$N$-order solutions to the Gardner equation (G) are given in terms of Wronskians of order $N$ depending on $2N$ real parameters. We get solutions expressed with trigonometric or hyperbolic functions.
When one of the parameters goes to $0$, we succeed to get for each positive integer $N$, rational solutions as a quotient of polynomials in $x$ and $t$ depending on $2N$ real parameters. We construct explicit expressions of these rational solutions for the first orders.
Birincil Dil | İngilizce |
---|---|
Konular | Kısmi Diferansiyel Denklemler |
Bölüm | Makaleler |
Yazarlar | |
Erken Görünüm Tarihi | 16 Temmuz 2024 |
Yayımlanma Tarihi | 31 Ağustos 2024 |
Gönderilme Tarihi | 27 Ocak 2024 |
Kabul Tarihi | 23 Haziran 2024 |
Yayımlandığı Sayı | Yıl 2024 Cilt: 7 Sayı: 2 |
Journal of Mathematical Sciences and Modelling
The published articles in JMSM are licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.