Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Sayı: 30, 53 - 56, 26.03.2020

Öz

Kaynakça

  • P. Holgate, Groupoids Satisfying a Simple Invertive Law, The Mathematics Student 61(1-4) (1992) 101-106.
  • M. A. Kazim, M. Naseeruddin, On Almost Semigroups, Alig. Bull. Math. 2 (1972) 1-7.
  • Q. Mushtaq, S. M. Yusuf, On LA-Semigroups, Alig. Bull. Math. 8(1978) 65-70.
  • J. R. Cho, J. Jezek, T. Kepka, Paramedial Groupoids, Czechoslovak Mathematical Journal 49(2) (1999) 277-290.
  • Q. Mushtaq, M. S. Kamran, On Left Almost Groups, Proceedings of the Pakistan Academy of Sciences 33(1996) 1-2.
  • Q. Mushtaq, Zeroids and Idempoids in AG-Groupoids, Quasigroups and Related Systems 11(2004).
  • Q. Mushtaq, M. Khan, Direct Product of Abel Grassmann's Groupoids, Journal of Interdisciplinary Mathematics 11 (2008) 461-467.
  • M. Shah, T. Shah, A. Ali, On The Cancellativity of AG-Groupoids, International Mathematical Forum 6(44) (2011) 2187-2194.

Cancellative Elements in Finite AG-groupoids

Yıl 2020, Sayı: 30, 53 - 56, 26.03.2020

Öz

An Abel-Grassmann's groupoid (brie
y AG-groupoid) is a groupoid S satisfying the left invertive law: (xy)z = (zy)x  for all x, y, z \in S. In the present paper, we
discuss the left and right cancellative property of elements of the nite AG-groupoid S. For an AG-groupoid with left identity it is known that every left cancellative ele-
ment is right cancellative. We prove a problem (for nite AG-groupoids) that every left cancellative element of an AG-groupoid (without left identity) is right cancella-
tive. Moreover, we generalize various results of nite AG-groupoids by removing the condition of existence of left identity.

Kaynakça

  • P. Holgate, Groupoids Satisfying a Simple Invertive Law, The Mathematics Student 61(1-4) (1992) 101-106.
  • M. A. Kazim, M. Naseeruddin, On Almost Semigroups, Alig. Bull. Math. 2 (1972) 1-7.
  • Q. Mushtaq, S. M. Yusuf, On LA-Semigroups, Alig. Bull. Math. 8(1978) 65-70.
  • J. R. Cho, J. Jezek, T. Kepka, Paramedial Groupoids, Czechoslovak Mathematical Journal 49(2) (1999) 277-290.
  • Q. Mushtaq, M. S. Kamran, On Left Almost Groups, Proceedings of the Pakistan Academy of Sciences 33(1996) 1-2.
  • Q. Mushtaq, Zeroids and Idempoids in AG-Groupoids, Quasigroups and Related Systems 11(2004).
  • Q. Mushtaq, M. Khan, Direct Product of Abel Grassmann's Groupoids, Journal of Interdisciplinary Mathematics 11 (2008) 461-467.
  • M. Shah, T. Shah, A. Ali, On The Cancellativity of AG-Groupoids, International Mathematical Forum 6(44) (2011) 2187-2194.
Toplam 8 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Matematik
Bölüm Araştırma Makalesi
Yazarlar

Mehtab Khan

Amir Khan

Muhammad Uzair Khan

Yayımlanma Tarihi 26 Mart 2020
Gönderilme Tarihi 21 Şubat 2019
Yayımlandığı Sayı Yıl 2020 Sayı: 30

Kaynak Göster

APA Khan, M., Khan, A., & Khan, M. U. (2020). Cancellative Elements in Finite AG-groupoids. Journal of New Theory(30), 53-56.
AMA Khan M, Khan A, Khan MU. Cancellative Elements in Finite AG-groupoids. JNT. Mart 2020;(30):53-56.
Chicago Khan, Mehtab, Amir Khan, ve Muhammad Uzair Khan. “Cancellative Elements in Finite AG-Groupoids”. Journal of New Theory, sy. 30 (Mart 2020): 53-56.
EndNote Khan M, Khan A, Khan MU (01 Mart 2020) Cancellative Elements in Finite AG-groupoids. Journal of New Theory 30 53–56.
IEEE M. Khan, A. Khan, ve M. U. Khan, “Cancellative Elements in Finite AG-groupoids”, JNT, sy. 30, ss. 53–56, Mart 2020.
ISNAD Khan, Mehtab vd. “Cancellative Elements in Finite AG-Groupoids”. Journal of New Theory 30 (Mart 2020), 53-56.
JAMA Khan M, Khan A, Khan MU. Cancellative Elements in Finite AG-groupoids. JNT. 2020;:53–56.
MLA Khan, Mehtab vd. “Cancellative Elements in Finite AG-Groupoids”. Journal of New Theory, sy. 30, 2020, ss. 53-56.
Vancouver Khan M, Khan A, Khan MU. Cancellative Elements in Finite AG-groupoids. JNT. 2020(30):53-6.


TR Dizin 26024

Electronic Journals Library 13651

                                                                      

DOAJ 33468

Scilit 20865


                                                        SOBİAD 30256


29324 JNT is licensed under a Creative Commons Attribution-NonCommercial 4.0 International Licence (CC BY-NC).