The radiation-chemical yield of the molecular hydrogen received under the influence of gamma quanta (60Co, P=22Rad/s, T=300K) to liquid water of constant volume (V=5 ml) in the process of a radiolysis of water at change of weight (m=0.01; 0.02; 0.06 and 0.12 g) and sizes of silicon particle (d=50 nanometers) is defined. It has been revealed that at increase in mass of the silicon added to water the radiation-chemical yield of the molecular hydrogen received in the process of a water radiolysis grows in direct ratio (m<0.02 g) and depending on the size of particle after a certain mass value (m>0.02 g) the stationary area is observed. In the Si+H2O system the maximum radiation-chemical yield of molecular hydrogen is equal to 10,9 molecules / 100eV at the sizes of silicon particle d=50 nanometer respectively. The mechanism explaining the received results is offered.
micro particle radiation chemical yield radiolysis Compton dispersion
Birincil Dil | İngilizce |
---|---|
Konular | Metroloji,Uygulamalı ve Endüstriyel Fizik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 9 Temmuz 2022 |
Gönderilme Tarihi | 1 Ocak 2022 |
Kabul Tarihi | 19 Şubat 2022 |
Yayımlandığı Sayı | Yıl 2022 Cilt: 5 Sayı: 1 |
© 2018 Journal of Physical Chemistry and Functional Materials (JPCFM). All rights reserved.
For inquiries, submissions, and editorial support, please get in touch with nbulut@firat.edu.tr or visit our website at https://dergipark.org.tr/en/pub/jphcfum.
Stay connected with JPCFM for the latest research updates on physical chemistry and functional materials. Follow us on Social Media.
Published by DergiPark. Proudly supporting the advancement of science and innovation.https://dergipark.org.tr/en/pub/jphcfum