Araştırma Makalesi
BibTex RIS Kaynak Göster

A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE

Yıl 2025, Cilt: 49 Sayı: 3, 16 - 16
https://doi.org/10.33483/jfpau.1660133

Öz

Objective: In this study, a low-cost, sensitive and practical electroanalytical method was developed and validated for the determination of Linagliptin (LNG), a therapeutic agent used in the treatment of Diabetes Mellitus, one of the most common chronic diseases worldwide, characterized by high blood glucose levels and directly affecting millions of people.
Material and Method: Electroanalytical studies were completed using screen-printed carbon electrodes in pH: 8 Britton - Robinson buffer solution. Mechanistic studies were carried out by cyclic voltammetry technique. Adsorptive stripping differential pulse voltammetry technique was used for the electrochemical determination of LNG.
Result and Discussion: The developed method exhibited linearity in the range of 0.1 - 7.5 µM and the limit of detection value was calculated as 37 nM. The developed method was applied for the determination of LNG from urine and a recovery value of 100.02% was obtained.

Kaynakça

  • 1. WHO Web site. (2025). Retrieved February 27, 2025, from https://www.who.int/health-topics/diabetes#tab=tab_1. Accessed date: 27.02.2025.
  • 2. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C., Mbanya, J.C. (2022). IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. [CrossRef]
  • 3. WHO. (2024). Guidance on global monitoring for diabetes prevention and control - Framework, indicatiors and application. Geneva: World Health Organisation.
  • 4. WHO Web site. (2024). Retrieved November 14, 2024, from https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed date: 27.02.2025.
  • 5. Graefe-Mody, U., Retlich, S., Friedrich, C. (2012). Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clinical Pharmacokinetics, 51(7), 411-427. [CrossRef]
  • 6. Lewin, A., DeFronzo, R.A., Patel, S., Liu, D., Kaste, R., Woerle, H.J., Broedl, U.C. (2015). Initial combination of empagliflozin and linagliptin in subjects with type 2 diabetes. Diabetes Care, 38(3), 394-402. [CrossRef]
  • 7. Graefe‐Mody, U., Rose, P., Retlich, S., Ring, A., Waldhauser, L., Cinca, R., Woerle, H.J. (2012). Pharmacokinetics of linagliptin in subjects with hepatic impairment. British Journal of Clinical Pharmacology, 74(1), 75-85. [CrossRef]
  • 8. Martinez Calatayud, J. (2005). Spectrophotometry | Pharmaceutical Applications. In: Worsfold P, Townshend A, Poole C (Eds), Encyclopedia of Analytical Science, (pp. 373-383). Oxford: Elsevier.
  • 9. Gumustas, M., Kurbanoglu, S., Uslu, B., Ozkan, S.A. (2013). UPLC versus HPLC on drug analysis: Advantageous, applications and their validation parameters. Chromatographia, 76(21), 1365-1427. [CrossRef]
  • 10. Kumar, A.P., Kumar, D. (2021). Determination of pharmaceuticals by UV-visible spectrophotometry. Current Pharmaceutical Analysis, 17(9), 1156-1170. [CrossRef]
  • 11. Ozcelikay, G., Karadurmus, L., Kaya, S.I., Bakirhan, N.K., Ozkan, S.A. (2020). A review: New trends in electrode systems for sensitive drug and biomolecule analysis. Critical Reviews in Analytical Chemistry, 50(3), 212-225. [CrossRef]
  • 12. Uslu, B., Ozkan, S.A. (2011). Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Analytical Letters, 44(16), 2644-2702. [CrossRef]
  • 13. Munoz, R., Almeida, E., Angnes, L. (2013). Sample Preparation Techniques for the Electrochemical Determination of Metals in Environmental and Food Samples. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, (pp. 1-10).
  • 14 Yadav, S.K., Chandra, P., Goyal, R.N., Shim, Y.-B. (2013). A review on determination of steroids in biological samples exploiting nanobio-electroanalytical methods. Analytica Chimica Acta, 762, 14-24. [CrossRef]
  • 15. Kulikova, T., Porfireva, A., Shamagsumova, R., Evtugyn, G. (2018). Voltammetric sensor with replaceable polyaniline‐DNA layer for doxorubicin determination. Electroanalysis, 30(10), 2284-2292. [CrossRef]
  • 16. Liu, Y., Wei, M., Hu, Y., Zhu, L., Du, J. (2018). An electrochemical sensor based on a molecularly imprinted polymer for determination of anticancer drug mitoxantrone. Sensors and Actuators B: Chemical, 255(1), 544-551. [CrossRef]
  • 17. Huang, D., Wu, H., Zhu, Y., Su, H., Zhang, H., Sheng, L., Liu, Z., Xu, H., Song, C. (2019). Sensitive determination of anticancer drug methotrexate using graphite oxide-nafion modified glassy carbon electrode. International Journal of Electrochemical Science, 14(4), 3792-3804. [CrossRef]
  • 18. Rizk, M., Attia, A.K., Mohamed, H.Y., Elshahed, M.S. (2020). Validated voltammetric method for the simultaneous determination of anti‐diabetic drugs, linagliptin and empagliflozin in bulk, pharmaceutical dosage forms and biological fluids. Electroanalysis, 32(8), 1737-1753. [CrossRef]
  • 19. Gandomi, F., Khosrowshahi, E.M., Sohouli, E., Aghaei, M., Mohammadnia, M.S., Naghian, E., Rahimi-Nasrabadi, M. (2020). Linagliptin electrochemical sensor based on carbon nitride-β-cyclodextrin nanocomposite as a modifier. Journal of Electroanalytical Chemistry, 876, 114697. [CrossRef]
  • 20. El-Shal, M.A., Azab, S.M., Hendawy, H.A. (2019). A facile nano-iron oxide sensor for the electrochemical detection of the anti-diabetic drug linagliptin in the presence of glucose and metformin. Bulletin of the National Research Centre, 43, 1-8. [CrossRef]
  • 21. Ateş, A.K., Çelikkan, H., Erk, N. (2021). Voltammetric determination of linagliptin in bulk and plasma sample using an electrochemical sensor based on L-cysteine modified 1T-MoS2 nanosheets. Microchemical Journal, 167, 106308. [CrossRef]
  • 22. Naggar, A.H., Saleh, G.A., Omar, M.A., Haredy, A.M., Derayea, S.M. (2020). Square-wave adsorptive anodic stripping voltammetric determination of antidiabetic drug linagliptin in pharmaceutical formulations and biological fluids using a pencil graphite electrode. Analytical Sciences, 36(9), 1031-1038. [CrossRef]
  • 23. Gahlan, A.A., Haredy, A.M., Derayea, S.M., Omar, M.A., Saleh, G.A. (2021). A glassy carbon electrode for the determination of linagliptin, an antidiabetic drug in pure form, tablets and some biological fluids by adsorptive stripping voltammetry. Current Pharmaceutical Design, 27(20), 2415-2424. [CrossRef]
  • 24. Skoog, D.A., Holler, F.J., Crouch, S.R. (2016). Principle of Instrumental Analysis, p: 13 Cengage Learning, USA.

İDRARDAN LİNAGLİPTİN TAYİNİ İÇİN ADSOPRTİF SIYIRMA DİFERANSIYEL PULS VOLTAMETRİK YÖNTEM GELİŞTİRİLMESİ VE VALİDASYONU

Yıl 2025, Cilt: 49 Sayı: 3, 16 - 16
https://doi.org/10.33483/jfpau.1660133

Öz

Amaç: Bu çalışmada, dünya çapında en yaygın kronik hastalıklardan biri olan, yüksek kan şekeri ile karakterize, ve milyonlarca insanı doğrudan etkileyen bir rahatsızlık olan Diabetes Mellitus tedavisinde kullanılan terapötik bir ajan olan Linagliptin (LNG) tayini için düşük maliyetli, hassas ve pratik bir elektroanalitik yöntem geliştirilmiş ve valide edilmiştir.
Gereç ve Yöntem: Elektroanalitik çalışmalar pH: 8 Britton - Robinson tampon çözelti ortamında perde baskılı carbon elektrotlar kullanılarak tamamlanmıştır. Mekanistik çalışmalar dönüşümlü voltametri tekniği ile yapılmıştır. LNG'nin elektrokimyasal tayini için de adsorptif sıyırma diferansiyel puls voltametri tekniği kullanılmıştır.
Sonuç ve Tartışma: Geliştirilen yöntem 0.1 – 7.5 µM aralığında doğrusallık sergilemiş ve gözlenebilme sınırı 37 nM olarak hesaplanmıştır. Geliştirilen yöntem idrardan LNG tayini için uygulanmış ve % 100.02'lik bir geri kazanım değeri elde edilmiştir.

Kaynakça

  • 1. WHO Web site. (2025). Retrieved February 27, 2025, from https://www.who.int/health-topics/diabetes#tab=tab_1. Accessed date: 27.02.2025.
  • 2. Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B.B., Stein, C., Basit, A., Chan, J.C., Mbanya, J.C. (2022). IDF diabetes atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. [CrossRef]
  • 3. WHO. (2024). Guidance on global monitoring for diabetes prevention and control - Framework, indicatiors and application. Geneva: World Health Organisation.
  • 4. WHO Web site. (2024). Retrieved November 14, 2024, from https://www.who.int/news-room/fact-sheets/detail/diabetes. Accessed date: 27.02.2025.
  • 5. Graefe-Mody, U., Retlich, S., Friedrich, C. (2012). Clinical pharmacokinetics and pharmacodynamics of linagliptin. Clinical Pharmacokinetics, 51(7), 411-427. [CrossRef]
  • 6. Lewin, A., DeFronzo, R.A., Patel, S., Liu, D., Kaste, R., Woerle, H.J., Broedl, U.C. (2015). Initial combination of empagliflozin and linagliptin in subjects with type 2 diabetes. Diabetes Care, 38(3), 394-402. [CrossRef]
  • 7. Graefe‐Mody, U., Rose, P., Retlich, S., Ring, A., Waldhauser, L., Cinca, R., Woerle, H.J. (2012). Pharmacokinetics of linagliptin in subjects with hepatic impairment. British Journal of Clinical Pharmacology, 74(1), 75-85. [CrossRef]
  • 8. Martinez Calatayud, J. (2005). Spectrophotometry | Pharmaceutical Applications. In: Worsfold P, Townshend A, Poole C (Eds), Encyclopedia of Analytical Science, (pp. 373-383). Oxford: Elsevier.
  • 9. Gumustas, M., Kurbanoglu, S., Uslu, B., Ozkan, S.A. (2013). UPLC versus HPLC on drug analysis: Advantageous, applications and their validation parameters. Chromatographia, 76(21), 1365-1427. [CrossRef]
  • 10. Kumar, A.P., Kumar, D. (2021). Determination of pharmaceuticals by UV-visible spectrophotometry. Current Pharmaceutical Analysis, 17(9), 1156-1170. [CrossRef]
  • 11. Ozcelikay, G., Karadurmus, L., Kaya, S.I., Bakirhan, N.K., Ozkan, S.A. (2020). A review: New trends in electrode systems for sensitive drug and biomolecule analysis. Critical Reviews in Analytical Chemistry, 50(3), 212-225. [CrossRef]
  • 12. Uslu, B., Ozkan, S.A. (2011). Electroanalytical methods for the determination of pharmaceuticals: A review of recent trends and developments. Analytical Letters, 44(16), 2644-2702. [CrossRef]
  • 13. Munoz, R., Almeida, E., Angnes, L. (2013). Sample Preparation Techniques for the Electrochemical Determination of Metals in Environmental and Food Samples. In: Reference Module in Chemistry, Molecular Sciences and Chemical Engineering, (pp. 1-10).
  • 14 Yadav, S.K., Chandra, P., Goyal, R.N., Shim, Y.-B. (2013). A review on determination of steroids in biological samples exploiting nanobio-electroanalytical methods. Analytica Chimica Acta, 762, 14-24. [CrossRef]
  • 15. Kulikova, T., Porfireva, A., Shamagsumova, R., Evtugyn, G. (2018). Voltammetric sensor with replaceable polyaniline‐DNA layer for doxorubicin determination. Electroanalysis, 30(10), 2284-2292. [CrossRef]
  • 16. Liu, Y., Wei, M., Hu, Y., Zhu, L., Du, J. (2018). An electrochemical sensor based on a molecularly imprinted polymer for determination of anticancer drug mitoxantrone. Sensors and Actuators B: Chemical, 255(1), 544-551. [CrossRef]
  • 17. Huang, D., Wu, H., Zhu, Y., Su, H., Zhang, H., Sheng, L., Liu, Z., Xu, H., Song, C. (2019). Sensitive determination of anticancer drug methotrexate using graphite oxide-nafion modified glassy carbon electrode. International Journal of Electrochemical Science, 14(4), 3792-3804. [CrossRef]
  • 18. Rizk, M., Attia, A.K., Mohamed, H.Y., Elshahed, M.S. (2020). Validated voltammetric method for the simultaneous determination of anti‐diabetic drugs, linagliptin and empagliflozin in bulk, pharmaceutical dosage forms and biological fluids. Electroanalysis, 32(8), 1737-1753. [CrossRef]
  • 19. Gandomi, F., Khosrowshahi, E.M., Sohouli, E., Aghaei, M., Mohammadnia, M.S., Naghian, E., Rahimi-Nasrabadi, M. (2020). Linagliptin electrochemical sensor based on carbon nitride-β-cyclodextrin nanocomposite as a modifier. Journal of Electroanalytical Chemistry, 876, 114697. [CrossRef]
  • 20. El-Shal, M.A., Azab, S.M., Hendawy, H.A. (2019). A facile nano-iron oxide sensor for the electrochemical detection of the anti-diabetic drug linagliptin in the presence of glucose and metformin. Bulletin of the National Research Centre, 43, 1-8. [CrossRef]
  • 21. Ateş, A.K., Çelikkan, H., Erk, N. (2021). Voltammetric determination of linagliptin in bulk and plasma sample using an electrochemical sensor based on L-cysteine modified 1T-MoS2 nanosheets. Microchemical Journal, 167, 106308. [CrossRef]
  • 22. Naggar, A.H., Saleh, G.A., Omar, M.A., Haredy, A.M., Derayea, S.M. (2020). Square-wave adsorptive anodic stripping voltammetric determination of antidiabetic drug linagliptin in pharmaceutical formulations and biological fluids using a pencil graphite electrode. Analytical Sciences, 36(9), 1031-1038. [CrossRef]
  • 23. Gahlan, A.A., Haredy, A.M., Derayea, S.M., Omar, M.A., Saleh, G.A. (2021). A glassy carbon electrode for the determination of linagliptin, an antidiabetic drug in pure form, tablets and some biological fluids by adsorptive stripping voltammetry. Current Pharmaceutical Design, 27(20), 2415-2424. [CrossRef]
  • 24. Skoog, D.A., Holler, F.J., Crouch, S.R. (2016). Principle of Instrumental Analysis, p: 13 Cengage Learning, USA.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılıkta Analitik Kimya
Bölüm Araştırma Makalesi
Yazarlar

Ali Kemal Ateş 0000-0002-5846-4436

Erken Görünüm Tarihi 13 Ağustos 2025
Yayımlanma Tarihi
Gönderilme Tarihi 19 Mart 2025
Kabul Tarihi 12 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 49 Sayı: 3

Kaynak Göster

APA Ateş, A. K. (2025). A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE. Journal of Faculty of Pharmacy of Ankara University, 49(3), 16-16. https://doi.org/10.33483/jfpau.1660133
AMA Ateş AK. A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE. Ankara Ecz. Fak. Derg. Ağustos 2025;49(3):16-16. doi:10.33483/jfpau.1660133
Chicago Ateş, Ali Kemal. “A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE”. Journal of Faculty of Pharmacy of Ankara University 49, sy. 3 (Ağustos 2025): 16-16. https://doi.org/10.33483/jfpau.1660133.
EndNote Ateş AK (01 Ağustos 2025) A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE. Journal of Faculty of Pharmacy of Ankara University 49 3 16–16.
IEEE A. K. Ateş, “A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE”, Ankara Ecz. Fak. Derg., c. 49, sy. 3, ss. 16–16, 2025, doi: 10.33483/jfpau.1660133.
ISNAD Ateş, Ali Kemal. “A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE”. Journal of Faculty of Pharmacy of Ankara University 49/3 (Ağustos 2025), 16-16. https://doi.org/10.33483/jfpau.1660133.
JAMA Ateş AK. A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE. Ankara Ecz. Fak. Derg. 2025;49:16–16.
MLA Ateş, Ali Kemal. “A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE”. Journal of Faculty of Pharmacy of Ankara University, c. 49, sy. 3, 2025, ss. 16-16, doi:10.33483/jfpau.1660133.
Vancouver Ateş AK. A VALIDATED ADSORPTIVE STRIPPING DIFFERENTIAL PULSE VOLTAMMETRIC METHOD FOR THE QUANTIFICATION OF LINAGLIPTIN FROM URINE SAMPLE. Ankara Ecz. Fak. Derg. 2025;49(3):16-.

Kapsam ve Amaç

Ankara Üniversitesi Eczacılık Fakültesi Dergisi, açık erişim, hakemli bir dergi olup Türkçe veya İngilizce olarak farmasötik bilimler alanındaki önemli gelişmeleri içeren orijinal araştırmalar, derlemeler ve kısa bildiriler için uluslararası bir yayım ortamıdır. Bilimsel toplantılarda sunulan bildiriler supleman özel sayısı olarak dergide yayımlanabilir. Ayrıca, tüm farmasötik alandaki gelecek ve önceki ulusal ve uluslararası bilimsel toplantılar ile sosyal aktiviteleri içerir.