Araştırma Makalesi
BibTex RIS Kaynak Göster

Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium hirsutum L.) Bulk Population

Yıl 2025, Cilt: 22 Sayı: 2, 329 - 336, 26.05.2025
https://doi.org/10.33462/jotaf.1425930

Öz

Reciprocal differences reflect an unequal contribution of male and female parents in plant breeding. We investigated the reciprocal differences, inbreeding depression, and performance of bulk populations in advanced generations. Seven hybrid combinations and their reciprocals were evaluated in F4 and F5 generations in a Randomized Complete Block Design with three replications. The significant reciprocal differences in many combinations for seed cotton yield and fiber length in both generations indicated the importance of selecting parents as male or female at the start of breeding work for these traits. In contrast, fiber fineness, fiber strength, and ginning out-turn were generally traits for which the reciprocal differences of the lines were not significant. The difference in general averages of F4 and F5 generations was significant regarding fiber length and fineness. Advanced lines in the F5 generation were found to have longer and finer fibers. In F4 generation lines, seed cotton yield per plant ranged between 100.30-160.87 g; ginning out-turn 41.96-47.17%; fiber length 30.04-32.94 mm; fiber fineness 4.52-5.11 mic. and fiber strength 32. 50-34.60 g tex-1, while these values were 101.11-137.63 g; 41.45-46.54%; 30.55-33.09 mm; 4.24-4.90 mic. and 32.03-34.30 g tex-1 in F5 generation, respectively. The higher inbreeding depression estimates for seed cotton yield indicated that non-additive genes were more predominant in the inheritance of this trait compared to ginning out-turn and fiber quality parameters. As a result of the study, it was concluded that it would be beneficial to transfer Carmen × Carisma, Flash × Claudia, and ST-468 × Claudia F5 advanced lines, which showed superior performance in terms of seed cotton yield and fiber properties, to the F6 generation.

Etik Beyan

There is no need to obtain permission from the ethics committee for this study.

Kaynakça

  • Abedi, J., Baghizadeh, A. and Mohammadi-Nejad, G. (2015). Genetic analysis for some of morphological traits in bread wheat under drought stress condition using generations mean analysis. Journal of Stress Physiology & Biochemistry, 11(2): 40-48.
  • Ağazade, S. (2021). Analysis of the relationship between cotton production and prices by using Koyck approach in Turkey. Journal of Tekirdag Agricultural Faculty, 18(3): 386-399.
  • AnandaLekshmi, L., Kumar, M., Rajeswari, S., Raveendran, M., Uma, D. and Manickam, S. (2023). Assessment of heterotic potential and association analysis in direct and reciprocal hybrids for seed cotton yield and fiber quality traits involving lintless–fuzzless genotypes in upland cotton (Gossypium hirsutum L). Electronic Journal of Plant Breeding, 14(2): 410-418.
  • Bilgin, O. and Korkut, K. Z. (2005). Determination of genetic distances in some bread wheat (Triticum aestivum L.) varieties and line. Journal of Tekirdag Agricultural Faculty, 2(3): 245-252.
  • Bulant C., Gallais A., Matthys-Rochon E. and Prioul J. L. (2000). Xenia effects in maize with normal endosperm: II. Kernel growth and enzyme activities during grain filling. Crop Science, 40(1): 182-189.
  • Carvalho, L. P. D., Teodoro, P. E., Rodrigues, J. I. D. S., Farias, F. J. C. and Bhering, L. L. (2018). Diallel analysis and inbreeding depression in agronomic and technological traits of cotton genotypes. Bragantia, 77: 527-535.
  • Gonzalo, M., Vyn, T. J., Holland, J. B. and McIntyre, L. M. (2007). Mapping reciprocal effects and interactions with plant density stress in Zea mays L. Heredity, 99(1): 14-30.
  • Hussain, A., Azhar, F. M., Ali, M. A., Ahmad, S. and Mahmood, K. (2010). Genetic studies of fiber quality characters in upland cotton. The Journal of Animal & Plant Sciences, 20(4): 234-238.
  • Khan, N. U., Hassan, G., Kumbhar, M. B., Kang, S., Khan, I., Parveen, A. and Aiman, U. (2007). Heterosis and inbreeding depression and mean performance in segregating generations in upland cotton. European Journal of Scientifically Research, 17(4):531-546.
  • Khan, N. U., Hassan, G., Kumbhar, M. B., Marwat, K. B., Khan, M. A., Parveen, A., Aiman, U. and Saeed, M. (2009). Combining ability analysis to identify suitable parents for heterosis in seed cotton yield, its components and lint % in upland cotton. Industrial Crops and Products, 29(1): 108-115.
  • Khan, S. A., Khan, N. U., Gul, R., Bibi, Z., Khan, I. U., Gul, S. and Baloch, M. (2015). Combining ability studies for yield and fiber traits in upland cotton. JAPS: Journal of Animal & Plant Sciences, 25(3): 698-707.
  • Khan, S. A., Khan, N. U., Mohammad, F., Ahmad, M., Khan, I. A., Bibi, Z. and Khan, I. U. (2011). Combining ability analysis in intraspecific F1 diallel cross of upland cotton. Pakistan Journal of Botany, 43(3): 1719-1723.
  • Lukonge, E. P., Labuschagne, M. T. and Herselman, L. (2008). Combining ability for yield and fibre characteristics in Tanzanian cotton germplasm. Euphytica, 161: 383–389.
  • Mendiburu F. and Mendiburu, M. F. (2019) Package ‘agricolae’. R Package, Version, 1, 3. https://cran.r-project.org/web/packages/agricolae/agricolae.pdf
  • Rizzo, G., Monzon, J. P., Tenorio, F. A., Howard, R., Cassman, K. G. and Grassini, P. (2022). Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proceedings of the National Academy of Sciences, 119(4): e2113629119.
  • Shaukat, S., Khan, T. M., Shakeel, A. and Ijaz, S. (2013). Estimation of best parents and superior cross combinations for yield and fiber quality related traits in upland cotton (Gossypium hirsutum L.). SciTech Development, 32(4): 281-284.
  • Singh, P. (2003). Essential of Plant Breeding. 2nd Edition, Kalyani Publishers, New Delhi. India.
  • Steel, R. G. D., Torrie, H. and Dickey, D. A. (1997). Principles and Procedures of Statistics – A Biometrical Approach. 3rd ed. McGraw Hill, Inc. New York, U.S.A.
  • Tigga, A., Patil, S. S., Edke, V., Roy U. and Kumar, A. (2017). Heterosis and inbreeding depression for seed cotton yield and yield attributing traits in intra hirsutum (G. hirsutum L. × G. hirsutum L.) hybrids of cotton. International Journal of Current Microbiology and Applied Sciences, 6(10): 2883-2887.
  • USTER. (2024). Uster® HVI 1000: The Fiber Classification and Analysis System. https://www.uster.com/products/cotton-classing/uster-hvi/ (Accessed Date: 06.01.2024).
  • Wells, R. and Meredith Jr, W. R. (1984). Comparative growth of obsolete and modern cotton cultivars. III. Relationship of yield to observed growth characteristics1. Crop Science, 24(5): 868-872.
  • Xiao, D. and Tao, F. (2014). Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. European Journal of Agronomy, 52: 112-122.
  • Zangi, M. R., Jelodar, N. B., Kazemitabar, S. K. and Vafaei-Tabar, M. (2010). Cytoplasmic and combining ability effects on agro-morphological characters in intra and inter crosses of Pima and upland cottons (G. hirsutum and G. barbadense). International Journal of Biology, 2(1): 94-102.
  • Zhang, J., Wu, M., Yu, J., Li, X., Pei, W. (2016). Breeding potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum L.) and Gossypium barbadense: heterosis, combining ability and genetic effects. PLoS ONE, 11(1): e0143646.

Pamukta İleri Bulk Populasyon Hatlarında Kendileme Depresyonu ve Resiprokal Etki

Yıl 2025, Cilt: 22 Sayı: 2, 329 - 336, 26.05.2025
https://doi.org/10.33462/jotaf.1425930

Öz

Bitki ıslahında geliştirilen melezlerde ana ve baba olarak kullanılan anaçların eşit olmayan katkıları resiprokal farklılıklar olarak tanımlanmaktadır. Bu çalışmayı ileri pamuk generasyonlarında farklı bulk popülasyonlarının performansını, kendileme depresyonunu ve resiprokal farklılıkları incelemek amacıyla yürüttük. F4 ve F5 generasyonlarında yer alan 7 farklı melez kombinasyonunu resiprokal melezleri ile birlikte Tesadüf Blokları Deneme Deseninde üç tekerrürlü olarak değerlendirdik. Kütlü pamuk verimi ve lif uzunluğu için her iki generasyonda yer alan çok sayıda kombinasyonda resiprokal farklılıkların önemli olması, bu özellikler için ıslah çalışmasının başlangıcında anaçların ana veya baba olarak kullanılmasının önemini göstermektedir. Buna karşın lif inceliği, lif dayanıklılığı ve çırçır randımanı yönünden ise hatların çoğunluğunda resiprokal farklılıkların önemli olmadığı tespit edildi. F4 ve F5 generasyonlarına ilişkin genel ortalamalarının farkı lif uzunluğu ve lif inceliği yönünden önemli bulundu. F5 generasyonundaki hatların daha uzun ve daha ince liflere sahip olduğu saptandı. Bunlara ek olarak, F4 generasyonu hatlarında tek bitki kütlü pamuk verimi 100,30-160,87 g; çırçır randımanı %41,96-47,17; lif uzunluğu 30,04-32,94 mm; lif inceliği 4,52-5,11 mic. ve lif dayanıklılığı 32,50-34,60 g tex-1 arasında değişirken, F5 generasyonunda tek bitki kütlü verimi 101,11-137,63 g; çırçır randımanı %41,45-46,54; lif uzunluğu 30,55-33,09 mm; lif inceliği 4,24-4,90 mic. ve lif dayanıklılığı ise 32,03-34,30 g tex-1 arasında değişmiştir. Kütlü pamuk verimi için bulunan daha yüksek kendileme depresyonu çırçır randımanı ve lif kalite özelliklerine kıyasla bu özelliğin kontrolünde eklemeli olmayan gen etkilerinin daha baskın olduğunun bir göstergesiydi. Çalışma sonucunda, kütlü pamuk verimi ve lif özellikleri yönünden üstün performans gösteren Carmen × Carisma, Flash × Claudia ve ST-468 × Claudia F5 ileri hatlarının F6 generasyonuna aktarılmasının yararlı olacağı kanısına varıldı.

Etik Beyan

Bu çalışma için etik kuruldan izin alınmasına gerek yoktur.

Kaynakça

  • Abedi, J., Baghizadeh, A. and Mohammadi-Nejad, G. (2015). Genetic analysis for some of morphological traits in bread wheat under drought stress condition using generations mean analysis. Journal of Stress Physiology & Biochemistry, 11(2): 40-48.
  • Ağazade, S. (2021). Analysis of the relationship between cotton production and prices by using Koyck approach in Turkey. Journal of Tekirdag Agricultural Faculty, 18(3): 386-399.
  • AnandaLekshmi, L., Kumar, M., Rajeswari, S., Raveendran, M., Uma, D. and Manickam, S. (2023). Assessment of heterotic potential and association analysis in direct and reciprocal hybrids for seed cotton yield and fiber quality traits involving lintless–fuzzless genotypes in upland cotton (Gossypium hirsutum L). Electronic Journal of Plant Breeding, 14(2): 410-418.
  • Bilgin, O. and Korkut, K. Z. (2005). Determination of genetic distances in some bread wheat (Triticum aestivum L.) varieties and line. Journal of Tekirdag Agricultural Faculty, 2(3): 245-252.
  • Bulant C., Gallais A., Matthys-Rochon E. and Prioul J. L. (2000). Xenia effects in maize with normal endosperm: II. Kernel growth and enzyme activities during grain filling. Crop Science, 40(1): 182-189.
  • Carvalho, L. P. D., Teodoro, P. E., Rodrigues, J. I. D. S., Farias, F. J. C. and Bhering, L. L. (2018). Diallel analysis and inbreeding depression in agronomic and technological traits of cotton genotypes. Bragantia, 77: 527-535.
  • Gonzalo, M., Vyn, T. J., Holland, J. B. and McIntyre, L. M. (2007). Mapping reciprocal effects and interactions with plant density stress in Zea mays L. Heredity, 99(1): 14-30.
  • Hussain, A., Azhar, F. M., Ali, M. A., Ahmad, S. and Mahmood, K. (2010). Genetic studies of fiber quality characters in upland cotton. The Journal of Animal & Plant Sciences, 20(4): 234-238.
  • Khan, N. U., Hassan, G., Kumbhar, M. B., Kang, S., Khan, I., Parveen, A. and Aiman, U. (2007). Heterosis and inbreeding depression and mean performance in segregating generations in upland cotton. European Journal of Scientifically Research, 17(4):531-546.
  • Khan, N. U., Hassan, G., Kumbhar, M. B., Marwat, K. B., Khan, M. A., Parveen, A., Aiman, U. and Saeed, M. (2009). Combining ability analysis to identify suitable parents for heterosis in seed cotton yield, its components and lint % in upland cotton. Industrial Crops and Products, 29(1): 108-115.
  • Khan, S. A., Khan, N. U., Gul, R., Bibi, Z., Khan, I. U., Gul, S. and Baloch, M. (2015). Combining ability studies for yield and fiber traits in upland cotton. JAPS: Journal of Animal & Plant Sciences, 25(3): 698-707.
  • Khan, S. A., Khan, N. U., Mohammad, F., Ahmad, M., Khan, I. A., Bibi, Z. and Khan, I. U. (2011). Combining ability analysis in intraspecific F1 diallel cross of upland cotton. Pakistan Journal of Botany, 43(3): 1719-1723.
  • Lukonge, E. P., Labuschagne, M. T. and Herselman, L. (2008). Combining ability for yield and fibre characteristics in Tanzanian cotton germplasm. Euphytica, 161: 383–389.
  • Mendiburu F. and Mendiburu, M. F. (2019) Package ‘agricolae’. R Package, Version, 1, 3. https://cran.r-project.org/web/packages/agricolae/agricolae.pdf
  • Rizzo, G., Monzon, J. P., Tenorio, F. A., Howard, R., Cassman, K. G. and Grassini, P. (2022). Climate and agronomy, not genetics, underpin recent maize yield gains in favorable environments. Proceedings of the National Academy of Sciences, 119(4): e2113629119.
  • Shaukat, S., Khan, T. M., Shakeel, A. and Ijaz, S. (2013). Estimation of best parents and superior cross combinations for yield and fiber quality related traits in upland cotton (Gossypium hirsutum L.). SciTech Development, 32(4): 281-284.
  • Singh, P. (2003). Essential of Plant Breeding. 2nd Edition, Kalyani Publishers, New Delhi. India.
  • Steel, R. G. D., Torrie, H. and Dickey, D. A. (1997). Principles and Procedures of Statistics – A Biometrical Approach. 3rd ed. McGraw Hill, Inc. New York, U.S.A.
  • Tigga, A., Patil, S. S., Edke, V., Roy U. and Kumar, A. (2017). Heterosis and inbreeding depression for seed cotton yield and yield attributing traits in intra hirsutum (G. hirsutum L. × G. hirsutum L.) hybrids of cotton. International Journal of Current Microbiology and Applied Sciences, 6(10): 2883-2887.
  • USTER. (2024). Uster® HVI 1000: The Fiber Classification and Analysis System. https://www.uster.com/products/cotton-classing/uster-hvi/ (Accessed Date: 06.01.2024).
  • Wells, R. and Meredith Jr, W. R. (1984). Comparative growth of obsolete and modern cotton cultivars. III. Relationship of yield to observed growth characteristics1. Crop Science, 24(5): 868-872.
  • Xiao, D. and Tao, F. (2014). Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. European Journal of Agronomy, 52: 112-122.
  • Zangi, M. R., Jelodar, N. B., Kazemitabar, S. K. and Vafaei-Tabar, M. (2010). Cytoplasmic and combining ability effects on agro-morphological characters in intra and inter crosses of Pima and upland cottons (G. hirsutum and G. barbadense). International Journal of Biology, 2(1): 94-102.
  • Zhang, J., Wu, M., Yu, J., Li, X., Pei, W. (2016). Breeding potential of introgression lines developed from interspecific crossing between upland cotton (Gossypium hirsutum L.) and Gossypium barbadense: heterosis, combining ability and genetic effects. PLoS ONE, 11(1): e0143646.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Bitkileri
Bölüm Makaleler
Yazarlar

Şerife Balcı 0000-0001-8348-3674

Volkan Mehmet Çınar 0000-0001-5822-5649

Aydın Ünay 0000-0002-7278-4428

Erken Görünüm Tarihi 8 Mayıs 2025
Yayımlanma Tarihi 26 Mayıs 2025
Gönderilme Tarihi 26 Ocak 2024
Kabul Tarihi 23 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 22 Sayı: 2

Kaynak Göster

APA Balcı, Ş., Çınar, V. M., & Ünay, A. (2025). Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium hirsutum L.) Bulk Population. Tekirdağ Ziraat Fakültesi Dergisi, 22(2), 329-336. https://doi.org/10.33462/jotaf.1425930
AMA Balcı Ş, Çınar VM, Ünay A. Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium hirsutum L.) Bulk Population. JOTAF. Mayıs 2025;22(2):329-336. doi:10.33462/jotaf.1425930
Chicago Balcı, Şerife, Volkan Mehmet Çınar, ve Aydın Ünay. “Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium Hirsutum L.) Bulk Population”. Tekirdağ Ziraat Fakültesi Dergisi 22, sy. 2 (Mayıs 2025): 329-36. https://doi.org/10.33462/jotaf.1425930.
EndNote Balcı Ş, Çınar VM, Ünay A (01 Mayıs 2025) Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium hirsutum L.) Bulk Population. Tekirdağ Ziraat Fakültesi Dergisi 22 2 329–336.
IEEE Ş. Balcı, V. M. Çınar, ve A. Ünay, “Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium hirsutum L.) Bulk Population”, JOTAF, c. 22, sy. 2, ss. 329–336, 2025, doi: 10.33462/jotaf.1425930.
ISNAD Balcı, Şerife vd. “Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium Hirsutum L.) Bulk Population”. Tekirdağ Ziraat Fakültesi Dergisi 22/2 (Mayıs 2025), 329-336. https://doi.org/10.33462/jotaf.1425930.
JAMA Balcı Ş, Çınar VM, Ünay A. Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium hirsutum L.) Bulk Population. JOTAF. 2025;22:329–336.
MLA Balcı, Şerife vd. “Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium Hirsutum L.) Bulk Population”. Tekirdağ Ziraat Fakültesi Dergisi, c. 22, sy. 2, 2025, ss. 329-36, doi:10.33462/jotaf.1425930.
Vancouver Balcı Ş, Çınar VM, Ünay A. Reciprocal Effect and Inbreeding Depression in Advanced Generations of Cotton (Gossypium hirsutum L.) Bulk Population. JOTAF. 2025;22(2):329-36.