In this study, we present and explore extended beta matrix functions (EBMFs) and their key properties. By utilizing the beta matrix function (BMF), we introduce novel extensions of the Gauss hypergeometric matrix function (GHMF) and Kummer hypergeometric matrix function (KHMF). We delve into their integral representations, recurrence relations, transformation properties, and differential formulas. Additionally, we investigate their statistical applications, mainly focusing on the beta distribution, and derive expressions for the mean, variance, and moment-generating functions. Furthermore, we apply EBMFs to develop the Appell matrix function (AMF) and Lauricella matrix function (LMF) and their integral forms.
Beta matrix function Gauss and Kummer hypergeometric matrix functions Appell and Lauricella matrix functions
Birincil Dil | İngilizce |
---|---|
Konular | Matematiksel Yöntemler ve Özel Fonksiyonlar |
Bölüm | Araştırma Makalesi |
Yazarlar | |
Erken Görünüm Tarihi | 30 Aralık 2024 |
Yayımlanma Tarihi | 31 Aralık 2024 |
Gönderilme Tarihi | 17 Ağustos 2024 |
Kabul Tarihi | 11 Kasım 2024 |
Yayımlandığı Sayı | Yıl 2024 Sayı: 49 |