization of Dissolved Organic Matter from Wildfire-induced Microcystis aeruginosa Blooms controlled by Copper Sulfate as Disinfection Byproduct Precursors Using APPI(-) and ESI(-) FT-ICR MS. Water Res 189. https://doi.org/10.1016/j.watres.2020.116640
  • Chen, H., Uzun, H., Chow, A.T., Karanfil, T., 2020. Low water treatability efficiency of wildfire-induced dissolved organic matter and disinfection by-product precursors. Water Res 184. https://doi.org/10.1016/j.watres.2020.116111
  • Chen, H., Uzun, H., Tolić, N., Chu, R., Karanfil, T., Chow, A.T., 2023. Molecular Transformation of Dissolved Organic Matter during the Processes of Wildfire, Alum Coagulation, and Disinfection Using ESI(−) and ESI(+) FT-ICR MS. ACS ES and T Water 3. https://doi.org/10.1021/acsestwater.3c00135
  • Chen, J., Chang, H., 2023. A review of wildfire impacts on stream temperature and turbidity across scales. Prog Phys Geogr 47. https://doi.org/10.1177/03091333221118363
  • Clay, G.D., Worrall, F., Rose, R., 2010. Carbon budgets of an upland blanket bog managed by prescribed fire. J Geophys Res Biogeosci 115. https://doi.org/10.1029/2010JG001331
  • Coates, T.A., Chow, A.T., Hagan, D.L., Wang, G.G., Bridges, W.C., Dozier, J.H., 2017. Frequent Prescribed Burning as a Long‐term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition. J Environ Qual 46, 1020–1027. https://doi.org/10.2134/jeq2017.03.0112
  • Emelko, M.B., Stone, M., Silins, U., Allin, D., Collins, A.L., Williams, C.H.S., Martens, A.M., Bladon, K.D., 2016. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Glob Chang Biol 22, 1168–1184. https://doi.org/10.1111/gcb.13073
  • Faridullah, Malik, N., Fareed, I., Irshad, M., 2017. Reducing the leachability of nitrate, phosphorus and heavy metals from soil using waste material. Brazilian Journal of Chemical Engineering 34. https://doi.org/10.1590/0104-6632.20170343s20150617
  • Fernandez-Marcos, M.L., 2022. Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review. Toxics. https://doi.org/10.3390/toxics10010031
  • Ferrer, I., Thurman, E.M., Zweigenbaum, J.A., Murphy, S.F., Webster, J.P., Rosario-Ortiz, F.L., 2021. Wildfires: Identification of a new suite of aromatic polycarboxylic acids in ash and surface water. Science of the Total Environment 770. https://doi.org/10.1016/j.scitotenv.2020.144661
  • Ginger, L.J., Zimmer, K.D., Herwig, B.R., Hanson, M.A., Hobbs, W.O., Small, G.E., Cotner, J.B., 2017. Watershed vs. within-lake drivers of nitrogen: Phosphorus dynamics in shallow lakes: Phosphorus. Ecological Applications 27. https://doi.org/10.1002/eap.1599
  • Girona-García, A., V.D., D.S., P.P., and S.C., 2024. Into the unknown: The role of post-fire soil erosion in the carbon cycle. Glob Chang Biol 30.
  • Hampton, T.B., Lin, S., Basu, N.B., 2022. Forest fire effects on stream water quality at continental scales: A meta-analysis. Environmental Research Letters 17. https://doi.org/10.1088/1748-9326/ac6a6c
  • Hauer, F.R., Spencer, C.N., 1998. Phosphorus and nitrogen dynamics in streams associated with wildfire: A study of immediate and longterm effects. Int J Wildland Fire 8. https://doi.org/10.1071/WF9980183
  • Hickenbottom, K., Pagilla, K., Hanigan, D., 2023. Wildfire impact on disinfection byproduct precursor loading in mountain streams and rivers. Water Res 244. https://doi.org/10.1016/j.watres.2023.120474
  • Ho, J.C., Michalak, A.M., 2017. Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading. J Great Lakes Res 43. https://doi.org/10.1016/j.jglr.2017.04.001
  • Hohner, A., 2024. Wildfire Impacts on Water Quality & Treatment Rogue River Basin. Source Water Protection Workshop.
  • Hohner, A.K., Cawley, K., Oropeza, J., Summers, R.S., Rosario-Ortiz, F.L., 2016. Drinking water treatment response following a Colorado wildfire. Water Res 105, 187–198. https://doi.org/10.1016/j.watres.2016.08.034
  • Hohner, A.K., Rhoades, C.C., Wilkerson, P., Rosario-Ortiz, F.L., 2019. Wildfires Alter Forest Watersheds and Threaten Drinking Water Quality. Acc Chem Res 52, 1234–1244. https://doi.org/10.1021/acs.accounts.8b00670
  • Hohner, A.K., Terry, L.G., Townsend, E.B., Summers, R.S., Rosario-Ortiz, F.L., 2017. Water treatment process evaluation of wildfire-affected sediment leachates. Environ Sci (Camb) 3, 352–365. https://doi.org/10.1039/c6ew00247a
  • Ijaz, A., Kew, W., China, S., Schum, S.K., Mazzoleni, L.R., 2022. Molecular Characterization of Organophosphorus Compounds in Wildfire Smoke Using 21-T Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 94. https://doi.org/10.1021/acs.analchem.2c00916
  • Jin, H., Yuan, W., Li, W., Yang, J., Zhou, Z., Zhao, L., Li, Y., Qi, F., 2023. Combustion chemistry of aromatic hydrocarbons. Prog Energy Combust Sci. https://doi.org/10.1016/j.pecs.2023.101076
  • Kalita, P.K., Harner, J.P., 1999. Vegetative filters for improving environmental quality (1999). Kansas Agricultural Experiment Station Research Reports. https://doi.org/10.4148/2378-5977.1841
  • Kieta, K.A., Owens, P.N., Petticrew, E.L., French, T.D., Koiter, A.J., Rutherford, P.M., 2023. Polycyclic aromatic hydrocarbons in terrestrial and aquatic environments following wildfire: a review. Environmental Reviews. https://doi.org/10.1139/er-2022-0055
  • Ku, P., Tsui, M.T.K., Uzun, H., Chen, H., Dahlgren, R.A., Hoang, T.C., Karanfil, T., Zhong, H., Miao, A.J., Pan, K., Coleman, J.S., Chow, A.T.S., 2024. Dominance of Particulate Mercury in Stream Transport and Rapid Watershed Recovery from Wildfires in Northern California, USA. Environ Sci Technol. https://doi.org/10.1021/acs.est.4c09364
  • Lafon, C.W., Naito, A.T., Grissino-Mayer, H.D., Horn, S.P., Waldrop, T.A., 2017. Fire History of the Appalachian Region: A REVIEW AND SYNTHESIS.
  • Lau, S.S., Wei, X., Bokenkamp, K., Wagner, E.D., Plewa, M.J., Mitch, W.A., 2020. Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in Potable Reuse and Conventional Drinking Waters. Environ Sci Technol 54, 5729–5736. https://doi.org/10.1021/acs.est.0c00958
  • Lee, W., Westerhoff, P., 2005. Dissolved organic nitrogen measurement using dialysis pretreatment. Environ Sci Technol 39. https://doi.org/10.1021/es048818y
  • Li, Z., Samonte, P.R. V., Cao, H., Miesel, J.R., Xu, W., 2023. Assess the formation of disinfection by-products from pyrogenic dissolved organic matter (pyDOM): impact of wildfire on the water quality of forest watershed. Science of the Total Environment 898. https://doi.org/10.1016/j.scitotenv.2023.165496
  • Liu, J., Ling, L., Hu, Q., Wang, C., Shang, C., 2022. Effects of operating conditions on disinfection by-product formation, calculated toxicity, and changes in organic matter structures during seawater chlorination. Water Res 220. https://doi.org/10.1016/j.watres.2022.118631
  • Majidzadeh, H., Chen, H., Coates, T.A., Tsai, K.-P., Olivares, C.I., Trettin, C., Uzun, H., Karanfil, T., Chow, A.T., 2019a. Long-term watershed management is an effective strategy to reduce organic matter export and disinfection by-product precursors in source water. Int J Wildland Fire. https://doi.org/10.1071/WF18174
  • Majidzadeh, H., Chen, H., Coates, T.A., Tsai, K.-P., Olivares, C.I., Trettin, C., Uzun, H., Karanfil, T., Chow, A.T., 2019b. Corrigendum: Long-term watershed management is an effective strategy to reduce organic matter export and disinfection by-product precursors in source water (International Journal of Wildland Fire (2019) 28 (804-813) DOI: 10.1071/WF18174). Int J Wildland Fire 28. https://doi.org/10.1071/WF18174_CO
  • Majidzadeh, H., Uzun, H., Chen, H., Bao, S., Tsui, M.T.-K., Karanfil, T., Chow, A.T., 2020. Hurricane resulted in releasing more nitrogenous than carbonaceous disinfection byproduct precursors in coastal watersheds. Science of the Total Environment 705. https://doi.org/10.1016/j.scitotenv.2019.135785
  • Majidzadeh, H., Uzun, H., Ruecker, A., Miller, D., Vernon, J., Zhang, H., Bao, S., Tsui, M.T.K., Karanfil, T., Chow, A.T., 2017. Extreme flooding mobilized dissolved organic matter from coastal forested wetlands. Biogeochemistry 136. https://doi.org/10.1007/s10533-017-0394-x
  • Majidzadeh, H., Wang, J.-J., Chow, A.T., 2015a. Prescribed Fire Alters Dissolved Organic Matter and Disinfection By-Product Precursors in Forested Watersheds-Part I. A Controlled Laboratory Study.
  • Majidzadeh, H., Wang, J.-J., Chow, A.T., 2015b. Prescribed Fire Alters Dissolved Organic Matter and Disinfection By-Product Precursors in Forested Watersheds-Part I. A Controlled Laboratory Study.
  • Matteo, M., Randhir, T., Bloniarz, D., 2006. Watershed-Scale Impacts of Forest Buffers on Water Quality and Runoff in Urbanizing Environment. J Water Resour Plan Manag 132. https://doi.org/10.1061/(asce)0733-9496(2006)132:3(144)
  • MAZUMDER, A., CHATTERJEE, D., BISWAS, M., KUMAR, P., 2015. Impact of Forest Intervention on Water and Soil Quality Case Studies. https://doi.org/10.15224/978-1-63248-084-2-38
  • McCullough, I.M., Brentrup, J.A., Wagner, T., Lapierre, J.F., Henneck, J., Paul, A.M., Belair, M., Moritz, M.A., Filstrup, C.T., 2023. Fire Characteristics and Hydrologic Connectivity Influence Short-Term Responses of North Temperate Lakes to Wildfire. Geophys Res Lett 50. https://doi.org/10.1029/2023GL103953
  • Näthe, K., Levia, D.F., Tischer, A., Michalzik, B., 2018. Low-intensity surface fire effects on carbon and nitrogen cycling in soil and soil solution of a Scots pine forest in central Germany. Catena (Amst) 162. https://doi.org/10.1016/j.catena.2017.10.026
  • South Carolina State Climatology Office (SCSCO), 2017a. WEEKLY SOUTH CAROLINA WEATHER 2017 [WWW Document]. URL https://dnr.sc.gov/climate/sco/ClimateData/weekly/wk010117.php (accessed 4.19.25).
  • National Weather Service (NWS), 2017b. National Oceanic and Atmospheric Administration [WWW Document]. Climatological Data, SC. URL https://www.weather.gov/ (accessed 4.21.25).
  • Olivares, C.I., Uzun, H., Erdem, C.U., Zhang, W., Trettin, C., Liu, Y., Burton, S.D., Robinson, E.W., Karanfil, T., Chow, A.T., 2021. Increased Organohalogen Diversity after Disinfection of Water from a Prescribed Burned Watershed. ACS ES and T Water 1. https://doi.org/10.1021/acsestwater.1c00015
  • Olivares, C.I., Zhang, W., Uzun, H., Erdem, C.U., Majidzadeh, H., Trettin, C., Karanfil, T., Chow, A., 2019. Optical in-situ sensors capture dissolved organic carbon (DOC) dynamics after prescribed fire in high-DOC forest watersheds. Int J Wildland Fire 28. https://doi.org/10.1071/WF18175
  • Orlova, J., Olefeldt, D., Yasinski, J.H., Anderson, A.E., 2020. Effects of prescribed burn on nutrient and dissolved organic matter characteristics in peatland shallow groundwater. Fire. https://doi.org/10.3390/fire3030053
  • Paul, M.J., LeDuc, S.D., Lassiter, M.G., Moorhead, L.C., Noyes, P.D., Leibowitz, S.G., 2022. Wildfire Induces Changes in Receiving Waters: A Review With Considerations for Water Quality Management. Water Resour Res. https://doi.org/10.1029/2021WR030699
  • Perry, C.D., Vellidis, G., Lowrance, R., Thomas, D.L., 1999. Watershed-Scale Water Quality Impacts of Riparian Forest Management. J Water Resour Plan Manag 125. https://doi.org/10.1061/(asce)0733-9496(1999)125:3(117)
  • Raoelison, O.D., Valenca, R., Lee, A., Karim, S., Webster, J.P., Poulin, B.A., Mohanty, S.K., 2023. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs. Environmental Pollution. https://doi.org/10.1016/j.envpol.2022.120713
  • Reilly, M.J., Norman, S.P., O’Brien, J.J., Loudermilk, E.L., 2022. Drivers and ecological impacts of a wildfire outbreak in the southern Appalachian Mountains after decades of fire exclusion. For Ecol Manage. https://doi.org/10.1016/j.foreco.2022.120500
  • Richardson, S.D., Plewa, M.J., Wagner, E.D., Schoeny, R., DeMarini, D.M., 2007. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat Res Rev Mutat Res. https://doi.org/10.1016/j.mrrev.2007.09.001
  • Robbins, Z.J., Loudermilk, E.L., Mozelewski, T.G., Jones, K., Scheller, R.M., 2024. Fire regimes of the Southern Appalachians may radically shift under climate change. Fire Ecology 20. https://doi.org/10.1186/s42408-023-00231-1
  • Rodríguez, A., Durán, J., Fernández-Palacios, J.M., Gallardo, A., 2009. Short-term wildfire effects on the spatial pattern and scale of labile organic-N and inorganic-N and P pools. For Ecol Manage 257, 739–746. https://doi.org/10.1016/j.foreco.2008.10.006
  • Rodríguez-Cardona, B.M., Coble, A.A., Wymore, A.S., Kolosov, R., Podgorski, D.C., Zito, P., Spencer, R.G.M., Prokushkin, A.S., McDowell, W.H., 2020. Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Sci Rep 10. https://doi.org/10.1038/s41598-020-65520-0
  • Ruecker, A., Uzun, H., Karanfil, T., Tsui, M.T.K., Chow, A.T., 2017. Disinfection byproduct precursor dynamics and water treatability during an extreme flooding event in a coastal blackwater river in southeastern United States. Chemosphere 188. https://doi.org/10.1016/j.chemosphere.2017.08.122
  • Sakulich, J., Poulos, H.M., Gatewood, R.G., Wogan, K.A., Marks, C., Taylor, A.H., 2022. Low-Severity Wildfire Shifts Mixed Conifer Forests toward Historical Stand Structure in Guadalupe Mountains National Park, Texas, USA. Fire 5. https://doi.org/10.3390/fire5040119
  • Schulze, S.S., Fischer, E.C., 2021. Prediction of Water Distribution System Contamination Based on Wildfire Burn Severity in Wildland Urban Interface Communities. ACS ES and T Water 1, 291–299. https://doi.org/10.1021/ACSESTWATER.0C00073
  • Shah, N.W., Baillie, B.R., Bishop, K., Ferraz, S., Högbom, L., Nettles, J., 2022. The effects of forest management on water quality. For Ecol Manage. https://doi.org/10.1016/j.foreco.2022.120397
  • Singer, R., Brown, S., 2018. Impact of Soil Filtration on Metals, Nutrients, and Estrogenic Activity of Reclaimed Water. J Environ Qual 47. https://doi.org/10.2134/jeq2018.03.0109
  • Son, J.H., Kim, S., Carlson, K.H., 2015. Effects of wildfire on river water quality and riverbed sediment phosphorus. Water Air Soil Pollut 226. https://doi.org/10.1007/s11270-014-2269-2
  • South Carolina Forestry Commission (SCFC), 2017. PINNACLE MOUNTAIN FIRE A FIVE-YEAR RETROSPECTIVE OF THE LARGEST WILDFIRE IN UPSTATE HISTORY-Photo courtesy of John Gunther.
  • Trickett, T.C., 2018. Fire and Vegetation Dynamics in the Southern Appalachian Fire and Vegetation Dynamics in the Southern Appalachian Mountains Mountains.
  • Tran, T., Baribeau, H., Sullivan, L., 2021. Mitigate Wildfire Impacts on Drinking Water Quality and Operations. Opflow 47, 10–15. https://doi.org/10.1002/opfl.1543
  • Uzun, H., Dahlgren, R.A., Olivares, C., Erdem, C.U., Karanfil, T., Chow, A.T., 2020a. Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters. Water Res 181. https://doi.org/10.1016/j.watres.2020.115891
  • Uzun, H., Kim, D., Karanfil, T., 2019. Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide. Chemosphere 216. https://doi.org/10.1016/j.chemosphere.2018.10.088
  • Uzun, H., Kim, D., Karanfil, T., 2018. Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH. Science of the Total Environment 635. https://doi.org/10.1016/j.scitotenv.2018.04.148
  • Uzun, H., Kim, D., Karanfil, T., 2017. The removal of n-nitrosodimethylamine formation potential in drinking water treatment plants. J Am Water Works Assoc 109. https://doi.org/10.5942/jawwa.2017.109.0047
  • Uzun, H., Kim, D., Karanfil, T., 2015. Seasonal and temporal patterns of NDMA formation potentials in surface waters. Water Res 69. https://doi.org/10.1016/j.watres.2014.11.017
  • Uzun, H., Zhang, W., Olivares, C.I., Erdem, C.U., Coates, T.A., Karanfil, T., Chow, A.T., 2020b. Effect of prescribed fires on the export of dissolved organic matter, precursors of disinfection by-products, and water treatability. Water Res 187. https://doi.org/10.1016/j.watres.2020.116385
  • Wagner, E.D., Plewa, M.J., 2017. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review. J Environ Sci (China). https://doi.org/10.1016/j.jes.2017.04.021
  • Wang, S., Wang, W., Chen, J., Zhang, B., Zhao, L., Jiang, X., 2020. Characteristics of dissolved organic matter and its role in lake eutrophication at the early stage of algal blooms-A case study of Lake Taihu, China. Water (Switzerland) 12. https://doi.org/10.3390/w12082278
  • Writer, J.H., Hohner, A., Oropeza, J., Schmidt, A., Cawley, K., Rosario-Ortiz, F.L., 2014. Water treatment implications after the High Park Wildfire in Colorado. J Am Water Works Assoc 106, 85–86. https://doi.org/10.5942/jawwa.2014.106.0055
  • Wu, X., Sverdrup, E., Mastrandrea, M.D., Wara, M.W., Wager, S., 2023. Low-intensity fires mitigate the risk of high-intensity wildfires in California’s forests. Sci Adv 9. https://doi.org/10.1126/sciadv.adi4123
  • Yang, L., Kim, D., Uzun, H., Karanfil, T., Hur, J., 2015. Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis. Chemosphere 121. https://doi.org/10.1016/j.chemosphere.2014.11.033

IMPACT OF LOW-SEVERITY WILDFIRE ON LARGE WATER BODIES: WATER QUALITY AND DISINFECTION BY-PRODUCT PRECURSORS

Yıl 2025, Cilt: 13 Sayı: 2, 582 - 593, 27.06.2025
https://doi.org/10.21923/jesd.1645533

Öz

Most studies have focused on evaluating the impact of moderate-to-high-severity wildfires on various water quality (WQ) parameters in riverine systems. In contrast, this study investigates the effects of low-severity wildfires on selected WQ parameters and the formation potentials of selected disinfection by-products (DBPs) in a reservoir characterized by relatively low dissolved organic carbon (DOC) content in its water located downstream of a fire-impacted watershed. The results showed that post-fire initial flushes had a detrimental effect (i.e., increased turbidity [up to 150%], aromatic DOC [up to 98%], ammonia [up to 10 times] and reactive phosphorus [up to 113%], concentrations) in the headwater collecting the post-fire runoff across the burned watershed. The concentrations of DBP FPs (Trihalomethanes [THMs], haloacetic acids [HAAs] and Halonitromethanes [HANs]) were governed mainly by the DOC content of the water samples, except for N-nitrosodimethylamine (NDMA), regardless of the sample collection point. However, the impact of the fire was limited or had no effect on the water quality parameters at the drainage point of the reservoir, which was located on the opposite side of the headwaters. Moreover, the deterioration in the WQ of the headwaters significantly improved over 2-3 months, eventually reaching levels like those observed at the reservoir drainage point. Consequently, the findings of this study demonstrate that watersheds subjected to low-severity burns do not present significant or long-term water quality degradation in large downstream water bodies adjacent to the affected areas.

Kaynakça

  • Abney, R.B., Berhe, A.A., 2018. Pyrogenic carbon erosion: Implications for stock and persistence of pyrogenic carbon in soil. Front Earth Sci (Lausanne). https://doi.org/10.3389/feart.2018.00026
  • Agbeshie, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R., 2022. A review of the effects of forest fire on soil properties. J For Res (Harbin). https://doi.org/10.1007/s11676-022-01475-4
  • Battle, J., Golladay, S.W., 2003. Prescribed fire’s impact on water quality of depressional wetlands in southwestern Georgia. American Midland Naturalist 150, 15–25. https://doi.org/10.1674/0003-0031(2003)150[0015:PFIOWQ]2.0.CO;2
  • Becker, W.C., Hohner, A., Rosario-Ortiz, F., DeWolfe, J., 2018. Preparing for Wildfires and Extreme Weather: Plant Design and Operation Recommendations. J Am Water Works Assoc 110, 32–40. https://doi.org/10.1002/awwa.1113
  • Beita-Sandí, W., Ersan, M.S., Uzun, H., Karanfil, T., 2016. Removal of N-nitrosodimethylamine precursors with powdered activated carbon adsorption. Water Res 88. https://doi.org/10.1016/j.watres.2015.10.062
  • Bertani, I., Obenour, D.R., Steger, C.E., Stow, C.A., Gronewold, A.D., Scavia, D., 2016. Probabilistically assessing the role of nutrient loading in harmful algal bloom formation in western Lake Erie. J Great Lakes Res 42. https://doi.org/10.1016/j.jglr.2016.04.002
  • Bladon, K.D., Silins, U., Wagner, M.J., Stone, M., Emelko, M.B., Mendoza, C.A., Devito, K.J., Boon, S., 2008. Wildfire impacts on nitrogen concentration and production from headwater streams in southern Alberta’s Rocky Mountains. Canadian Journal of Forest Research 38, 2359–2371. https://doi.org/10.1139/X08-071
  • Buts, Y., Kraynyuk, O., Senchykhin, Y., 2023. HEAVY METALS IN SOILS OF PINE FORESTS AFTER PYROGEN INFLUENCE. Sloboda Scientific Journal. Natural Sciences. https://doi.org/10.32782/naturalspu/2023.1.1
  • Chen, H., Tsai, K.P., Liu, Y., Tolić, N., Burton, S.D., Chu, R., Karanfil, T., Chow, A.T., 2021. Characterization of Dissolved Organic Matter from Wildfire-induced Microcystis aeruginosa Blooms controlled by Copper Sulfate as Disinfection Byproduct Precursors Using APPI(-) and ESI(-) FT-ICR MS. Water Res 189. https://doi.org/10.1016/j.watres.2020.116640
  • Chen, H., Uzun, H., Chow, A.T., Karanfil, T., 2020. Low water treatability efficiency of wildfire-induced dissolved organic matter and disinfection by-product precursors. Water Res 184. https://doi.org/10.1016/j.watres.2020.116111
  • Chen, H., Uzun, H., Tolić, N., Chu, R., Karanfil, T., Chow, A.T., 2023. Molecular Transformation of Dissolved Organic Matter during the Processes of Wildfire, Alum Coagulation, and Disinfection Using ESI(−) and ESI(+) FT-ICR MS. ACS ES and T Water 3. https://doi.org/10.1021/acsestwater.3c00135
  • Chen, J., Chang, H., 2023. A review of wildfire impacts on stream temperature and turbidity across scales. Prog Phys Geogr 47. https://doi.org/10.1177/03091333221118363
  • Clay, G.D., Worrall, F., Rose, R., 2010. Carbon budgets of an upland blanket bog managed by prescribed fire. J Geophys Res Biogeosci 115. https://doi.org/10.1029/2010JG001331
  • Coates, T.A., Chow, A.T., Hagan, D.L., Wang, G.G., Bridges, W.C., Dozier, J.H., 2017. Frequent Prescribed Burning as a Long‐term Practice in Longleaf Pine Forests Does Not Affect Detrital Chemical Composition. J Environ Qual 46, 1020–1027. https://doi.org/10.2134/jeq2017.03.0112
  • Emelko, M.B., Stone, M., Silins, U., Allin, D., Collins, A.L., Williams, C.H.S., Martens, A.M., Bladon, K.D., 2016. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems. Glob Chang Biol 22, 1168–1184. https://doi.org/10.1111/gcb.13073
  • Faridullah, Malik, N., Fareed, I., Irshad, M., 2017. Reducing the leachability of nitrate, phosphorus and heavy metals from soil using waste material. Brazilian Journal of Chemical Engineering 34. https://doi.org/10.1590/0104-6632.20170343s20150617
  • Fernandez-Marcos, M.L., 2022. Potentially Toxic Substances and Associated Risks in Soils Affected by Wildfires: A Review. Toxics. https://doi.org/10.3390/toxics10010031
  • Ferrer, I., Thurman, E.M., Zweigenbaum, J.A., Murphy, S.F., Webster, J.P., Rosario-Ortiz, F.L., 2021. Wildfires: Identification of a new suite of aromatic polycarboxylic acids in ash and surface water. Science of the Total Environment 770. https://doi.org/10.1016/j.scitotenv.2020.144661
  • Ginger, L.J., Zimmer, K.D., Herwig, B.R., Hanson, M.A., Hobbs, W.O., Small, G.E., Cotner, J.B., 2017. Watershed vs. within-lake drivers of nitrogen: Phosphorus dynamics in shallow lakes: Phosphorus. Ecological Applications 27. https://doi.org/10.1002/eap.1599
  • Girona-García, A., V.D., D.S., P.P., and S.C., 2024. Into the unknown: The role of post-fire soil erosion in the carbon cycle. Glob Chang Biol 30.
  • Hampton, T.B., Lin, S., Basu, N.B., 2022. Forest fire effects on stream water quality at continental scales: A meta-analysis. Environmental Research Letters 17. https://doi.org/10.1088/1748-9326/ac6a6c
  • Hauer, F.R., Spencer, C.N., 1998. Phosphorus and nitrogen dynamics in streams associated with wildfire: A study of immediate and longterm effects. Int J Wildland Fire 8. https://doi.org/10.1071/WF9980183
  • Hickenbottom, K., Pagilla, K., Hanigan, D., 2023. Wildfire impact on disinfection byproduct precursor loading in mountain streams and rivers. Water Res 244. https://doi.org/10.1016/j.watres.2023.120474
  • Ho, J.C., Michalak, A.M., 2017. Phytoplankton blooms in Lake Erie impacted by both long-term and springtime phosphorus loading. J Great Lakes Res 43. https://doi.org/10.1016/j.jglr.2017.04.001
  • Hohner, A., 2024. Wildfire Impacts on Water Quality & Treatment Rogue River Basin. Source Water Protection Workshop.
  • Hohner, A.K., Cawley, K., Oropeza, J., Summers, R.S., Rosario-Ortiz, F.L., 2016. Drinking water treatment response following a Colorado wildfire. Water Res 105, 187–198. https://doi.org/10.1016/j.watres.2016.08.034
  • Hohner, A.K., Rhoades, C.C., Wilkerson, P., Rosario-Ortiz, F.L., 2019. Wildfires Alter Forest Watersheds and Threaten Drinking Water Quality. Acc Chem Res 52, 1234–1244. https://doi.org/10.1021/acs.accounts.8b00670
  • Hohner, A.K., Terry, L.G., Townsend, E.B., Summers, R.S., Rosario-Ortiz, F.L., 2017. Water treatment process evaluation of wildfire-affected sediment leachates. Environ Sci (Camb) 3, 352–365. https://doi.org/10.1039/c6ew00247a
  • Ijaz, A., Kew, W., China, S., Schum, S.K., Mazzoleni, L.R., 2022. Molecular Characterization of Organophosphorus Compounds in Wildfire Smoke Using 21-T Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry. Anal Chem 94. https://doi.org/10.1021/acs.analchem.2c00916
  • Jin, H., Yuan, W., Li, W., Yang, J., Zhou, Z., Zhao, L., Li, Y., Qi, F., 2023. Combustion chemistry of aromatic hydrocarbons. Prog Energy Combust Sci. https://doi.org/10.1016/j.pecs.2023.101076
  • Kalita, P.K., Harner, J.P., 1999. Vegetative filters for improving environmental quality (1999). Kansas Agricultural Experiment Station Research Reports. https://doi.org/10.4148/2378-5977.1841
  • Kieta, K.A., Owens, P.N., Petticrew, E.L., French, T.D., Koiter, A.J., Rutherford, P.M., 2023. Polycyclic aromatic hydrocarbons in terrestrial and aquatic environments following wildfire: a review. Environmental Reviews. https://doi.org/10.1139/er-2022-0055
  • Ku, P., Tsui, M.T.K., Uzun, H., Chen, H., Dahlgren, R.A., Hoang, T.C., Karanfil, T., Zhong, H., Miao, A.J., Pan, K., Coleman, J.S., Chow, A.T.S., 2024. Dominance of Particulate Mercury in Stream Transport and Rapid Watershed Recovery from Wildfires in Northern California, USA. Environ Sci Technol. https://doi.org/10.1021/acs.est.4c09364
  • Lafon, C.W., Naito, A.T., Grissino-Mayer, H.D., Horn, S.P., Waldrop, T.A., 2017. Fire History of the Appalachian Region: A REVIEW AND SYNTHESIS.
  • Lau, S.S., Wei, X., Bokenkamp, K., Wagner, E.D., Plewa, M.J., Mitch, W.A., 2020. Assessing Additivity of Cytotoxicity Associated with Disinfection Byproducts in Potable Reuse and Conventional Drinking Waters. Environ Sci Technol 54, 5729–5736. https://doi.org/10.1021/acs.est.0c00958
  • Lee, W., Westerhoff, P., 2005. Dissolved organic nitrogen measurement using dialysis pretreatment. Environ Sci Technol 39. https://doi.org/10.1021/es048818y
  • Li, Z., Samonte, P.R. V., Cao, H., Miesel, J.R., Xu, W., 2023. Assess the formation of disinfection by-products from pyrogenic dissolved organic matter (pyDOM): impact of wildfire on the water quality of forest watershed. Science of the Total Environment 898. https://doi.org/10.1016/j.scitotenv.2023.165496
  • Liu, J., Ling, L., Hu, Q., Wang, C., Shang, C., 2022. Effects of operating conditions on disinfection by-product formation, calculated toxicity, and changes in organic matter structures during seawater chlorination. Water Res 220. https://doi.org/10.1016/j.watres.2022.118631
  • Majidzadeh, H., Chen, H., Coates, T.A., Tsai, K.-P., Olivares, C.I., Trettin, C., Uzun, H., Karanfil, T., Chow, A.T., 2019a. Long-term watershed management is an effective strategy to reduce organic matter export and disinfection by-product precursors in source water. Int J Wildland Fire. https://doi.org/10.1071/WF18174
  • Majidzadeh, H., Chen, H., Coates, T.A., Tsai, K.-P., Olivares, C.I., Trettin, C., Uzun, H., Karanfil, T., Chow, A.T., 2019b. Corrigendum: Long-term watershed management is an effective strategy to reduce organic matter export and disinfection by-product precursors in source water (International Journal of Wildland Fire (2019) 28 (804-813) DOI: 10.1071/WF18174). Int J Wildland Fire 28. https://doi.org/10.1071/WF18174_CO
  • Majidzadeh, H., Uzun, H., Chen, H., Bao, S., Tsui, M.T.-K., Karanfil, T., Chow, A.T., 2020. Hurricane resulted in releasing more nitrogenous than carbonaceous disinfection byproduct precursors in coastal watersheds. Science of the Total Environment 705. https://doi.org/10.1016/j.scitotenv.2019.135785
  • Majidzadeh, H., Uzun, H., Ruecker, A., Miller, D., Vernon, J., Zhang, H., Bao, S., Tsui, M.T.K., Karanfil, T., Chow, A.T., 2017. Extreme flooding mobilized dissolved organic matter from coastal forested wetlands. Biogeochemistry 136. https://doi.org/10.1007/s10533-017-0394-x
  • Majidzadeh, H., Wang, J.-J., Chow, A.T., 2015a. Prescribed Fire Alters Dissolved Organic Matter and Disinfection By-Product Precursors in Forested Watersheds-Part I. A Controlled Laboratory Study.
  • Majidzadeh, H., Wang, J.-J., Chow, A.T., 2015b. Prescribed Fire Alters Dissolved Organic Matter and Disinfection By-Product Precursors in Forested Watersheds-Part I. A Controlled Laboratory Study.
  • Matteo, M., Randhir, T., Bloniarz, D., 2006. Watershed-Scale Impacts of Forest Buffers on Water Quality and Runoff in Urbanizing Environment. J Water Resour Plan Manag 132. https://doi.org/10.1061/(asce)0733-9496(2006)132:3(144)
  • MAZUMDER, A., CHATTERJEE, D., BISWAS, M., KUMAR, P., 2015. Impact of Forest Intervention on Water and Soil Quality Case Studies. https://doi.org/10.15224/978-1-63248-084-2-38
  • McCullough, I.M., Brentrup, J.A., Wagner, T., Lapierre, J.F., Henneck, J., Paul, A.M., Belair, M., Moritz, M.A., Filstrup, C.T., 2023. Fire Characteristics and Hydrologic Connectivity Influence Short-Term Responses of North Temperate Lakes to Wildfire. Geophys Res Lett 50. https://doi.org/10.1029/2023GL103953
  • Näthe, K., Levia, D.F., Tischer, A., Michalzik, B., 2018. Low-intensity surface fire effects on carbon and nitrogen cycling in soil and soil solution of a Scots pine forest in central Germany. Catena (Amst) 162. https://doi.org/10.1016/j.catena.2017.10.026
  • South Carolina State Climatology Office (SCSCO), 2017a. WEEKLY SOUTH CAROLINA WEATHER 2017 [WWW Document]. URL https://dnr.sc.gov/climate/sco/ClimateData/weekly/wk010117.php (accessed 4.19.25).
  • National Weather Service (NWS), 2017b. National Oceanic and Atmospheric Administration [WWW Document]. Climatological Data, SC. URL https://www.weather.gov/ (accessed 4.21.25).
  • Olivares, C.I., Uzun, H., Erdem, C.U., Zhang, W., Trettin, C., Liu, Y., Burton, S.D., Robinson, E.W., Karanfil, T., Chow, A.T., 2021. Increased Organohalogen Diversity after Disinfection of Water from a Prescribed Burned Watershed. ACS ES and T Water 1. https://doi.org/10.1021/acsestwater.1c00015
  • Olivares, C.I., Zhang, W., Uzun, H., Erdem, C.U., Majidzadeh, H., Trettin, C., Karanfil, T., Chow, A., 2019. Optical in-situ sensors capture dissolved organic carbon (DOC) dynamics after prescribed fire in high-DOC forest watersheds. Int J Wildland Fire 28. https://doi.org/10.1071/WF18175
  • Orlova, J., Olefeldt, D., Yasinski, J.H., Anderson, A.E., 2020. Effects of prescribed burn on nutrient and dissolved organic matter characteristics in peatland shallow groundwater. Fire. https://doi.org/10.3390/fire3030053
  • Paul, M.J., LeDuc, S.D., Lassiter, M.G., Moorhead, L.C., Noyes, P.D., Leibowitz, S.G., 2022. Wildfire Induces Changes in Receiving Waters: A Review With Considerations for Water Quality Management. Water Resour Res. https://doi.org/10.1029/2021WR030699
  • Perry, C.D., Vellidis, G., Lowrance, R., Thomas, D.L., 1999. Watershed-Scale Water Quality Impacts of Riparian Forest Management. J Water Resour Plan Manag 125. https://doi.org/10.1061/(asce)0733-9496(1999)125:3(117)
  • Raoelison, O.D., Valenca, R., Lee, A., Karim, S., Webster, J.P., Poulin, B.A., Mohanty, S.K., 2023. Wildfire impacts on surface water quality parameters: Cause of data variability and reporting needs. Environmental Pollution. https://doi.org/10.1016/j.envpol.2022.120713
  • Reilly, M.J., Norman, S.P., O’Brien, J.J., Loudermilk, E.L., 2022. Drivers and ecological impacts of a wildfire outbreak in the southern Appalachian Mountains after decades of fire exclusion. For Ecol Manage. https://doi.org/10.1016/j.foreco.2022.120500
  • Richardson, S.D., Plewa, M.J., Wagner, E.D., Schoeny, R., DeMarini, D.M., 2007. Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: A review and roadmap for research. Mutat Res Rev Mutat Res. https://doi.org/10.1016/j.mrrev.2007.09.001
  • Robbins, Z.J., Loudermilk, E.L., Mozelewski, T.G., Jones, K., Scheller, R.M., 2024. Fire regimes of the Southern Appalachians may radically shift under climate change. Fire Ecology 20. https://doi.org/10.1186/s42408-023-00231-1
  • Rodríguez, A., Durán, J., Fernández-Palacios, J.M., Gallardo, A., 2009. Short-term wildfire effects on the spatial pattern and scale of labile organic-N and inorganic-N and P pools. For Ecol Manage 257, 739–746. https://doi.org/10.1016/j.foreco.2008.10.006
  • Rodríguez-Cardona, B.M., Coble, A.A., Wymore, A.S., Kolosov, R., Podgorski, D.C., Zito, P., Spencer, R.G.M., Prokushkin, A.S., McDowell, W.H., 2020. Wildfires lead to decreased carbon and increased nitrogen concentrations in upland arctic streams. Sci Rep 10. https://doi.org/10.1038/s41598-020-65520-0
  • Ruecker, A., Uzun, H., Karanfil, T., Tsui, M.T.K., Chow, A.T., 2017. Disinfection byproduct precursor dynamics and water treatability during an extreme flooding event in a coastal blackwater river in southeastern United States. Chemosphere 188. https://doi.org/10.1016/j.chemosphere.2017.08.122
  • Sakulich, J., Poulos, H.M., Gatewood, R.G., Wogan, K.A., Marks, C., Taylor, A.H., 2022. Low-Severity Wildfire Shifts Mixed Conifer Forests toward Historical Stand Structure in Guadalupe Mountains National Park, Texas, USA. Fire 5. https://doi.org/10.3390/fire5040119
  • Schulze, S.S., Fischer, E.C., 2021. Prediction of Water Distribution System Contamination Based on Wildfire Burn Severity in Wildland Urban Interface Communities. ACS ES and T Water 1, 291–299. https://doi.org/10.1021/ACSESTWATER.0C00073
  • Shah, N.W., Baillie, B.R., Bishop, K., Ferraz, S., Högbom, L., Nettles, J., 2022. The effects of forest management on water quality. For Ecol Manage. https://doi.org/10.1016/j.foreco.2022.120397
  • Singer, R., Brown, S., 2018. Impact of Soil Filtration on Metals, Nutrients, and Estrogenic Activity of Reclaimed Water. J Environ Qual 47. https://doi.org/10.2134/jeq2018.03.0109
  • Son, J.H., Kim, S., Carlson, K.H., 2015. Effects of wildfire on river water quality and riverbed sediment phosphorus. Water Air Soil Pollut 226. https://doi.org/10.1007/s11270-014-2269-2
  • South Carolina Forestry Commission (SCFC), 2017. PINNACLE MOUNTAIN FIRE A FIVE-YEAR RETROSPECTIVE OF THE LARGEST WILDFIRE IN UPSTATE HISTORY-Photo courtesy of John Gunther.
  • Trickett, T.C., 2018. Fire and Vegetation Dynamics in the Southern Appalachian Fire and Vegetation Dynamics in the Southern Appalachian Mountains Mountains.
  • Tran, T., Baribeau, H., Sullivan, L., 2021. Mitigate Wildfire Impacts on Drinking Water Quality and Operations. Opflow 47, 10–15. https://doi.org/10.1002/opfl.1543
  • Uzun, H., Dahlgren, R.A., Olivares, C., Erdem, C.U., Karanfil, T., Chow, A.T., 2020a. Two years of post-wildfire impacts on dissolved organic matter, nitrogen, and precursors of disinfection by-products in California stream waters. Water Res 181. https://doi.org/10.1016/j.watres.2020.115891
  • Uzun, H., Kim, D., Karanfil, T., 2019. Removal of wastewater and polymer derived N-nitrosodimethylamine precursors with integrated use of chlorine and chlorine dioxide. Chemosphere 216. https://doi.org/10.1016/j.chemosphere.2018.10.088
  • Uzun, H., Kim, D., Karanfil, T., 2018. Deactivation of wastewater-derived N-nitrosodimethylamine precursors with chlorine dioxide oxidation and the effect of pH. Science of the Total Environment 635. https://doi.org/10.1016/j.scitotenv.2018.04.148
  • Uzun, H., Kim, D., Karanfil, T., 2017. The removal of n-nitrosodimethylamine formation potential in drinking water treatment plants. J Am Water Works Assoc 109. https://doi.org/10.5942/jawwa.2017.109.0047
  • Uzun, H., Kim, D., Karanfil, T., 2015. Seasonal and temporal patterns of NDMA formation potentials in surface waters. Water Res 69. https://doi.org/10.1016/j.watres.2014.11.017
  • Uzun, H., Zhang, W., Olivares, C.I., Erdem, C.U., Coates, T.A., Karanfil, T., Chow, A.T., 2020b. Effect of prescribed fires on the export of dissolved organic matter, precursors of disinfection by-products, and water treatability. Water Res 187. https://doi.org/10.1016/j.watres.2020.116385
  • Wagner, E.D., Plewa, M.J., 2017. CHO cell cytotoxicity and genotoxicity analyses of disinfection by-products: An updated review. J Environ Sci (China). https://doi.org/10.1016/j.jes.2017.04.021
  • Wang, S., Wang, W., Chen, J., Zhang, B., Zhao, L., Jiang, X., 2020. Characteristics of dissolved organic matter and its role in lake eutrophication at the early stage of algal blooms-A case study of Lake Taihu, China. Water (Switzerland) 12. https://doi.org/10.3390/w12082278
  • Writer, J.H., Hohner, A., Oropeza, J., Schmidt, A., Cawley, K., Rosario-Ortiz, F.L., 2014. Water treatment implications after the High Park Wildfire in Colorado. J Am Water Works Assoc 106, 85–86. https://doi.org/10.5942/jawwa.2014.106.0055
  • Wu, X., Sverdrup, E., Mastrandrea, M.D., Wara, M.W., Wager, S., 2023. Low-intensity fires mitigate the risk of high-intensity wildfires in California’s forests. Sci Adv 9. https://doi.org/10.1126/sciadv.adi4123
  • Yang, L., Kim, D., Uzun, H., Karanfil, T., Hur, J., 2015. Assessing trihalomethanes (THMs) and N-nitrosodimethylamine (NDMA) formation potentials in drinking water treatment plants using fluorescence spectroscopy and parallel factor analysis. Chemosphere 121. https://doi.org/10.1016/j.chemosphere.2014.11.033
Toplam 81 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Çevre Kirliliği ve Önlenmesi, Sağlık ve Ekolojik Risk Değerlendirmesi, Su Kaynakları Mühendisliği
Bölüm Araştırma Makaleleri \ Research Articles
Yazarlar

Habibullah Uzun 0000-0001-7675-0885

Yayımlanma Tarihi 27 Haziran 2025
Gönderilme Tarihi 23 Şubat 2025
Kabul Tarihi 20 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 13 Sayı: 2

Kaynak Göster

APA Uzun, H. (2025). IMPACT OF LOW-SEVERITY WILDFIRE ON LARGE WATER BODIES: WATER QUALITY AND DISINFECTION BY-PRODUCT PRECURSORS. Mühendislik Bilimleri Ve Tasarım Dergisi, 13(2), 582-593. https://doi.org/10.21923/jesd.1645533