Araştırma Makalesi
BibTex RIS Kaynak Göster

EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS

Yıl 2025, Cilt: 49 Sayı: 3, 3 - 3
https://doi.org/10.33483/jfpau.1552812

Öz

Objective: This study aimed to determine the antibacterial activity of fourteen natural coumarin derivatives against various bacterial strains including Enterococcus faecalis (ATCC 29212), Staphylococcus aureus (ATCC 6538), Staphylococcus epidermidis (ATCC 12228), Escherichia coli (ATCC 8739), and Salmonella enterica serovar Typhimurium (ATCC 14028).
Material and Method: The antibacterial activity of the following fourteen natural coumarins: 4’-senecioyloxyostol (1), deltoin (2), smyrnioridin (3), karatavicinol (4), badrakemin (5), colladonin (6), badrakemone (7), colladonin acetate (8), anatolicin (9), 14’-hydroxycolladonin (10), 14’-hydroxybadrakemin (11), 14’-acetoxycolladonin (12), 14’-acetoxybadrakemone (13), and 14’-acetoxybadrakemin (14) was investigated by the disc diffusion method.
Result and Discussion: Among the microorganisms tested, Staphylococcus epidermidis showed the highest sensitivity to coumarin derivatives, while Escherichia coli was the least sensitive. Colladonin and colladonin acetate showed activity against all bacterial strains tested, except E. coli and S. enterica serovar Typhimurium, respectively. In particular, 4’-senecioyloxyostol exhibited the strongest antibacterial activity at a concentration of 64 µg/disc, with zones of inhibition ranging from 6.6 to 7.5 mm.

Kaynakça

  • 1. Ispiryan, A., Atkociuniene, V., Makstutiene, N., Sarkinas, A., Salaseviciene, A., Urbonaviciene, D., Viskelis, J., Pakeltiene, R., Raudone, L. (2024). Correlation between antimicrobial activity values and total phenolic content/antioxidant activity in Rubus idaeus L. Plants, 13(4), 504. [CrossRef]
  • 2. Newman, D.J., Cragg, G.M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629-661. [CrossRef]
  • 3. Newman, D.J., Cragg, G.M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. [CrossRef]
  • 4. Ismael, R.N., Mustafa, Y.F., Al-Qazaz, H.K. (2022). Cancer-curative potential of novel coumarins from watermelon princess: A scenario of their isolation and activity. Eurasian Chemical Communications, 4(7), 657-672.
  • 5. Tsivileva, O.M., Koftin, O.V., Evseeva, N.V. (2022). Coumarins as fungal metabolites with potential medicinal properties. Antibiotics, 11(9), 1156. [CrossRef]
  • 6. Cheke, R.S., Patel, H.M., Patil, V.M., Ansari, I.A., Ambhore, J.P., Shinde, S.D., Kadri, A., Snoussi, M., Adnan, M., Kharkar, P.S., Pasupuleti, V.R., Deshmukh, P.K. (2022). Molecular insights into coumarin analogues as antimicrobial agents: Recent developments in drug discovery. Antibiotics, 11(5), 566. [CrossRef]
  • 7. Sahoo, C.R., Sahoo, J., Mahapatra, M., Lenka, D., Sahu, P.K., Dehury, B., Padhy, R.N., Paidesetty, S.K. (2021). Coumarin derivatives as promising antibacterial agent(s). Arabian Journal of Chemistry, 14(2), 102922. [CrossRef]
  • 8. Sitohy, M., Enan, G., Abdel-Shafi, S., El-Wafa, N.A., El-Gazzar, N., Osman, A., Sitohy, B. (2024). Mapping pathogenic bacteria resistance against common antibiotics and their potential susceptibility to methylated white kidney bean protein. BMC Microbiology, 24(1), 49. [CrossRef]
  • 9. Bankova, R., Popova, T.P. (2017). Antimicrobial activity in vitro of aqueous extracts of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.). International Journal of Current Microbiology and Applied Sciences, 6(3), 1-12. [CrossRef]
  • 10. Ojala, T., Remes, S., Haansuu, P., Vuorela, H., Hiltunen, R., Haahtela, K., Vuorela, P. (2000). Antimicrobial activity of some coumarin containing herbal plants growing in Finland. Journal of Ethnopharmacology, 73(1-2), 299-305. [CrossRef]
  • 11. Gyawali, R., Ibrahim, S.A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412-429. [CrossRef]
  • 12. Sarker, S.D., Nahar, L. (2017). Progress in the Chemistry of Naturally Occurring Coumarins. In: A.D. Kinghorn, H. Falk, S. Gibbons, and J. Kobayashi (Eds.), Progress in the Chemistry of Organic Natural Products 106, (pp. 241-304). Springer: Cham.
  • 13. Song, P.P., Zhao, J., Liu, Z.L., Duan, Y.B., Hou, Y.P., Zhao, C.Q., Wu, M., Wei, M., Wang, N.H., Lv, Y., Han, Z.J. (2017). Evaluation of antifungal activities and structure–activity relationships of coumarin derivatives. Pest Management Science, 73(1), 94-101. [CrossRef]
  • 14. Annunziata, F., Pinna, C., Dallavalle, S., Tamborini, L., Pinto, A. (2020). An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. International Journal of Molecular Sciences, 21(13), 4618. [CrossRef]
  • 15. Znati, M., Zardi-Bergaoui, A., Daami-Remadi, M., Ben Jannet, H. (2020). Semi-synthesis, antibacterial, anticholinesterase activities, and drug likeness properties of new analogues of coumarins isolated from Ferula lutea (Poir.) Maire. Chemistry Africa, 3, 635-645. [CrossRef]
  • 16. Sharifi-Rad, J., Cruz-Martins, N., López-Jornet, P., Lopez, E.P.F., Harun, N., Yeskaliyeva, B., Beyatlı, A., Sytar, O., Shaheen, S., Sharopov, F., Taheri, Y., Docea, A.O., Calina, D., Cho, W.C. (2021). Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxidative Medicine and Cellular Longevity, 2021(1), 6492346. [CrossRef]
  • 17. Al-Rifai, A.A.A., Ayoub, M.T., Shakya, A.K., Abu Safieh, K.A., Mubarak, M.S. (2012). Synthesis, characterization, and antimicrobial activity of some new coumarin derivatives. Medicinal Chemistry Research, 21, 468-476. [CrossRef]
  • 18. Alshibl, H.M., Al-Abdullah, E.S., Haiba, M.E., Alkahtani, H.M., Awad, G.E., Mahmoud, A.H., Ibrahim, B.M.M., Bari, A., Villinger, A. (2020). Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents. Molecules, 25(14), 3251. [CrossRef]
  • 19. Dekić, B.R., Radulo(vić, N.S., Dekić, V.S., Vukićević, R.D., Palić, R.M. (2010). Synthesis and antimicrobial activity of new 4-heteroarylamino coumarin derivatives containing nitrogen and sulfur as heteroatoms. Molecules, 15(4), 2246-2256. [CrossRef]
  • 20. Farshori, N.N., Banday, M.R., Ahmad, A., Khan, A.U., Rauf, A. (2011). 7-Hydroxy-coumarin derivatives: Synthesis, characterization and preliminary antimicrobial activities. Medicinal Chemistry Research, 20, 535-541. [CrossRef]
  • 21. Hu, Y., Shen, Y., Wu, X., Tu, X., Wang, G.X. (2018). Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. European Journal of Medicinal Chemistry, 143, 958-969. [CrossRef]
  • 22. Khan, M.S., Agrawal, R., Ubaidullah, M., Hassan, M.I., Tarannum, N. (2019). Design, synthesis and validation of anti-microbial coumarin derivatives: An efficient green approach. Heliyon, 5(10), e02615. [CrossRef]
  • 23. Kharb, R., Kaur, M., Sharma, A.K. (2013). Imperative advances on antimicrobial activity of coumarin derivatives. International Journal of Pharmaceutical Sciences Review and Research, 20, 87-94.
  • 24. Nuha, D., Evren, A.E., Kapusiz, Ö., Gül, Ü.D., Gundogdu-Karaburun, N., Karaburun, A.C., Berber, H. (2023). Design, synthesis, and antimicrobial activity of novel coumarin derivatives: An in-silico and in-vitro study. Journal of Molecular Structure, 1272, 134166. [CrossRef]
  • 25. Završnik, D., Muratović, S., Špirtović, S., Softić, D., Medić-Šarić, M. (2008). The synthesis and antimicrobial activity of some 4-hydroxycoumarin derivatives. Bosnian Journal of Basic Medical Sciences, 8(3), 277-281. [CrossRef]
  • 26. Li, N., Guo, T.T., Zhou, D. (2018). Bioactive sesquiterpene coumarins from plants. Studies in Natural Products Chemistry, 59, 251-282. [CrossRef]
  • 27. Tan, N., Yazıcı-Tütüniş, S., Bilgin, M., Tan, E., Miski, M. (2017). Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii. Molecules, 22(7), 1098. [CrossRef]
  • 28. Tavakoli, S., Delnavazi, M.R., Hadjiaghaee, R., Jafari-Nodooshan, S., Khalighi-Sigaroodi, F., Akhbari, M., Hadjiakhoondi, A., Yassa, N. (2018). Bioactive coumarins from the roots and fruits of Ferulago trifida Boiss., an endemic species to Iran. Natural Product Research, 32(22), 2724-2728. [CrossRef]
  • 29. Widelski, J., Popova, M., Graikou, K., Glowniak, K., Chinou, I. (2009). Coumarins from Angelica lucida L.-antibacterial activities. Molecules, 14(8), 2729-2734. [CrossRef]
  • 30. Figueroa, M., Rivero-Cruz, I., Rivero-Cruz, B., Bye, R., Navarrete, A., Mata, R. (2007). Constituents, biological activities and quality control parameters of the crude extract and essential oil from Arracacia tolucensis var. multifida. Journal of Ethnopharmacology, 113(1), 125-131. [CrossRef]
  • 31. Alikhanova, N.S., Novruzov, E.N. (2022). Chemical composition and biological activity of Zosima absinthifolia (apiaceae). Chemical Bulletin of Kazakh National University, 105(2), 34-42. [CrossRef]
  • 32. Sun, M., Sun, M., Zhang, J. (2021). Osthole: An overview of its sources, biological activities, and modification development. Medicinal Chemistry Research, 30(10), 1767-1794. [CrossRef]
  • 33. Mottaghipisheh, J. (2021). Oxypeucedanin: Chemotaxonomy, isolation, and bioactivities. Plants, 10(8), 1577. [CrossRef]
  • 34. Tosun, F., Mıhoğlugil, F., Beutler, J.A., Eroğlu Özkan, E., Miski, M. (2020). Neopapillarine, an unusual coumarino-alkaloid from the root extract of neocryptodiscus papillaris with cytotoxic activity on renal cancer cells. Molecules, 25(13), 3040. [CrossRef]
  • 35. Akalgan, D. (2019). Cytotoxic activity of the root extracts of Petroedmondia syriaca (Boiss.) Tamamsch. American Journal of Ethnomedicine, 6, 29-30.
  • 36. Tosun, F., Beutler, J.A., Ransom, T., Miski, M. (2019). Anatolicin, a highly potent and selective cytotoxic sesquiterpene coumarin from the root extract of Heptaptera anatólica. Molecules, 24(6), 1153-1160. [CrossRef]
  • 37. Tosun, F., Aytar, E.C., Beutler, J.A., Wilson, J.A., Miski, M. (2021). Cytotoxic sesquiterpene coumarins from the roots of Heptaptera cilícica. Records of Natural Products, 15(6), 529-536. [CrossRef]
  • 38. Tosun, F., Beutler, J.A., Miski, M. (2023). Coumarins from the dichloromethane root extract of Heptaptera triquetra and their cytotoxic activities. Records Natural Products, 17(6), 998-1005. [CrossRef]
  • 39. Semerci, A.B., İnceçayır, D., Mammadova, V., Hoş, A., Tunç, K. (2020). Antimicrobial activities of Allium staticiforme and Allium subhirsutum. A Journal of the Bangladesh Pharmacological Society, 15(1), 19-23. [CrossRef]
  • 40. de Souza, S.M., Monache, F.D., Smânia Jr, A. (2005). Antibacterial activity of coumarins. Zeitschrift fuer Naturforschung C, 60(9-10), 693-700. [CrossRef]
  • 41. El-Bassuony, A.A. (2007). Antibacterial activity of a novel sesquiterpene coumarin from Ferula sinaica. Asian Journal of Chemistry, 19(3), 2053-2058.
  • 42. Pavlović, I., Petrović, S., Milenković, M., Stanojković, T., Nikolić, D., Krunić, A., Niketić, M. (2015). Antimicrobial and cytotoxic activity of extracts of Ferula heuffelii Griseb. ex Heuff. and its metabolites. Chemistry & Biodiversity, 12(10), 1585-1594. [CrossRef]
  • 43. Walasek, M., Grzegorczyk, A., Malm, A., Skalicka-Wozniak, K. (2015). Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chemistry, 186, 133-138. [CrossRef]
  • 44. Widelski, J., Luca, S.V., Skiba, A., Chinou, I., Marcourt, L., Wolfender, J.L., Skalicka-Wozniak, K. (2018). Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians Tamamsch. Molecules, 23(5), 1222. [CrossRef]
  • 45. Stavri, M., Gibbons, S. (2005). The antimycobacterial constituents of dill (Anethum graveolens). Phytotherapy Research, 19(11), 938-941. [CrossRef]

APIACEAE BİTKİLERİNDEN ELDE EDİLEN DOĞAL KUMARİNLERİN ANTİBAKTERİYEL AKTİVİTELERİNİN DEĞERLENDİRİLMESİ

Yıl 2025, Cilt: 49 Sayı: 3, 3 - 3
https://doi.org/10.33483/jfpau.1552812

Öz

Amaç: Bu çalışmanın amacı, on dört doğal kumarin türevinin Staphylococcus epidermidis (ATCC 12228), Staphylococcus aureus (ATCC 6538), Enterococcus faecalis (ATCC 29212), Escherichia coli (ATCC 8739) ve Salmonella enterica serovar Typhimurium (ATCC 14028) bakteri suşlarına karşı antibakteriyel aktivitesini değerlendirmektir.
Gereç ve Yöntem: On dört doğal kumarinin antibakteriyel aktivitesi: 4’-senecioyloxyostol (1), deltoin (2), smyrnioridin (3), karatavicinol (4), badrakemin (5), colladonin (6), badrakemone (7), colladonin acetate (8), anatolicin (9), 14’-hydroxycolladonin (10), 14’-hydroxybadrakemin (11), 14’-acetoxycolladonin (12), 14’-acetoxybadrakemone (13) ve 14’-acetoxybadrakemin (14) disk difüzyon yöntemi kullanılarak belirlenmiştir.
Sonuç ve Tartışma: Test edilen mikroorganizmalar arasında, Staphylococcus epidermidis kumarin türevlerine karşı en yüksek duyarlılığı gösterirken, Escherichia coli en az duyarlılık gösteren suş olarak belirlenmiştir. Colladonin ve colladonin asetat, sırasıyla E. coli ve S. enterica serovar Typhimurium bakterilerine karşı antibakteriyel aktivite göstermezken, test edilen diğer tüm bakteri suşlarına karşı antibakteriyel aktivite göstermiştir. Özellikle, 4’-senecioyloxyostol 64 µg/disk konsantrasyonunda en güçlü antibakteriyel aktiviteyi 6.6 -7.5 mm zon çapları ile göstermiştir.

Kaynakça

  • 1. Ispiryan, A., Atkociuniene, V., Makstutiene, N., Sarkinas, A., Salaseviciene, A., Urbonaviciene, D., Viskelis, J., Pakeltiene, R., Raudone, L. (2024). Correlation between antimicrobial activity values and total phenolic content/antioxidant activity in Rubus idaeus L. Plants, 13(4), 504. [CrossRef]
  • 2. Newman, D.J., Cragg, G.M. (2016). Natural products as sources of new drugs from 1981 to 2014. Journal of Natural Products, 79(3), 629-661. [CrossRef]
  • 3. Newman, D.J., Cragg, G.M. (2020). Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. Journal of Natural Products, 83(3), 770-803. [CrossRef]
  • 4. Ismael, R.N., Mustafa, Y.F., Al-Qazaz, H.K. (2022). Cancer-curative potential of novel coumarins from watermelon princess: A scenario of their isolation and activity. Eurasian Chemical Communications, 4(7), 657-672.
  • 5. Tsivileva, O.M., Koftin, O.V., Evseeva, N.V. (2022). Coumarins as fungal metabolites with potential medicinal properties. Antibiotics, 11(9), 1156. [CrossRef]
  • 6. Cheke, R.S., Patel, H.M., Patil, V.M., Ansari, I.A., Ambhore, J.P., Shinde, S.D., Kadri, A., Snoussi, M., Adnan, M., Kharkar, P.S., Pasupuleti, V.R., Deshmukh, P.K. (2022). Molecular insights into coumarin analogues as antimicrobial agents: Recent developments in drug discovery. Antibiotics, 11(5), 566. [CrossRef]
  • 7. Sahoo, C.R., Sahoo, J., Mahapatra, M., Lenka, D., Sahu, P.K., Dehury, B., Padhy, R.N., Paidesetty, S.K. (2021). Coumarin derivatives as promising antibacterial agent(s). Arabian Journal of Chemistry, 14(2), 102922. [CrossRef]
  • 8. Sitohy, M., Enan, G., Abdel-Shafi, S., El-Wafa, N.A., El-Gazzar, N., Osman, A., Sitohy, B. (2024). Mapping pathogenic bacteria resistance against common antibiotics and their potential susceptibility to methylated white kidney bean protein. BMC Microbiology, 24(1), 49. [CrossRef]
  • 9. Bankova, R., Popova, T.P. (2017). Antimicrobial activity in vitro of aqueous extracts of oregano (Origanum vulgare L.) and thyme (Thymus vulgaris L.). International Journal of Current Microbiology and Applied Sciences, 6(3), 1-12. [CrossRef]
  • 10. Ojala, T., Remes, S., Haansuu, P., Vuorela, H., Hiltunen, R., Haahtela, K., Vuorela, P. (2000). Antimicrobial activity of some coumarin containing herbal plants growing in Finland. Journal of Ethnopharmacology, 73(1-2), 299-305. [CrossRef]
  • 11. Gyawali, R., Ibrahim, S.A. (2014). Natural products as antimicrobial agents. Food Control, 46, 412-429. [CrossRef]
  • 12. Sarker, S.D., Nahar, L. (2017). Progress in the Chemistry of Naturally Occurring Coumarins. In: A.D. Kinghorn, H. Falk, S. Gibbons, and J. Kobayashi (Eds.), Progress in the Chemistry of Organic Natural Products 106, (pp. 241-304). Springer: Cham.
  • 13. Song, P.P., Zhao, J., Liu, Z.L., Duan, Y.B., Hou, Y.P., Zhao, C.Q., Wu, M., Wei, M., Wang, N.H., Lv, Y., Han, Z.J. (2017). Evaluation of antifungal activities and structure–activity relationships of coumarin derivatives. Pest Management Science, 73(1), 94-101. [CrossRef]
  • 14. Annunziata, F., Pinna, C., Dallavalle, S., Tamborini, L., Pinto, A. (2020). An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. International Journal of Molecular Sciences, 21(13), 4618. [CrossRef]
  • 15. Znati, M., Zardi-Bergaoui, A., Daami-Remadi, M., Ben Jannet, H. (2020). Semi-synthesis, antibacterial, anticholinesterase activities, and drug likeness properties of new analogues of coumarins isolated from Ferula lutea (Poir.) Maire. Chemistry Africa, 3, 635-645. [CrossRef]
  • 16. Sharifi-Rad, J., Cruz-Martins, N., López-Jornet, P., Lopez, E.P.F., Harun, N., Yeskaliyeva, B., Beyatlı, A., Sytar, O., Shaheen, S., Sharopov, F., Taheri, Y., Docea, A.O., Calina, D., Cho, W.C. (2021). Natural coumarins: Exploring the pharmacological complexity and underlying molecular mechanisms. Oxidative Medicine and Cellular Longevity, 2021(1), 6492346. [CrossRef]
  • 17. Al-Rifai, A.A.A., Ayoub, M.T., Shakya, A.K., Abu Safieh, K.A., Mubarak, M.S. (2012). Synthesis, characterization, and antimicrobial activity of some new coumarin derivatives. Medicinal Chemistry Research, 21, 468-476. [CrossRef]
  • 18. Alshibl, H.M., Al-Abdullah, E.S., Haiba, M.E., Alkahtani, H.M., Awad, G.E., Mahmoud, A.H., Ibrahim, B.M.M., Bari, A., Villinger, A. (2020). Synthesis and evaluation of new coumarin derivatives as antioxidant, antimicrobial, and anti-inflammatory agents. Molecules, 25(14), 3251. [CrossRef]
  • 19. Dekić, B.R., Radulo(vić, N.S., Dekić, V.S., Vukićević, R.D., Palić, R.M. (2010). Synthesis and antimicrobial activity of new 4-heteroarylamino coumarin derivatives containing nitrogen and sulfur as heteroatoms. Molecules, 15(4), 2246-2256. [CrossRef]
  • 20. Farshori, N.N., Banday, M.R., Ahmad, A., Khan, A.U., Rauf, A. (2011). 7-Hydroxy-coumarin derivatives: Synthesis, characterization and preliminary antimicrobial activities. Medicinal Chemistry Research, 20, 535-541. [CrossRef]
  • 21. Hu, Y., Shen, Y., Wu, X., Tu, X., Wang, G.X. (2018). Synthesis and biological evaluation of coumarin derivatives containing imidazole skeleton as potential antibacterial agents. European Journal of Medicinal Chemistry, 143, 958-969. [CrossRef]
  • 22. Khan, M.S., Agrawal, R., Ubaidullah, M., Hassan, M.I., Tarannum, N. (2019). Design, synthesis and validation of anti-microbial coumarin derivatives: An efficient green approach. Heliyon, 5(10), e02615. [CrossRef]
  • 23. Kharb, R., Kaur, M., Sharma, A.K. (2013). Imperative advances on antimicrobial activity of coumarin derivatives. International Journal of Pharmaceutical Sciences Review and Research, 20, 87-94.
  • 24. Nuha, D., Evren, A.E., Kapusiz, Ö., Gül, Ü.D., Gundogdu-Karaburun, N., Karaburun, A.C., Berber, H. (2023). Design, synthesis, and antimicrobial activity of novel coumarin derivatives: An in-silico and in-vitro study. Journal of Molecular Structure, 1272, 134166. [CrossRef]
  • 25. Završnik, D., Muratović, S., Špirtović, S., Softić, D., Medić-Šarić, M. (2008). The synthesis and antimicrobial activity of some 4-hydroxycoumarin derivatives. Bosnian Journal of Basic Medical Sciences, 8(3), 277-281. [CrossRef]
  • 26. Li, N., Guo, T.T., Zhou, D. (2018). Bioactive sesquiterpene coumarins from plants. Studies in Natural Products Chemistry, 59, 251-282. [CrossRef]
  • 27. Tan, N., Yazıcı-Tütüniş, S., Bilgin, M., Tan, E., Miski, M. (2017). Antibacterial activities of pyrenylated coumarins from the roots of Prangos hulusii. Molecules, 22(7), 1098. [CrossRef]
  • 28. Tavakoli, S., Delnavazi, M.R., Hadjiaghaee, R., Jafari-Nodooshan, S., Khalighi-Sigaroodi, F., Akhbari, M., Hadjiakhoondi, A., Yassa, N. (2018). Bioactive coumarins from the roots and fruits of Ferulago trifida Boiss., an endemic species to Iran. Natural Product Research, 32(22), 2724-2728. [CrossRef]
  • 29. Widelski, J., Popova, M., Graikou, K., Glowniak, K., Chinou, I. (2009). Coumarins from Angelica lucida L.-antibacterial activities. Molecules, 14(8), 2729-2734. [CrossRef]
  • 30. Figueroa, M., Rivero-Cruz, I., Rivero-Cruz, B., Bye, R., Navarrete, A., Mata, R. (2007). Constituents, biological activities and quality control parameters of the crude extract and essential oil from Arracacia tolucensis var. multifida. Journal of Ethnopharmacology, 113(1), 125-131. [CrossRef]
  • 31. Alikhanova, N.S., Novruzov, E.N. (2022). Chemical composition and biological activity of Zosima absinthifolia (apiaceae). Chemical Bulletin of Kazakh National University, 105(2), 34-42. [CrossRef]
  • 32. Sun, M., Sun, M., Zhang, J. (2021). Osthole: An overview of its sources, biological activities, and modification development. Medicinal Chemistry Research, 30(10), 1767-1794. [CrossRef]
  • 33. Mottaghipisheh, J. (2021). Oxypeucedanin: Chemotaxonomy, isolation, and bioactivities. Plants, 10(8), 1577. [CrossRef]
  • 34. Tosun, F., Mıhoğlugil, F., Beutler, J.A., Eroğlu Özkan, E., Miski, M. (2020). Neopapillarine, an unusual coumarino-alkaloid from the root extract of neocryptodiscus papillaris with cytotoxic activity on renal cancer cells. Molecules, 25(13), 3040. [CrossRef]
  • 35. Akalgan, D. (2019). Cytotoxic activity of the root extracts of Petroedmondia syriaca (Boiss.) Tamamsch. American Journal of Ethnomedicine, 6, 29-30.
  • 36. Tosun, F., Beutler, J.A., Ransom, T., Miski, M. (2019). Anatolicin, a highly potent and selective cytotoxic sesquiterpene coumarin from the root extract of Heptaptera anatólica. Molecules, 24(6), 1153-1160. [CrossRef]
  • 37. Tosun, F., Aytar, E.C., Beutler, J.A., Wilson, J.A., Miski, M. (2021). Cytotoxic sesquiterpene coumarins from the roots of Heptaptera cilícica. Records of Natural Products, 15(6), 529-536. [CrossRef]
  • 38. Tosun, F., Beutler, J.A., Miski, M. (2023). Coumarins from the dichloromethane root extract of Heptaptera triquetra and their cytotoxic activities. Records Natural Products, 17(6), 998-1005. [CrossRef]
  • 39. Semerci, A.B., İnceçayır, D., Mammadova, V., Hoş, A., Tunç, K. (2020). Antimicrobial activities of Allium staticiforme and Allium subhirsutum. A Journal of the Bangladesh Pharmacological Society, 15(1), 19-23. [CrossRef]
  • 40. de Souza, S.M., Monache, F.D., Smânia Jr, A. (2005). Antibacterial activity of coumarins. Zeitschrift fuer Naturforschung C, 60(9-10), 693-700. [CrossRef]
  • 41. El-Bassuony, A.A. (2007). Antibacterial activity of a novel sesquiterpene coumarin from Ferula sinaica. Asian Journal of Chemistry, 19(3), 2053-2058.
  • 42. Pavlović, I., Petrović, S., Milenković, M., Stanojković, T., Nikolić, D., Krunić, A., Niketić, M. (2015). Antimicrobial and cytotoxic activity of extracts of Ferula heuffelii Griseb. ex Heuff. and its metabolites. Chemistry & Biodiversity, 12(10), 1585-1594. [CrossRef]
  • 43. Walasek, M., Grzegorczyk, A., Malm, A., Skalicka-Wozniak, K. (2015). Bioactivity-guided isolation of antimicrobial coumarins from Heracleum mantegazzianum Sommier & Levier (Apiaceae) fruits by high-performance counter-current chromatography. Food Chemistry, 186, 133-138. [CrossRef]
  • 44. Widelski, J., Luca, S.V., Skiba, A., Chinou, I., Marcourt, L., Wolfender, J.L., Skalicka-Wozniak, K. (2018). Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians Tamamsch. Molecules, 23(5), 1222. [CrossRef]
  • 45. Stavri, M., Gibbons, S. (2005). The antimycobacterial constituents of dill (Anethum graveolens). Phytotherapy Research, 19(11), 938-941. [CrossRef]
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmakognozi, Farmasotik Mikrobiyoloji
Bölüm Araştırma Makalesi
Yazarlar

Fatma Tosun 0000-0003-2533-5141

Ayşegül Hoş 0000-0001-5605-6159

Ayşe İnci 0000-0003-0959-5760

Ayşe Çalış 0009-0001-9976-0637

Feyyaz Mıhoğlugil 0000-0003-0976-0244

Demet Akalgan Aklar 0000-0001-6956-163X

Mahmut Miski 0000-0003-2653-0563

Erken Görünüm Tarihi 14 Ağustos 2025
Yayımlanma Tarihi
Gönderilme Tarihi 22 Eylül 2024
Kabul Tarihi 15 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 3

Kaynak Göster

APA Tosun, F., Hoş, A., İnci, A., Çalış, A., vd. (2025). EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS. Journal of Faculty of Pharmacy of Ankara University, 49(3), 3-3. https://doi.org/10.33483/jfpau.1552812
AMA Tosun F, Hoş A, İnci A, Çalış A, Mıhoğlugil F, Akalgan Aklar D, Miski M. EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS. Ankara Ecz. Fak. Derg. Ağustos 2025;49(3):3-3. doi:10.33483/jfpau.1552812
Chicago Tosun, Fatma, Ayşegül Hoş, Ayşe İnci, Ayşe Çalış, Feyyaz Mıhoğlugil, Demet Akalgan Aklar, ve Mahmut Miski. “EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 3 (Ağustos 2025): 3-3. https://doi.org/10.33483/jfpau.1552812.
EndNote Tosun F, Hoş A, İnci A, Çalış A, Mıhoğlugil F, Akalgan Aklar D, Miski M (01 Ağustos 2025) EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS. Journal of Faculty of Pharmacy of Ankara University 49 3 3–3.
IEEE F. Tosun, A. Hoş, A. İnci, A. Çalış, F. Mıhoğlugil, D. Akalgan Aklar, ve M. Miski, “EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS”, Ankara Ecz. Fak. Derg., c. 49, sy. 3, ss. 3–3, 2025, doi: 10.33483/jfpau.1552812.
ISNAD Tosun, Fatma vd. “EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS”. Journal of Faculty of Pharmacy of Ankara University 49/3 (Ağustos 2025), 3-3. https://doi.org/10.33483/jfpau.1552812.
JAMA Tosun F, Hoş A, İnci A, Çalış A, Mıhoğlugil F, Akalgan Aklar D, Miski M. EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS. Ankara Ecz. Fak. Derg. 2025;49:3–3.
MLA Tosun, Fatma vd. “EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 3, 2025, ss. 3-3, doi:10.33483/jfpau.1552812.
Vancouver Tosun F, Hoş A, İnci A, Çalış A, Mıhoğlugil F, Akalgan Aklar D, Miski M. EVALUATION OF THE ANTIBACTERIAL ACTIVITIES OF NATURAL COUMARINS FROM APIACEAE PLANTS. Ankara Ecz. Fak. Derg. 2025;49(3):3-.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.