GRAPHENE QUANTUM DOTS AND ITS DERIVATIVES AS A POTENTIAL INHIBITOR OF GLUTATHIONE S-TRANSFERASE PI-1 ISOENZYME: A COMPUTATIONAL STUDY
Yıl 2025,
Cilt: 49 Sayı: 2, 14 - 14
Murat Kılıç
,
Bahadır Boyacıoğlu
Öz
Objective: Phase II detoxification enzymes called Glutathione S-Transferases (GSTs) protect our bodies from the harmful effects of xenobiotics. The GSTP1 isoenzyme not only detoxifies toxic substances but also contributes to cancer treatment resistance. The earliest and most potent GST inhibitor is ethacrynic acid (EA). This work compares graphene quantum dots (GQDs) with EA that has been shown to be beneficial in anticancer investigations, using molecular docking analysis in order to offer the idea of a possible inhibitor of GSTP1.
Material and Method: The density functional theory (DFT) method was applied to theoretical calculations on the GQDs compound using Gaussview 5.0 software. The application Gaussian 09 was used to refine the geometry. Calculations of molecular electrostatic potential (MEP) were used to identify the compounds' reactive sites. PyRx Tools and AutoDock Vina software were used to conduct molecular docking studies between the optimized EA and the GQDs molecule with GSTP1. The receptor-ligand interactions were visualized using Discover Studio Visualizer 4.0.
Result and Discussion: GQDs were found to interact with the H Site residues of GSTP1, as in EA. However, their electrophilicity was much lower than EA. We think that they can be GSTP1 inhibitors by increasing their electrophilicity with surface modifications.
Etik Beyan
Our study does not require ethics committee approval.
Kaynakça
- 1. Oguztuzun, S., Abu-Hijleh, A., Coban, T., Bulbul, D., Kilic, M., Iscan, M., Iscan, M. (2011). GST isoenzymes in matched normal and neoplastic breast tissue. Neoplasma, 58(4), 304-310. [CrossRef]
- 2. Hayes, J.D., Flanagan, J.U., Jowsey, I.R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45, 51-88. [CrossRef]
- 3. Wang, H.B., Jin, X.L., Zheng, J.F., Wang, F., Dai, F., Zhou, B. (2017). Developing piperlongumine-directed glutathione S-transferase inhibitors by an electrophilicity-based strategy. European Journal of Medicinal Chemistry, 126, 517-525. [CrossRef]
- 4. Kılıç, M. (2013). PhD Thesis. Determination of gene and protein expression levels of cytochrome P450 and Glutathione S-Tranferase isoenzymes in non small cell lung carcinoma. Department of Biology, Graduate School of Natural and Applied Sciences, Kırıkkale University, Kırıkkale, Türkiye.
- 5. Dong, S.C., Sha, H.H., Xu, X.Y., Hu, T.M., Lou, R., Li, H., Wu, J.Z., Dan, C., Feng, J. (2018). Glutathione S-transferase π: A potential role in antitumor therapy. Drug Design, Development and Therapy, 12, 3535-3547. [CrossRef]
- 6. Prejanò, M., Marino, T., Russo, N. (2018). On the inhibition mechanism of glutathione transferase p1 by piperlongumine. Insight from theory. Frontiers in Chemistry, 6, 606. [CrossRef]
- 7. Townsend, D.M., Tew, K.D. (2003). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 22(47), 7369-7375. [CrossRef]
- 8. Lushchak V.I. (2012). Glutathione homeostasis and functions: Potential targets for medical interventions. Journal of Amino Acids, 2012, 736837. [CrossRef]
- 9. Ye, Z.W., Zhang, J., Townsend, D.M., Tew, K. D. (2015). Oxidative stress, redox regulation and diseases of cellular differentiation. Biochimica et Biophysica Acta, 1850(8), 1607-1621. [CrossRef]
- 10. Savic-Radojevic, A., Mimic-Oka, J., Pljesa-Ercegovac, M., Opacic, M., Dragicevic, D., Kravic, T., Djokic, M., Micic, S., Simic, T. (2007). Glutathione S-transferase-P1 expression correlates with increased antioxidant capacity in transitional cell carcinoma of the urinary bladder. European Urology, 52(2), 470-477. [CrossRef]
- 11. Chatterjee, A., Gupta, S. (2018). The multifaceted role of glutathione S-transferases in cancer. Cancer Letters, 433, 33-42. [CrossRef]
- 12. Shi, H., Lu, D., Shu, Y., Shi, W., Lu, S., Wang, K. (2008). Expression of multidrug-resistance-related proteins P-glycoprotein, glutathione-S-transferases, topoisomerase-II and lung resistance protein in primary gastric cardiac adenocarcinoma. Cancer Investigation, 26(4), 344-351. [CrossRef]
- 13. Oguztüzun, S., Aydin, M., Demirag, F., Yazici, U., Ozhavzali, M., Kiliç, M., Işcan, M. (2010). The expression of GST isoenzymes and p53 in non-small cell lung cancer. Folia Histochemica et Cytobiologica, 48(1), 122-127. [CrossRef]
- 14. Kaya Kocdogan, A., Kilic, M., Oguztuzun, S., Benzer, E., Dilek, G., Kahraman, Y., Gulcelik, M.A. (2025). Investigation of GST and drug resistance protein expressions in relation to chemotherapy in breast cancer. Health Problems of Civilization, 19(2), (Epub/Online First) [CrossRef]
- 15. Singh, R.R., Mohammad, J., Orr, M., Reindl, K.M. (2020). Glutathione S-transferase pi-1 knockdown reduces pancreatic ductal adenocarcinoma growth by activating oxidative stress response pathways. Cancers, 12(6), 1501. [CrossRef]
- 16. Ezzikouri, S., Benjelloun, S., Pineau, P. (2013). Human genetic variation and the risk of hepatocellular carcinoma development. Hepatology International, 7(3), 820-831. [CrossRef]
- 17. Özer, G., Kaygın, P., Dirican, O., Oğuztüzün, S., Yılmaz Sarıaltın, S., Güler Şimşek, G., Erdem, A., Kılıç, M., Çoban, T. (2023). GSTM1, GSTP1, p53 as some probable predictors of prognosis in primary and metastatic epithelial ovarian cancer. The European Research Journal, 9(3), 477-483. [CrossRef]
- 18. Bennaceur-Griscelli, A., Bosq, J., Koscielny, S., Lefrère, F., Turhan, A., Brousse, N., Hermine, O., Ribrag, V. (2004). High level of glutathione-S-transferase pi expression in mantle cell lymphomas. Clinical Cancer Research, 10(9), 3029-3034. [CrossRef]
- 19. Li, G., Dai, J., Wang, Y., Chen, G., Liu, X., Miao, F., Bai, L., Chen, Y. (2002). Overexpression and its clinical significance of multi-drug resistance associated genes in lung cancer tissues. Zhongguo fei ai za zhi=Chinese Journal of Lung Cancer, 5(1), 35-37.
- 20. Hsu, C.H., Chen, C.L., Hong, R.L., Chen, K.L., Lin, J.F., Cheng, A.L. (2002). Prognostic value of multidrug resistance 1, glutathione-S-transferase-pi and p53 in advanced nasopharyngeal carcinoma treated with systemic chemotherapy. Oncology, 62(4), 305-312. [CrossRef]
- 21. Federici, L., Lo Sterzo, C., Pezzola, S., Di Matteo, A., Scaloni, F., Federici, G., Caccuri, A.M. (2009). Structural basis for the binding of the anticancer compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol to human glutathione S-transferases. Cancer Research, 69(20), 8025-8034. [CrossRef]
- 22. Harshbarger, W., Gondi, S., Ficarro, S.B., Hunter, J., Udayakumar, D., Gurbani, D., Singer, W.D., Liu, Y., Li, L., Marto, J.A., Westover, K.D. (2017). Structural and biochemical analyses reveal the mechanism of glutathione S-transferase pi 1 inhibition by the anti-cancer compound piperlongumine. The Journal of Biological Chemistry, 292(1), 112-120. [CrossRef]
- 23. Zhao, G., Yu, T., Wang, R., Wang, X., Jing, Y. (2005). Synthesis and structure-activity relationship of ethacrynic acid analogues on glutathione-S-transferase P1-1 activity inhibition. Bioorganic & Medicinal Chemistry, 13(12), 4056-4062. [CrossRef]
- 24. Ploemen, J.H., van Ommen, B., van Bladeren, P.J. (1990). Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochemical Pharmacology, 40(7), 1631-1635. [CrossRef]
- 25. Oakley, A.J., Rossjohn, J., Lo Bello, M., Caccuri, A.M., Federici, G., Parker, M.W. (1997). The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Biochemistry, 36(3), 576-585. [CrossRef]
- 26. Punganuru, S.R., Mostofa, A.G.M., Madala, H.R., Basak, D., Srivenugopal, K.S. (2016). Potent anti-proliferative actions of a non-diuretic glucosamine derivative of ethacrynic acid. Bioorganic & Medicinal chemistry Letters, 26(12), 2829-2833. [CrossRef]
- 27. Sau, A., Pellizzari Tregno, F., Valentino, F., Federici, G., Caccuri, A.M. (2010). Glutathione transferases and development of new principles to overcome drug resistance. Archives of Biochemistry and Biophysics, 500(2), 116-122. [CrossRef]
- 28. Parker, L.J., Italiano, L.C., Morton, C.J., Hancock, N.C., Ascher, D.B., Aitken, J.B., Harris, H.H., Campomanes, P., Rothlisberger, U., De Luca, A., Lo Bello, M., Ang, W.H., Dyson, P.J., Parker, M.W. (2011). Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation. Chemistry-A European Journal, 17(28), 7806-7816. [CrossRef]
- 29. Tozkoparan, B., Aytaç, S.P. (2007). Kanser kemoterapisinde terapötik hedef olarak glutatyon S-transferazlar. Hacettepe University Journal of the Faculty of Pharmacy, 2, 139-164.
- 30. Gökçe, B. (2023). Some anticancer agents as effective glutathione S-transferase (GST) inhibitors. Open Chemistry, 21(1), 20230159. [CrossRef]
- 31. Gunes, B.A., Kirlangic, O.F., Kilic, M., Sunguroglu, A., Ozgurtas, T., Sezginer, E.K., Boyacioglu, B., Unver, H., Yildiz, M. (2024). Palladium metal nanocomposites based on pei-functionalized nitrogen-doped graphene quantum dots: Synthesis, characterization, density functional theory modeling, and cell cycle arrest effects on human ovarian cancer cells. ACS Omega, 9(11), 13342-13358. [CrossRef]
- 32. Zhang, B., Wei, P., Zhou, Z., Wei, T. (2016). Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Advanced Drug Delivery Reviews, 105(Pt B), 145-162. [CrossRef]
- 33. Yapar, G., Şenel, B., Demir, N., Yildiz, M. (2020). Synthesis and characterization of 2-aminoethylphosphonic acid-functionalized graphene quantum dots: Biological activity, antioxidant activity and cell viability. Indian Journal of Chemistry-Section A (IJCA), 59(3), 317-323.
- 34. Karatay, A., Erdener Çirali, D., Gurcan, C., Yildiz, E., Yilmazer Aktuna, A., Boyacioğlu, B., Unver, H., Yildiz, M., Elmali, A. (2022). Amino-functionalized nitrogen-doped graphene quantum dots and silver-graphene based nanocomposites: Ultrafast charge transfer and a proof-of-concept study for bioimaging applications. Journal of Photochemistry and Photobiology A-Chemistry, 426, 113741. [CrossRef]
- 35. Ou, L., Lin, S., Song, B., Liu, J., Lai, R., Shao, L. (2017). The mechanisms of graphene-based materials-induced programmed cell death: A review of apoptosis, autophagy, and programmed necrosis. International Journal of Nanomedicine, 12, 6633–6646. [CrossRef]
- 36. Ramachandran, P., Khor, B.K., Lee, C.Y., Doong, R.A., Oon, C.E., Thanh, N.T.K., Lee, H.L. (2022). N-doped graphene quantum dots/titanium dioxide nanocomposites: A study of ROS-forming mechanisms, cytotoxicity and photodynamic therapy. Biomedicines, 10(2), 421. [CrossRef]
- 37. Wang, C., Wu, C., Zhou, X., Han, T., Xin, X., Wu, J., Zhang, J., Guo, S. (2013). Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Scientific Reports, 3(1), 2852. [CrossRef]
- 38. Kargozar, S., Hoseini, S.J., Milan, P.B., Hooshmand, S., Kim, H.W., Mozafari, M. (2020). Quantum dots: A review from concept to clinic. Biotechnology Journal, 15(12), e2000117. [CrossRef]
- 39. Wagner, A.M., Knipe, J.M., Orive, G., Peppas, N.A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44-63. [CrossRef]
- 40. Şenel, B., Demir, N., Büyükköroğlu, G., Yıldız, M. (2019). Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharmaceutical Journal, 27(6), 846-858. [CrossRef]
- 41. Salami, N., Shokri, A. (2021). Electronic structure of solids and molecules. In: Ghaedi, M. (Ed.), Photocatalysis: Fundamental Processes and Applications, (pp. 325-373). Cambridge: Elsevier Academic Press Interface Science and Technology Book Series. [CrossRef]
- 42. Dennington R., Keith T., Millam J. (2009). GaussView, version 5, Semichem Inc., Shawnee Mission, Kansas, USA.
- 43. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J. (2016) Gaussian 09 Rev. D.01. Gaussian Inc., (Wallingford).
- 44. Becke, A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98 (7), 5648-5652. [CrossRef]
- 45. Lee, C., Yang, W., Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. [CrossRef]
- 46. Kondapuram, S.K., Sarvagalla, S., Coumar, M.S. Docking-based virtual screening using PyRx Tool: Autophagy Target Vps34 as a Case Study. In: Coumar, M.S. (Ed.), Molecular Docking for Computer-Aided Drug Design Fundamentals, Techniques, Resources and Applications, (pp. 463-477). Cambridge: Elsevier Academic Press. [CrossRef]
- 47. Trott, O., Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. [CrossRef]
- 48. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612. [CrossRef]
- 49. Biovia, D.S. (2021). Discovery Studio, version 21.1. 0. San Diego: Dassault Systèmes.
- 50. Vatanparast, M., Shariatinia, Z. (2018). Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Structural Chemistry 29, 1427-1448. [CrossRef]
- 51. Reinemer, P., Dirr, H.W., Ladenstein, R., Huber, R., Lo Bello, M., Federici, G., Parker, M.W. (1992). Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. Journal of Molecular Biology, 227(1), 214-226. [CrossRef]
- 52. Ji, X., Tordova, M., O'Donnell, R., Parsons, J.F., Hayden, J.B., Gilliland, G.L., Zimniak, P. (1997). Structure and function of the xenobiotic substrate-binding site and location of a potential non-substrate-binding site in a class pi glutathione S-transferase. Biochemistry, 36(32), 9690-9702. [CrossRef]
- 53. Oakley, A.J., Lo Bello, M., Battistoni, A., Ricci, G., Rossjohn, J., Villar, H.O., Parker, M.W. (1997). The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. Journal of Molecular Biology, 274(1), 84-100. [CrossRef]
- 54. Zhang, J., Ye, ZW., Janssen-Heininger, Y., Townsend, D.M., Tew, K.D. (2020). Development of telintra as an inhibitor of glutathione S-transferase P. In: Schmidt, H.H.H.W., Ghezzi, P., Cuadrado, A. (Eds), Reactive Oxygen Species Network Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology, 264, (pp. 71-91). Cham: Springer. [CrossRef]
- 55. Kalkal, A., Kadian, S., Pradhan, R., Manik, G., Packirisamy, G. (2021). Recent advances in graphene quantum dot-based optical and electrochemical (bio) analytical sensors. Materials Advances, 2(17), 5513-5541. [CrossRef]
- 56. Mousavi, S.M., Hashemi, S.A., Kalashgrani, M.Y., Omidifar, N., Bahrani, S., Vijayakameswara Rao, N., Babapoor, A., Gholami, A., Chiang, W.H. (2022). Bioactive graphene quantum dots based polymer composite for biomedical applications. Polymers, 14(3), 617. [CrossRef]
- 57. Ma, Y., Liu, Y., Wang, Y., Guo, Y., Li, Y., Li, R., Kong, X., Han, Q., Wei, R., Wang, J. (2022). The nanocomposite system comprising folic acid-modified graphene quantum dots loaded with evodiamine in the treatment of oral squamous cell carcinoma. Materials & Design, 220, 110838. [CrossRef]
- 58. Geetha Bai, R., Muthoosamy, K., Tuvikene, R., Nay Ming, H., Manickam, S. (2021). Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials, 11(5), 1272. [CrossRef]
GLUTATYON S-TRANSFERAZ PI-1 İZOENZİMİNİN POTANSİYEL BİR İNHİBİTÖRÜ OLARAK GRAFEN KUANTUM NOKTALARI VE TÜREVLERİ: HESAPLAMALI BİR ÇALIŞMA
Yıl 2025,
Cilt: 49 Sayı: 2, 14 - 14
Murat Kılıç
,
Bahadır Boyacıoğlu
Öz
Amaç: Glutatyon S-Transferazlar (GST'ler) adı verilen Faz II detoksifikasyon enzimleri vücudumuzu ksenobiyotiklerin zararlı etkilerinden korur. GSTP1 izoenzimi yalnızca toksik maddeleri detoksifiye etmekle kalmaz, aynı zamanda kanser tedavisi direncine de katkıda bulunur. En erken ve en etkili GST inhibitörü etakrinik asittir (EA). Bu çalışma, GSTP1'in olası bir inhibitörü fikrini sunmak için moleküler yerleştirme analizini kullanarak antikanser araştırmalarında faydalı olduğu gösterilen EA ile grafen kuantum noktalarını (GQD'ler) karşılaştırmaktadır.
Gereç ve Yöntem: Gaussview 5.0 yazılımı kullanılarak, yoğunluk fonksiyonel teorisi (DFT) yöntemi GQDs bileşiği üzerindeki teorik hesaplamalara uygulandı. Geometriyi iyileştirmek için Gaussian 09 uygulaması kullanıldı. Bileşiklerin reaktif bölgelerini belirlemek için moleküler elektrostatik potansiyel (MEP) hesaplamaları kullanıldı. Optimize edilmiş EA ve GQDs molekülü ile GSTP1 arasında moleküler yerleştirme çalışmaları yürütmek için PyRx Tools ve AutoDock Vina yazılımı kullanıldı. Reseptör-ligand etkileşimleri Discover Studio Visualizer 4.0 kullanılarak görselleştirildi.
Sonuç ve Tartışma: GQD’lar, EA’da olduğu gibi GSTP1’in H Site rezidüleriyle etkileşimde olduğu bulundu. Ancak, elektrofiliklik kapasitesi EA’ya göre çok daha düşüktü. Yüzey modifikasyonları ile elektrofilikliği artırılarak, GSTP1 inhibitörü olabileceği düşüncesindeyiz.
Kaynakça
- 1. Oguztuzun, S., Abu-Hijleh, A., Coban, T., Bulbul, D., Kilic, M., Iscan, M., Iscan, M. (2011). GST isoenzymes in matched normal and neoplastic breast tissue. Neoplasma, 58(4), 304-310. [CrossRef]
- 2. Hayes, J.D., Flanagan, J.U., Jowsey, I.R. (2005). Glutathione transferases. Annual Review of Pharmacology and Toxicology, 45, 51-88. [CrossRef]
- 3. Wang, H.B., Jin, X.L., Zheng, J.F., Wang, F., Dai, F., Zhou, B. (2017). Developing piperlongumine-directed glutathione S-transferase inhibitors by an electrophilicity-based strategy. European Journal of Medicinal Chemistry, 126, 517-525. [CrossRef]
- 4. Kılıç, M. (2013). PhD Thesis. Determination of gene and protein expression levels of cytochrome P450 and Glutathione S-Tranferase isoenzymes in non small cell lung carcinoma. Department of Biology, Graduate School of Natural and Applied Sciences, Kırıkkale University, Kırıkkale, Türkiye.
- 5. Dong, S.C., Sha, H.H., Xu, X.Y., Hu, T.M., Lou, R., Li, H., Wu, J.Z., Dan, C., Feng, J. (2018). Glutathione S-transferase π: A potential role in antitumor therapy. Drug Design, Development and Therapy, 12, 3535-3547. [CrossRef]
- 6. Prejanò, M., Marino, T., Russo, N. (2018). On the inhibition mechanism of glutathione transferase p1 by piperlongumine. Insight from theory. Frontiers in Chemistry, 6, 606. [CrossRef]
- 7. Townsend, D.M., Tew, K.D. (2003). The role of glutathione-S-transferase in anti-cancer drug resistance. Oncogene, 22(47), 7369-7375. [CrossRef]
- 8. Lushchak V.I. (2012). Glutathione homeostasis and functions: Potential targets for medical interventions. Journal of Amino Acids, 2012, 736837. [CrossRef]
- 9. Ye, Z.W., Zhang, J., Townsend, D.M., Tew, K. D. (2015). Oxidative stress, redox regulation and diseases of cellular differentiation. Biochimica et Biophysica Acta, 1850(8), 1607-1621. [CrossRef]
- 10. Savic-Radojevic, A., Mimic-Oka, J., Pljesa-Ercegovac, M., Opacic, M., Dragicevic, D., Kravic, T., Djokic, M., Micic, S., Simic, T. (2007). Glutathione S-transferase-P1 expression correlates with increased antioxidant capacity in transitional cell carcinoma of the urinary bladder. European Urology, 52(2), 470-477. [CrossRef]
- 11. Chatterjee, A., Gupta, S. (2018). The multifaceted role of glutathione S-transferases in cancer. Cancer Letters, 433, 33-42. [CrossRef]
- 12. Shi, H., Lu, D., Shu, Y., Shi, W., Lu, S., Wang, K. (2008). Expression of multidrug-resistance-related proteins P-glycoprotein, glutathione-S-transferases, topoisomerase-II and lung resistance protein in primary gastric cardiac adenocarcinoma. Cancer Investigation, 26(4), 344-351. [CrossRef]
- 13. Oguztüzun, S., Aydin, M., Demirag, F., Yazici, U., Ozhavzali, M., Kiliç, M., Işcan, M. (2010). The expression of GST isoenzymes and p53 in non-small cell lung cancer. Folia Histochemica et Cytobiologica, 48(1), 122-127. [CrossRef]
- 14. Kaya Kocdogan, A., Kilic, M., Oguztuzun, S., Benzer, E., Dilek, G., Kahraman, Y., Gulcelik, M.A. (2025). Investigation of GST and drug resistance protein expressions in relation to chemotherapy in breast cancer. Health Problems of Civilization, 19(2), (Epub/Online First) [CrossRef]
- 15. Singh, R.R., Mohammad, J., Orr, M., Reindl, K.M. (2020). Glutathione S-transferase pi-1 knockdown reduces pancreatic ductal adenocarcinoma growth by activating oxidative stress response pathways. Cancers, 12(6), 1501. [CrossRef]
- 16. Ezzikouri, S., Benjelloun, S., Pineau, P. (2013). Human genetic variation and the risk of hepatocellular carcinoma development. Hepatology International, 7(3), 820-831. [CrossRef]
- 17. Özer, G., Kaygın, P., Dirican, O., Oğuztüzün, S., Yılmaz Sarıaltın, S., Güler Şimşek, G., Erdem, A., Kılıç, M., Çoban, T. (2023). GSTM1, GSTP1, p53 as some probable predictors of prognosis in primary and metastatic epithelial ovarian cancer. The European Research Journal, 9(3), 477-483. [CrossRef]
- 18. Bennaceur-Griscelli, A., Bosq, J., Koscielny, S., Lefrère, F., Turhan, A., Brousse, N., Hermine, O., Ribrag, V. (2004). High level of glutathione-S-transferase pi expression in mantle cell lymphomas. Clinical Cancer Research, 10(9), 3029-3034. [CrossRef]
- 19. Li, G., Dai, J., Wang, Y., Chen, G., Liu, X., Miao, F., Bai, L., Chen, Y. (2002). Overexpression and its clinical significance of multi-drug resistance associated genes in lung cancer tissues. Zhongguo fei ai za zhi=Chinese Journal of Lung Cancer, 5(1), 35-37.
- 20. Hsu, C.H., Chen, C.L., Hong, R.L., Chen, K.L., Lin, J.F., Cheng, A.L. (2002). Prognostic value of multidrug resistance 1, glutathione-S-transferase-pi and p53 in advanced nasopharyngeal carcinoma treated with systemic chemotherapy. Oncology, 62(4), 305-312. [CrossRef]
- 21. Federici, L., Lo Sterzo, C., Pezzola, S., Di Matteo, A., Scaloni, F., Federici, G., Caccuri, A.M. (2009). Structural basis for the binding of the anticancer compound 6-(7-nitro-2,1,3-benzoxadiazol-4-ylthio)hexanol to human glutathione S-transferases. Cancer Research, 69(20), 8025-8034. [CrossRef]
- 22. Harshbarger, W., Gondi, S., Ficarro, S.B., Hunter, J., Udayakumar, D., Gurbani, D., Singer, W.D., Liu, Y., Li, L., Marto, J.A., Westover, K.D. (2017). Structural and biochemical analyses reveal the mechanism of glutathione S-transferase pi 1 inhibition by the anti-cancer compound piperlongumine. The Journal of Biological Chemistry, 292(1), 112-120. [CrossRef]
- 23. Zhao, G., Yu, T., Wang, R., Wang, X., Jing, Y. (2005). Synthesis and structure-activity relationship of ethacrynic acid analogues on glutathione-S-transferase P1-1 activity inhibition. Bioorganic & Medicinal Chemistry, 13(12), 4056-4062. [CrossRef]
- 24. Ploemen, J.H., van Ommen, B., van Bladeren, P.J. (1990). Inhibition of rat and human glutathione S-transferase isoenzymes by ethacrynic acid and its glutathione conjugate. Biochemical Pharmacology, 40(7), 1631-1635. [CrossRef]
- 25. Oakley, A.J., Rossjohn, J., Lo Bello, M., Caccuri, A.M., Federici, G., Parker, M.W. (1997). The three-dimensional structure of the human Pi class glutathione transferase P1-1 in complex with the inhibitor ethacrynic acid and its glutathione conjugate. Biochemistry, 36(3), 576-585. [CrossRef]
- 26. Punganuru, S.R., Mostofa, A.G.M., Madala, H.R., Basak, D., Srivenugopal, K.S. (2016). Potent anti-proliferative actions of a non-diuretic glucosamine derivative of ethacrynic acid. Bioorganic & Medicinal chemistry Letters, 26(12), 2829-2833. [CrossRef]
- 27. Sau, A., Pellizzari Tregno, F., Valentino, F., Federici, G., Caccuri, A.M. (2010). Glutathione transferases and development of new principles to overcome drug resistance. Archives of Biochemistry and Biophysics, 500(2), 116-122. [CrossRef]
- 28. Parker, L.J., Italiano, L.C., Morton, C.J., Hancock, N.C., Ascher, D.B., Aitken, J.B., Harris, H.H., Campomanes, P., Rothlisberger, U., De Luca, A., Lo Bello, M., Ang, W.H., Dyson, P.J., Parker, M.W. (2011). Studies of glutathione transferase P1-1 bound to a platinum(IV)-based anticancer compound reveal the molecular basis of its activation. Chemistry-A European Journal, 17(28), 7806-7816. [CrossRef]
- 29. Tozkoparan, B., Aytaç, S.P. (2007). Kanser kemoterapisinde terapötik hedef olarak glutatyon S-transferazlar. Hacettepe University Journal of the Faculty of Pharmacy, 2, 139-164.
- 30. Gökçe, B. (2023). Some anticancer agents as effective glutathione S-transferase (GST) inhibitors. Open Chemistry, 21(1), 20230159. [CrossRef]
- 31. Gunes, B.A., Kirlangic, O.F., Kilic, M., Sunguroglu, A., Ozgurtas, T., Sezginer, E.K., Boyacioglu, B., Unver, H., Yildiz, M. (2024). Palladium metal nanocomposites based on pei-functionalized nitrogen-doped graphene quantum dots: Synthesis, characterization, density functional theory modeling, and cell cycle arrest effects on human ovarian cancer cells. ACS Omega, 9(11), 13342-13358. [CrossRef]
- 32. Zhang, B., Wei, P., Zhou, Z., Wei, T. (2016). Interactions of graphene with mammalian cells: Molecular mechanisms and biomedical insights. Advanced Drug Delivery Reviews, 105(Pt B), 145-162. [CrossRef]
- 33. Yapar, G., Şenel, B., Demir, N., Yildiz, M. (2020). Synthesis and characterization of 2-aminoethylphosphonic acid-functionalized graphene quantum dots: Biological activity, antioxidant activity and cell viability. Indian Journal of Chemistry-Section A (IJCA), 59(3), 317-323.
- 34. Karatay, A., Erdener Çirali, D., Gurcan, C., Yildiz, E., Yilmazer Aktuna, A., Boyacioğlu, B., Unver, H., Yildiz, M., Elmali, A. (2022). Amino-functionalized nitrogen-doped graphene quantum dots and silver-graphene based nanocomposites: Ultrafast charge transfer and a proof-of-concept study for bioimaging applications. Journal of Photochemistry and Photobiology A-Chemistry, 426, 113741. [CrossRef]
- 35. Ou, L., Lin, S., Song, B., Liu, J., Lai, R., Shao, L. (2017). The mechanisms of graphene-based materials-induced programmed cell death: A review of apoptosis, autophagy, and programmed necrosis. International Journal of Nanomedicine, 12, 6633–6646. [CrossRef]
- 36. Ramachandran, P., Khor, B.K., Lee, C.Y., Doong, R.A., Oon, C.E., Thanh, N.T.K., Lee, H.L. (2022). N-doped graphene quantum dots/titanium dioxide nanocomposites: A study of ROS-forming mechanisms, cytotoxicity and photodynamic therapy. Biomedicines, 10(2), 421. [CrossRef]
- 37. Wang, C., Wu, C., Zhou, X., Han, T., Xin, X., Wu, J., Zhang, J., Guo, S. (2013). Enhancing cell nucleus accumulation and DNA cleavage activity of anti-cancer drug via graphene quantum dots. Scientific Reports, 3(1), 2852. [CrossRef]
- 38. Kargozar, S., Hoseini, S.J., Milan, P.B., Hooshmand, S., Kim, H.W., Mozafari, M. (2020). Quantum dots: A review from concept to clinic. Biotechnology Journal, 15(12), e2000117. [CrossRef]
- 39. Wagner, A.M., Knipe, J.M., Orive, G., Peppas, N.A. (2019). Quantum dots in biomedical applications. Acta Biomaterialia, 94, 44-63. [CrossRef]
- 40. Şenel, B., Demir, N., Büyükköroğlu, G., Yıldız, M. (2019). Graphene quantum dots: Synthesis, characterization, cell viability, genotoxicity for biomedical applications. Saudi Pharmaceutical Journal, 27(6), 846-858. [CrossRef]
- 41. Salami, N., Shokri, A. (2021). Electronic structure of solids and molecules. In: Ghaedi, M. (Ed.), Photocatalysis: Fundamental Processes and Applications, (pp. 325-373). Cambridge: Elsevier Academic Press Interface Science and Technology Book Series. [CrossRef]
- 42. Dennington R., Keith T., Millam J. (2009). GaussView, version 5, Semichem Inc., Shawnee Mission, Kansas, USA.
- 43. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Petersson, G.A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A.V., Bloino, J., Janesko, B.G., Gomperts, R., Mennucci, B., Hratchian, H.P., Ortiz, J.V., Izmaylov, A.F., Sonnenberg, J.L., Williams, Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V.G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J.J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Keith, T.A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Millam, J.M., Klene, M., Adamo, C., Cammi, R., Ochterski, J.W., Martin, R.L., Morokuma, K., Farkas, O., Foresman, J.B., Fox, D.J. (2016) Gaussian 09 Rev. D.01. Gaussian Inc., (Wallingford).
- 44. Becke, A.D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98 (7), 5648-5652. [CrossRef]
- 45. Lee, C., Yang, W., Parr, R.G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, 37(2), 785-789. [CrossRef]
- 46. Kondapuram, S.K., Sarvagalla, S., Coumar, M.S. Docking-based virtual screening using PyRx Tool: Autophagy Target Vps34 as a Case Study. In: Coumar, M.S. (Ed.), Molecular Docking for Computer-Aided Drug Design Fundamentals, Techniques, Resources and Applications, (pp. 463-477). Cambridge: Elsevier Academic Press. [CrossRef]
- 47. Trott, O., Olson, A.J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455-461. [CrossRef]
- 48. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E. (2004). UCSF Chimera-A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605-1612. [CrossRef]
- 49. Biovia, D.S. (2021). Discovery Studio, version 21.1. 0. San Diego: Dassault Systèmes.
- 50. Vatanparast, M., Shariatinia, Z. (2018). Computational studies on the doped graphene quantum dots as potential carriers in drug delivery systems for isoniazid drug. Structural Chemistry 29, 1427-1448. [CrossRef]
- 51. Reinemer, P., Dirr, H.W., Ladenstein, R., Huber, R., Lo Bello, M., Federici, G., Parker, M.W. (1992). Three-dimensional structure of class pi glutathione S-transferase from human placenta in complex with S-hexylglutathione at 2.8 A resolution. Journal of Molecular Biology, 227(1), 214-226. [CrossRef]
- 52. Ji, X., Tordova, M., O'Donnell, R., Parsons, J.F., Hayden, J.B., Gilliland, G.L., Zimniak, P. (1997). Structure and function of the xenobiotic substrate-binding site and location of a potential non-substrate-binding site in a class pi glutathione S-transferase. Biochemistry, 36(32), 9690-9702. [CrossRef]
- 53. Oakley, A.J., Lo Bello, M., Battistoni, A., Ricci, G., Rossjohn, J., Villar, H.O., Parker, M.W. (1997). The structures of human glutathione transferase P1-1 in complex with glutathione and various inhibitors at high resolution. Journal of Molecular Biology, 274(1), 84-100. [CrossRef]
- 54. Zhang, J., Ye, ZW., Janssen-Heininger, Y., Townsend, D.M., Tew, K.D. (2020). Development of telintra as an inhibitor of glutathione S-transferase P. In: Schmidt, H.H.H.W., Ghezzi, P., Cuadrado, A. (Eds), Reactive Oxygen Species Network Pharmacology and Therapeutic Applications. Handbook of Experimental Pharmacology, 264, (pp. 71-91). Cham: Springer. [CrossRef]
- 55. Kalkal, A., Kadian, S., Pradhan, R., Manik, G., Packirisamy, G. (2021). Recent advances in graphene quantum dot-based optical and electrochemical (bio) analytical sensors. Materials Advances, 2(17), 5513-5541. [CrossRef]
- 56. Mousavi, S.M., Hashemi, S.A., Kalashgrani, M.Y., Omidifar, N., Bahrani, S., Vijayakameswara Rao, N., Babapoor, A., Gholami, A., Chiang, W.H. (2022). Bioactive graphene quantum dots based polymer composite for biomedical applications. Polymers, 14(3), 617. [CrossRef]
- 57. Ma, Y., Liu, Y., Wang, Y., Guo, Y., Li, Y., Li, R., Kong, X., Han, Q., Wei, R., Wang, J. (2022). The nanocomposite system comprising folic acid-modified graphene quantum dots loaded with evodiamine in the treatment of oral squamous cell carcinoma. Materials & Design, 220, 110838. [CrossRef]
- 58. Geetha Bai, R., Muthoosamy, K., Tuvikene, R., Nay Ming, H., Manickam, S. (2021). Highly sensitive electrochemical biosensor using folic acid-modified reduced graphene oxide for the detection of cancer biomarker. Nanomaterials, 11(5), 1272. [CrossRef]