Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 14 Sayı: 1, 14 - 25, 30.04.2025
https://doi.org/10.54187/jnrs.1634707

Öz

Kaynakça

  • B. Bhushan, Springer handbook of nanotechnology, 4th edition, Springer, 2017.
  • M.C. Roco, Nanotechnology: convergence with modern biology and medicine, Current Opinion in Biotechnology 14 (3) (2003) 337-346.
  • H. Gleiter, Nanostructured materials: Basic concepts and microstructure, Acta Materialia 48 (1) (2000) 1-29.
  • J. N. Tiwari, R. N. Tiwari, K. S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Progress in Materials Science 57 (4) (2012) 724-803.
  • S. Jadoun, N.P.S. Chauhan, P. Zarrintaj, M. Barani, R.S. Varma, S. Chinnam, A. Rahdar, Synthesis of nanoparticles using microorganisms and their applications: a review, Environmental Chemistry Letters 20 (5) (2022) 3153-3197.
  • S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, Journal of Colloid and Interface Science 275 (2) (2004) 496-502.
  • H.N. Mrabti, A. Bouyahya, A. Ed-Dra, M.R. Kachmar, N.N. Mrabti, T. Benali, M.A. Shariati, A. Ouahbi, L. Doudach, M.E. Faouzi, Polyphenolic profile and biological properties of Arbutus unedo root extracts, European Journal of Integrative Medicine 42 (2021) Article Number 101266.
  • K. Pallauf, J.C. Rivas-Gonzalo, M.D. del Castillo, M.P. Cano, S. de Pascual-Teresa, Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits, Journal of Food Composition and Analysis 21 (4) (2008) 273-281.
  • P. Scarano, R. Guida, D. Zuzolo, M. Tartaglia, A. Prigioniero, A. Postiglione, G. Pinto, A. Illiano, A. Amoresano, R. Schicchi, A. Geraci, R. Sciarrillo, C. Guarino, An Endemic Plant of the Mediterranean Area: Phytochemical Characterization of Strawberry Tree (Arbutus unedo L.) Fruits Extracts at Different Ripening Stages, Frontiers in Nutrition 9 (2022) Article Number 915994.
  • M. El Haouari, N. Assem, S. Changan, M. Kumar, S.D. Dastan, J. Rajkovic, Y. Taheri, J. Sharifi-Rad, An Insight into Phytochemical, Pharmacological, and Nutritional Properties of Arbutus unedo L. from Morocco, Evidence-Based Complementary and Alternative Medicine 2021 (2021) Article Number 1794621.
  • L. Barros, A. M. Carvalho, J. S. Morais, I.C.F.R. Ferreira, Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties, Food Chemistry 120 (1) (2010) 247-254.
  • E. Habachi, I.B. Rebey, S. Dakhlaoui, M. Hammami, S. Sawsen, K. Msaada, O. Merah, S. Bourgou, Arbutus unedo: Innovative Source of antioxidant, anti-Inflammatory and anti-tyrosinase phenolics for novel cosmeceuticals, Cosmetics 9 (6) (2022) Article Number 143.
  • B. M. Ruiz-Rodríguez, P. Morales, V. Fernández-Ruiz, M. C. Sánchez-Mata, M. Cámara, C. Díez-Marqués, M. Pardo-de-Santayana, M. Molina, J. Tardío, Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data, Food Research International 44 (5) (2011) 1244-1253.
  • S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chemistry 13(10) (2011) 2638-2650.
  • H. N. Mrabti, A. Bouyahya, A. Ed-Dra, M. R. Kachmar, N. N. Mrabti, T. Benali, M. A. Shariati, A. Ouahbi, L. Doudach, M. E. Faouzi, Polyphenolic profile and biological properties of Arbutus unedo root extracts, European Journal of Integrative Medicine 42 (2021) Article Number 101266.
  • L. F. A. A. Raj, E. Jayalakshmy, Biosynthesis and characterization of zinc oxide nanoparticles using root extract of Zingiber officinale, Oriental Journal of Chemistry 31 (1) (2015) 51-56.
  • S. Türkoğlu, R. A. Kepekçi, O. Keskinkan, Green synthesis and characterization of zinc oxide nanoparticles using Diospyros kaki L. bark aqueous extract, Cukurova University Journal of the Faculty of Engineering 38 (3) (2023) 603-611.
  • S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Azadirachta indica leaf broth, Journal of Colloid and Interface Science, 275 (2) (2004) 496-502.
  • K. Pallauf, J. C. Rivas-Gonzalo, M. D. del Castillo, M. P. Cano, S. de Pascual-Teresa, Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits, Journal of Food Composition and Analysis 21 (4) (2008) 273-281.
  • K. M. Reddy, K. Feris, J. Bell, D. G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Applied Physics Letters 90 (21) (2007).
  • S. N. Gençay, S. Durmuş, A. Dalmaz, G. Dulger, Green Synthesis, Structural Characterization and Investigation of Biological Activities of ZnO Nanoparticles Using Commercial Honey, Duzce University Journal of Science and Technology 11 (3) (2023) 1437-1445.
  • S. Türkoğlu, R. A. Kepekçi, O. Keskinkan, Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Diospyros kaki L. Bark Aqueous Extract, Cukurova University Journal of the Faculty of Engineering 38 (3) (2023) 603-611.
  • L.F.A.A. Raj, E. Jayalakshmy, Biosynthesis and Characterization of Zinc Oxide Nanoparticles using Root Extract of, Oriental Journal of Chemistry 31 (1) (2015) 51-56.
  • A. L. Brandt, A. Castillo, K.B. Harris, J. T. Keeton, M. D. Hardin, T. M. Taylor, Inhibition of Listeria monocytogenes by Food Antimicrobials Applied Singly and in Combination, Journal of Food Science 75 (9) (2010) M557-M563.
  • K. Akhil, S.S. Khan, Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems, Journal of Photochemistry and Photobiology B: Biology 167 (2017) 136-149.
  • P. S. Ramesh, T. Kokila, D. Geetha, Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 142 (2015) 339-343.
  • S. Ahmed, Saifullah, M. Ahmad, B.L. Swami, S. Ikram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, Journal of Radiation Research and Applied Sciences 9 (1) (2016) 1-7.
  • J. Y. Song, B. S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess and Biosystems Engineering 32 (1) (2009) 79-84.
  • L. Spanhel, M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society 113 (8) (1991) 2826-2833.
  • M. Ristic, S. Music, M. Ivanda, S. Popovic, Sol-gel synthesis and characterization of nanocrystalline ZnO powders, Journal of Alloys and Compounds 397 (1-2) (2005) L1-L4.
  • V. Srikant, D. R. Clarke, On the optical band gap of zinc oxide, Journal of Applied Physics 83 (10) (1998) 5447-5451.
  • D. S. Chormey, S. Erarpat, B. T. Zaman, N. Özdogan, O. Yagmuroglu, S. Bakirdere, Nanoflower synthesis, characterization and analytical applications: a review, Environmental Chemistry Letters 21 (3) (2023) 1863-1880.
  • M. R. Alenezi, T. H. Alzanki, A. M. Almeshal, A. S. Alshammari, M. J. Beliatis, S. J. Henley, S. R. P. Silva, Hierarchically designed ZnO nanostructure based high performance gas sensors, RSC Advances 4 (90) (2014) 49521-49528.
  • M. Sundrarajan, S. Ambika, K. Bharathi, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria, Advanced Powder Technology 26 (5) (2015) 1294-1299.
  • L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Advanced Materials 15 (5) (2003) 464-466.
  • R. S. Riseh, M. G. Vazvani, Green synthesis of metal nanoparticles using plant growth promoting rhizobacteria and application in agriculture, Plant Nano Biology 10 (2024) Article Number 100111.
  • R. K. Dutta, B. P. Nenavathu, M. K. Gangishetty, A.V. R. Reddy, Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation, Colloids and Surfaces B: Biointerfaces 94 (2012) 143-150.
  • A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, D. Mohamad, Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, Nano-Micro Letters 7 (3) (2015) 219-242.
  • D. Morales, Use of Strawberry Tree (Arbutus unedo) as a Source of Functional Fractions with Biological Activities, Foods 11 (23) (2022) Article Number 3838.
  • I. B. Salem, S. Ouesleti, Y. Mabrouk, A. Landolsi, M. Saidi, A. Boulilla, Exploring the nutraceutical potential and biological activities of Arbutus unedo L. (Ericaceae) fruits, Industrial Crops and Products 122 (2018) 726-731.
  • N. Guendouze-Bouchefa, K. Madani, M. Chibane, L. Boulekbache-Makhlouf, D. Hauchard, M. Kiendrebeogo, C. Stévigny, P. N. Okusa, P. Duez, Phenolic compounds, antioxidant and antibacterial activities of three Ericaceae from Algeria, Industrial Crops and Products 70 (2015) 459-466.
  • R. Malheiro, O. Sá, E. Pereira, C. Aguiar, P. Baptista, J. A. Pereira, Arbutus unedo L. leaves as source of phytochemicals with bioactive properties, Industrial Crops and Products 37 (1) (2012) 473-478.
  • K. Jurica, I. Gobin, D. Kremer, D. V. Cepo, R. J. Grubesic, I. B. Karaconji, I. Kosalec, Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves, Journal of Herbal Medicine 8 (2017) 17-23.

Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus unedo Leaf Extract

Yıl 2025, Cilt: 14 Sayı: 1, 14 - 25, 30.04.2025
https://doi.org/10.54187/jnrs.1634707

Öz

This study investigates the synthesis, characterization, and antibacterial effects of zinc nanoparticles (ZnNPs) synthesized via a green synthesis method using Arbutus unedo leaf extract. The plant extract served as both a reducing agent and a stabilizer during the ZnNP synthesis. The obtained nanoparticles were characterized using UV-Vis spectrophotometry, X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). The UV-Vis spectrum exhibited a maximum absorption band at 371 nm, consistent with the surface plasmon resonance (SPR) of ZnNPs. According to the XRD analysis, the synthesized nanoparticles possessed a hexagonal wurtzite crystal structure with an average crystallite size of 17.37 nm (ranging between 14.41 and 19.33 nm), as calculated using the Scherrer equation. SEM images revealed that the ZnNPs formed flower-like nanostructures. EDX analysis confirmed that the synthesized nanoparticles comprised 60.9% Zn, 21.2% O, 17.5% Na, and 0.4% Ca. Antibacterial tests demonstrated that ZnNPs were effective against Escherichia coli and Staphylococcus aureus. Microdilution tests conducted on bacterial cultures indicated that the antibacterial effect of ZnNPs increased up to a concentration of 500 µg/mL (p < 0.05). The results manifest that ZnNPs synthesized using Arbutus unedo leaf extract exhibit biocompatibility, eco-friendliness, and high antibacterial activity. This study highlights that biogenic ZnNP synthesis offers a sustainable and effective alternative approach.

Kaynakça

  • B. Bhushan, Springer handbook of nanotechnology, 4th edition, Springer, 2017.
  • M.C. Roco, Nanotechnology: convergence with modern biology and medicine, Current Opinion in Biotechnology 14 (3) (2003) 337-346.
  • H. Gleiter, Nanostructured materials: Basic concepts and microstructure, Acta Materialia 48 (1) (2000) 1-29.
  • J. N. Tiwari, R. N. Tiwari, K. S. Kim, Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices, Progress in Materials Science 57 (4) (2012) 724-803.
  • S. Jadoun, N.P.S. Chauhan, P. Zarrintaj, M. Barani, R.S. Varma, S. Chinnam, A. Rahdar, Synthesis of nanoparticles using microorganisms and their applications: a review, Environmental Chemistry Letters 20 (5) (2022) 3153-3197.
  • S.S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, Journal of Colloid and Interface Science 275 (2) (2004) 496-502.
  • H.N. Mrabti, A. Bouyahya, A. Ed-Dra, M.R. Kachmar, N.N. Mrabti, T. Benali, M.A. Shariati, A. Ouahbi, L. Doudach, M.E. Faouzi, Polyphenolic profile and biological properties of Arbutus unedo root extracts, European Journal of Integrative Medicine 42 (2021) Article Number 101266.
  • K. Pallauf, J.C. Rivas-Gonzalo, M.D. del Castillo, M.P. Cano, S. de Pascual-Teresa, Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits, Journal of Food Composition and Analysis 21 (4) (2008) 273-281.
  • P. Scarano, R. Guida, D. Zuzolo, M. Tartaglia, A. Prigioniero, A. Postiglione, G. Pinto, A. Illiano, A. Amoresano, R. Schicchi, A. Geraci, R. Sciarrillo, C. Guarino, An Endemic Plant of the Mediterranean Area: Phytochemical Characterization of Strawberry Tree (Arbutus unedo L.) Fruits Extracts at Different Ripening Stages, Frontiers in Nutrition 9 (2022) Article Number 915994.
  • M. El Haouari, N. Assem, S. Changan, M. Kumar, S.D. Dastan, J. Rajkovic, Y. Taheri, J. Sharifi-Rad, An Insight into Phytochemical, Pharmacological, and Nutritional Properties of Arbutus unedo L. from Morocco, Evidence-Based Complementary and Alternative Medicine 2021 (2021) Article Number 1794621.
  • L. Barros, A. M. Carvalho, J. S. Morais, I.C.F.R. Ferreira, Strawberry-tree, blackthorn and rose fruits: Detailed characterisation in nutrients and phytochemicals with antioxidant properties, Food Chemistry 120 (1) (2010) 247-254.
  • E. Habachi, I.B. Rebey, S. Dakhlaoui, M. Hammami, S. Sawsen, K. Msaada, O. Merah, S. Bourgou, Arbutus unedo: Innovative Source of antioxidant, anti-Inflammatory and anti-tyrosinase phenolics for novel cosmeceuticals, Cosmetics 9 (6) (2022) Article Number 143.
  • B. M. Ruiz-Rodríguez, P. Morales, V. Fernández-Ruiz, M. C. Sánchez-Mata, M. Cámara, C. Díez-Marqués, M. Pardo-de-Santayana, M. Molina, J. Tardío, Valorization of wild strawberry-tree fruits (Arbutus unedo L.) through nutritional assessment and natural production data, Food Research International 44 (5) (2011) 1244-1253.
  • S. Iravani, Green synthesis of metal nanoparticles using plants, Green Chemistry 13(10) (2011) 2638-2650.
  • H. N. Mrabti, A. Bouyahya, A. Ed-Dra, M. R. Kachmar, N. N. Mrabti, T. Benali, M. A. Shariati, A. Ouahbi, L. Doudach, M. E. Faouzi, Polyphenolic profile and biological properties of Arbutus unedo root extracts, European Journal of Integrative Medicine 42 (2021) Article Number 101266.
  • L. F. A. A. Raj, E. Jayalakshmy, Biosynthesis and characterization of zinc oxide nanoparticles using root extract of Zingiber officinale, Oriental Journal of Chemistry 31 (1) (2015) 51-56.
  • S. Türkoğlu, R. A. Kepekçi, O. Keskinkan, Green synthesis and characterization of zinc oxide nanoparticles using Diospyros kaki L. bark aqueous extract, Cukurova University Journal of the Faculty of Engineering 38 (3) (2023) 603-611.
  • S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Azadirachta indica leaf broth, Journal of Colloid and Interface Science, 275 (2) (2004) 496-502.
  • K. Pallauf, J. C. Rivas-Gonzalo, M. D. del Castillo, M. P. Cano, S. de Pascual-Teresa, Characterization of the antioxidant composition of strawberry tree (Arbutus unedo L.) fruits, Journal of Food Composition and Analysis 21 (4) (2008) 273-281.
  • K. M. Reddy, K. Feris, J. Bell, D. G. Wingett, C. Hanley, A. Punnoose, Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems, Applied Physics Letters 90 (21) (2007).
  • S. N. Gençay, S. Durmuş, A. Dalmaz, G. Dulger, Green Synthesis, Structural Characterization and Investigation of Biological Activities of ZnO Nanoparticles Using Commercial Honey, Duzce University Journal of Science and Technology 11 (3) (2023) 1437-1445.
  • S. Türkoğlu, R. A. Kepekçi, O. Keskinkan, Green Synthesis and Characterization of Zinc Oxide Nanoparticles Using Diospyros kaki L. Bark Aqueous Extract, Cukurova University Journal of the Faculty of Engineering 38 (3) (2023) 603-611.
  • L.F.A.A. Raj, E. Jayalakshmy, Biosynthesis and Characterization of Zinc Oxide Nanoparticles using Root Extract of, Oriental Journal of Chemistry 31 (1) (2015) 51-56.
  • A. L. Brandt, A. Castillo, K.B. Harris, J. T. Keeton, M. D. Hardin, T. M. Taylor, Inhibition of Listeria monocytogenes by Food Antimicrobials Applied Singly and in Combination, Journal of Food Science 75 (9) (2010) M557-M563.
  • K. Akhil, S.S. Khan, Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems, Journal of Photochemistry and Photobiology B: Biology 167 (2017) 136-149.
  • P. S. Ramesh, T. Kokila, D. Geetha, Plant mediated green synthesis and antibacterial activity of silver nanoparticles using Emblica officinalis fruit extract, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 142 (2015) 339-343.
  • S. Ahmed, Saifullah, M. Ahmad, B.L. Swami, S. Ikram, Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract, Journal of Radiation Research and Applied Sciences 9 (1) (2016) 1-7.
  • J. Y. Song, B. S. Kim, Rapid biological synthesis of silver nanoparticles using plant leaf extracts, Bioprocess and Biosystems Engineering 32 (1) (2009) 79-84.
  • L. Spanhel, M. A. Anderson, Semiconductor clusters in the sol-gel process: quantized aggregation, gelation, and crystal growth in concentrated zinc oxide colloids, Journal of the American Chemical Society 113 (8) (1991) 2826-2833.
  • M. Ristic, S. Music, M. Ivanda, S. Popovic, Sol-gel synthesis and characterization of nanocrystalline ZnO powders, Journal of Alloys and Compounds 397 (1-2) (2005) L1-L4.
  • V. Srikant, D. R. Clarke, On the optical band gap of zinc oxide, Journal of Applied Physics 83 (10) (1998) 5447-5451.
  • D. S. Chormey, S. Erarpat, B. T. Zaman, N. Özdogan, O. Yagmuroglu, S. Bakirdere, Nanoflower synthesis, characterization and analytical applications: a review, Environmental Chemistry Letters 21 (3) (2023) 1863-1880.
  • M. R. Alenezi, T. H. Alzanki, A. M. Almeshal, A. S. Alshammari, M. J. Beliatis, S. J. Henley, S. R. P. Silva, Hierarchically designed ZnO nanostructure based high performance gas sensors, RSC Advances 4 (90) (2014) 49521-49528.
  • M. Sundrarajan, S. Ambika, K. Bharathi, Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria, Advanced Powder Technology 26 (5) (2015) 1294-1299.
  • L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Advanced Materials 15 (5) (2003) 464-466.
  • R. S. Riseh, M. G. Vazvani, Green synthesis of metal nanoparticles using plant growth promoting rhizobacteria and application in agriculture, Plant Nano Biology 10 (2024) Article Number 100111.
  • R. K. Dutta, B. P. Nenavathu, M. K. Gangishetty, A.V. R. Reddy, Studies on antibacterial activity of ZnO nanoparticles by ROS induced lipid peroxidation, Colloids and Surfaces B: Biointerfaces 94 (2012) 143-150.
  • A. Sirelkhatim, S. Mahmud, A. Seeni, N. H. M. Kaus, L. C. Ann, S. K. M. Bakhori, H. Hasan, D. Mohamad, Review on Zinc Oxide Nanoparticles: Antibacterial Activity and Toxicity Mechanism, Nano-Micro Letters 7 (3) (2015) 219-242.
  • D. Morales, Use of Strawberry Tree (Arbutus unedo) as a Source of Functional Fractions with Biological Activities, Foods 11 (23) (2022) Article Number 3838.
  • I. B. Salem, S. Ouesleti, Y. Mabrouk, A. Landolsi, M. Saidi, A. Boulilla, Exploring the nutraceutical potential and biological activities of Arbutus unedo L. (Ericaceae) fruits, Industrial Crops and Products 122 (2018) 726-731.
  • N. Guendouze-Bouchefa, K. Madani, M. Chibane, L. Boulekbache-Makhlouf, D. Hauchard, M. Kiendrebeogo, C. Stévigny, P. N. Okusa, P. Duez, Phenolic compounds, antioxidant and antibacterial activities of three Ericaceae from Algeria, Industrial Crops and Products 70 (2015) 459-466.
  • R. Malheiro, O. Sá, E. Pereira, C. Aguiar, P. Baptista, J. A. Pereira, Arbutus unedo L. leaves as source of phytochemicals with bioactive properties, Industrial Crops and Products 37 (1) (2012) 473-478.
  • K. Jurica, I. Gobin, D. Kremer, D. V. Cepo, R. J. Grubesic, I. B. Karaconji, I. Kosalec, Arbutin and its metabolite hydroquinone as the main factors in the antimicrobial effect of strawberry tree (Arbutus unedo L.) leaves, Journal of Herbal Medicine 8 (2017) 17-23.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstriyel Mikrobiyoloji , Nanobiyoteknoloji, İnorganik Malzemeler, Nanokimya
Bölüm Articles
Yazarlar

Nilay Akkuş Taş 0009-0004-8644-6659

Recep Taş 0000-0002-3743-7770

Hasan Ufuk Celebioglu 0000-0001-7207-2730

Yayımlanma Tarihi 30 Nisan 2025
Gönderilme Tarihi 6 Şubat 2025
Kabul Tarihi 16 Nisan 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 1

Kaynak Göster

APA Akkuş Taş, N., Taş, R., & Celebioglu, H. U. (2025). Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus unedo Leaf Extract. Journal of New Results in Science, 14(1), 14-25. https://doi.org/10.54187/jnrs.1634707
AMA Akkuş Taş N, Taş R, Celebioglu HU. Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus unedo Leaf Extract. JNRS. Nisan 2025;14(1):14-25. doi:10.54187/jnrs.1634707
Chicago Akkuş Taş, Nilay, Recep Taş, ve Hasan Ufuk Celebioglu. “Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus Unedo Leaf Extract”. Journal of New Results in Science 14, sy. 1 (Nisan 2025): 14-25. https://doi.org/10.54187/jnrs.1634707.
EndNote Akkuş Taş N, Taş R, Celebioglu HU (01 Nisan 2025) Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus unedo Leaf Extract. Journal of New Results in Science 14 1 14–25.
IEEE N. Akkuş Taş, R. Taş, ve H. U. Celebioglu, “Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus unedo Leaf Extract”, JNRS, c. 14, sy. 1, ss. 14–25, 2025, doi: 10.54187/jnrs.1634707.
ISNAD Akkuş Taş, Nilay vd. “Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus Unedo Leaf Extract”. Journal of New Results in Science 14/1 (Nisan 2025), 14-25. https://doi.org/10.54187/jnrs.1634707.
JAMA Akkuş Taş N, Taş R, Celebioglu HU. Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus unedo Leaf Extract. JNRS. 2025;14:14–25.
MLA Akkuş Taş, Nilay vd. “Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus Unedo Leaf Extract”. Journal of New Results in Science, c. 14, sy. 1, 2025, ss. 14-25, doi:10.54187/jnrs.1634707.
Vancouver Akkuş Taş N, Taş R, Celebioglu HU. Eco-Friendly Synthesis and Antibacterial Assessment of Zinc Nanoparticles from Arbutus unedo Leaf Extract. JNRS. 2025;14(1):14-25.


TR Dizin 31688

EBSCO30456


Electronic Journals Library   30356

 DOAJ   30355

                                                        WorldCat  3035730355

Scilit 30360


SOBİAD 30359


29388 JNRS is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).