Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 29 Sayı: 4, 1562 - 1572, 05.07.2025
https://doi.org/10.12991/jrespharm.1734651

Öz

Kaynakça

  • Rani A, Saini KC, Bast F, Mehariya S, Bhatia SK, Lavecchia R, Zuorro A. Microorganisms: A potential source of bioactive molecules for antioxidant applications. Molecules. 2021; 26(4):1142. https://doi.org/10.3390/molecules26041142.
  • Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013; 11: 21–32. https://doi.org/10.1038/nrmicro2916
  • Arora DS, Chandra P. Antioxidant Activity of Aspergillus fumigatus. ISRN Pharmacol. 2011; 2011:619395. https://doi.org/10.5402/2011%2F619395
  • Berdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot. 2012; 65: 385– 395. https://doi.org/10.1038/ja.2012.27
  • Sadorn K, Saepua S, Boonyuen N, Laksanacharoen P, Rachtawee P, Prabpai S, Kongsaeree P, Pittayakhajonwut P. Allahabadolactones A and B from the endophytic fungus, Aspergillus allahabadii BCC45335. Tetrahedron. 2016; 72(4): 489 495. https://doi.org/10.1016/j.tet.2015.11.056
  • Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbio. Biotechnol. 2015; 99: 7859–7877. https://doi.org/10.1007/s00253-015-6839-z
  • Hamed AA, Abdel-Aziz MS, Abd El Hady FK. Antimicrobial and antioxidant activities of different extracts from Aspergillus unguis SPMD-EGY grown on different media. Bull Natl Res Cent. 2018; 42(1): 29. https://doi.org/10.1186/s42269-018-0027-0
  • Nuraini FR, Setyaningsih R, Susilowati A. Antioxidant activity of bioactive compound produced by endophytic fungi isolated from endemic plant of South Kalimantan Mangifera casturi Kosterm. AIP Conf Proc. 2019; 2120(1) https://doi.org/10.1063/1.5115751.
  • Gülçin I. Antioxidant properties of resveratrol: A structure–activity insight. Innov Food Sci Emerg Technol. 2010; 11(1): 210-218. https://doi.org/10.1016/j.ifset.2009.07.002
  • Salar RK, Purewal SS, Sandhu KS. Bioactive profile, free-radical scavenging potential, DNA damage protection activity, and mycochemicals in Aspergillus awamori (MTCC 548) extracts: A novel report on filamentous fungi. 3 Biotech. 2017; 7(3): 164. https://doi.org/10.1007/s13205-017-0834-2
  • Ton That Huu D, Phuong HT, Diem Tran PT, Souvannalath B, Trung HL, Ho DV, Viet CLC. Secondary metabolites from the grasshopper-derived entomopathogenic fungus Aspergillus tamarii NL3 and their biological activities. Nat Prod Commun. 2022; 17:12. https://doi.org/10.1177/1934578X221141548
  • Wu P, Tan H, Zhan J, Wang W, Hu T, Li S. Optimization of bioprocess extraction of Poria cocos polysaccharide (PCP) with Aspergillus niger β-glucanase and the evaluation of PCP antioxidant property. Molecules. 2020; 25(24): 5930. https://doi.org/10.3390/molecules25245930
  • Sakhri A. PhD Thesis. Exploitation et caractérisation des substances bioactives sécrétées par une souche d’Aspergillus sp. Department of microbiology, Faculty of Natural and Life Sciences, University of Mentouri Brothers Constantine, Algeria, 2020.
  • Moharram AM, Zohri AA, Omar HM, Abd El-Ghani OA. In vitro assessment of antimicrobial and anti-inflammatory potential of endophytic fungal metabolites extracts. Eur J Biol Res. 2017; 7 (3): 234-244. http://dx.doi.org/10.5281/zenodo.839696
  • Skanda S, Vijayakumar BS. Antioxidant and anti-inflammatory metabolites of a soil-derived fungus Aspergillus arcoverdensis SSSIHL-01. Curr Microbiol. 2021; 78(4): 1317‑1323. https://doi.org/10.1007/s00284-021-02401-3
  • Yan JK, Wu LX, Qiao ZR, Cai WD, Ma H. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chem. 2019; 271: 588‑596. https://doi.org/10.1016/j.foodchem.2018.08.012
  • Zida A, Bamba S, Yacouba A, Ouedraogo-Traore R, Guiguemdé RT. Anti- Candida albicans natural products, sources of new antifungal drugs: A review. J Mycol Méd Suppl. 2017; 27(1): 1-19. https://doi.org/10.1016/j.mycmed.2016.10.002
  • Furtado NAJC, Said S, Ito IY, Bastos JK. The antimicrobial activity of Aspergillus fumigatus is enhanced by a pool of bacteria. Microbiol Res. 2002; 157(3): 207-211. https://doi.org/10.1078/0944-5013-00150
  • Alkhulaifi MM, Awaad AS, AL-Mudhayyif HA, Alothman MR, Alqasoumi SI, Zain SM. Evaluation of antimicrobial activity of secondary metabolites of fungi isolated from Sultanate Oman soil. Saudi Pharm J. 2019; 27(3): 401-405. https://doi.org/10.1016/j.jsps.2018.12.009
  • Bladt TT, Frisvad JC, Knudsen PB, Ostenfeld LT. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules. 2013; 18: 11338-11376. https://doi.org/10.3390/molecules180911338
  • Zhang Z, Miao L, Sun W, Jiao B, Wang B, Yao L, Huang C. Wentilactone B from Aspergillus wentii induces apoptosis and inhibits proliferation and migration of human hepatoma SMMC-7721 cells. Bio Pharm Bull. 2012; 35: 1964–1971. https://doi.org/10.1248/bpb.b12-00368
  • Kanoh K, Kohno S, Asari T, Harada T, Katada J, Muramatsu M, Kawashima H, Sekiya H, Uno I. (−)-phenylahistin: A new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett. 1997; 7 (22): 2847–2852. https://doi.org/10.1016/S0960-894X(97)10104-4
  • Wang CCC, Chiang YM, Kuo PL, Chang JK, Hsu YLP. Norsolorinic acid inhibits proliferation of T24 human bladder cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas/membrane-bound Fas ligand-mediated apoptotic pathway. Clin Exp Pharmacol. 2008; 35: 1301–1308. https://doi.org/10.1111/j.1440-1681.2008.05007.x
  • Bramki A, Ghorri S, Jaouani A, Dehimat L, Chaouche NK. Antibacterial activity of Aspergillus isolated from different Algerian ecosystems. Afr J Biotechnol. 2017; 16 (32): 1699-1704. https://doi.org/10.5897/AJB2017.16086
  • Gengan RM, Chuturgoon AA, Mulholland DA, Dutton MF. Synthesis of sterigmatocystin derivatives and their biotransformation to aflatoxins by a blocked mutant of Aspergillus parasiticus. Mycopathologia. 1998; 144 (2): 115-122. https://doi.org/10.1023/A:1007064304292
  • Bramki A, De Pauw E, Frahtia M, McCann A, Mazzucchelli G, Dehimat L. Chromatographic separations and characterization of bioactive secondary metabolites of Apergillus quadrilineatus (MH109538) fungal strain. AsPac J Mol Biol Biotechnol. 2020; 28(3): 13-21. https://doi.org/10.35118/apjmbb.2020.028.3.02
  • Blois MS. Antioxydant determinations by the use of a stable free radical. Nature. 1958; 4617(181): 1119-1200. https://doi.org/10.1038/1811199a0
  • Tel G, Apaydın M, Duru ME. Antioxidant and cholinesterase ınhibition activities of three Tricholoma species with total phenolic and flavonoid contents: The edible mushrooms from Anatolia. Food Anal Methods. 2012; 5: 495–504. https://doi.org/10.1007/s12161-011-9275-4.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26 (9‑10): 1231‑1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Szydlowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szlyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta. 2008; 76(4): 899‑905. https://doi.org/10.1016/j.talanta.2008.04.055
  • Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986; 44(6): 307‑315. http://dx.doi.org/10.5264/eiyogakuzashi.44.307
  • Carmona-Jiménez Y, García-Moreno MV, Igartuburu JM, Garcia Barroso C. Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products. Food Chem. 2014; 165: 198 204. https://doi.org/10.1016/j.foodchem.2014.05.106
  • Kar B, Kumar RS, Karmakar I, Dola N, Bala A, Mazumder UK, Hadar PK. Antioxidant and in vitro anti-inflammatory activities of Mimusops elengi leaves. Asian Pac J Trop Biomed. 2012; 2(2): S976-S980. https://doi.org/10.1016/S2221- 1691(12)60346-3
  • Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R, Ceylan O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. Endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind Crops Prod. 2014; 53: 244-251. https://doi.org/10.1016/j.indcrop.2013.12.043
  • Barboucha G, Rahim N, Boulebd H, Bramki A, Andolfi A, Salvatore MM, Masi M. Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. Plants. 2024; 13: 3229. https://doi.org/10.3390/plants13223229
  • Hossain MA, Biva IJ, Kidd SE, Whittle JD, Griesser HJ, Coad BR. Antifungal Activity in Compounds from the Australian Desert Plant Eremophila alternifolia with Potency Against Cryptococcus spp. J Antibiot. 2019; 8: 1-12. https://doi.org/10.3390/antibiotics8020034
  • Yamaç M, Bilgili F. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol. 2006; 44: 660- 667. https://doi.org/10.1080/13880200601006897
  • Prabavathy D, Valli Nachiyar C. Study on the antimicrobial activity of Aspergillus sp. isolated from Justicia adathoda. Indian J Sci Technol. 2012; 5(9): 3317-3320. http://dx.doi.org/10.17485/ijst/2012/v5i9/30679
  • Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci. 2018; 25 (2): 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004.

Biological activities assessment of secondary metabolites derived from Aspergillus species

Yıl 2025, Cilt: 29 Sayı: 4, 1562 - 1572, 05.07.2025
https://doi.org/10.12991/jrespharm.1734651

Öz

Aspergillus species are valuable sources of bioactive compounds with potential therapeutic, industrial, and
agri-food applications. Therefore, the aim of this study was to evaluate different biological activities including;
antioxidant, anti-inflammatory, antidiabetic, antifungal, and antiproliferative exhibited by secondary metabolites
produced by three fungal species; Aspergillus quadrilineatus (MH109538), Aspergillus niveus (MH109544) and Aspergillus
wentii (MH109545). The obtained results showed that the Aspergillus wentii extract exhibited significant activity in the
DPPH and Phenanthroline assays, with an IC50 values of 131.85 ± 0.72 μg/mL, and an ABS0-5 value of 55.58 ± 1.08 μg/mL
respectively. While Aspergillus niveus extract demonstrated considerable antioxidant activity in the ABTS test, with an
IC50 value of 78.15 ± 1.41 μg/mL. In addition, the assessment of anti-inflammatory activity revealed a significant effect
of the Aspergillus quadrilineatus extract, with an IC50 value of 280.00 ± 0.43 μg/mL. Furthermore, the three extracts
exhibited significant anti-diabetic activity compared to the reference molecule (acarbose). Regarding antifungal activity,
evaluated by well method against three fungal strains, the Aspergillus niveus extract showed an important effect against
the yeast Candida albicans with an inhibition zone diameter of 24.6 mm. Moreover, the MTS assay indicated cytotoxicity
of the three fungal strains against the used cell lines recording 100 % mortality for Aspergillus quadrilineatus at 0.5 mg/mL
and 0.25 mg/mL concentrations, and for Aspergillus niveus and Aspergillus wentii at 0.5 mg/mL against the MCF-7 tumor
cell line.

Kaynakça

  • Rani A, Saini KC, Bast F, Mehariya S, Bhatia SK, Lavecchia R, Zuorro A. Microorganisms: A potential source of bioactive molecules for antioxidant applications. Molecules. 2021; 26(4):1142. https://doi.org/10.3390/molecules26041142.
  • Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013; 11: 21–32. https://doi.org/10.1038/nrmicro2916
  • Arora DS, Chandra P. Antioxidant Activity of Aspergillus fumigatus. ISRN Pharmacol. 2011; 2011:619395. https://doi.org/10.5402/2011%2F619395
  • Berdy J. Thoughts and facts about antibiotics: Where we are now and where we are heading. J Antibiot. 2012; 65: 385– 395. https://doi.org/10.1038/ja.2012.27
  • Sadorn K, Saepua S, Boonyuen N, Laksanacharoen P, Rachtawee P, Prabpai S, Kongsaeree P, Pittayakhajonwut P. Allahabadolactones A and B from the endophytic fungus, Aspergillus allahabadii BCC45335. Tetrahedron. 2016; 72(4): 489 495. https://doi.org/10.1016/j.tet.2015.11.056
  • Frisvad JC, Larsen TO. Chemodiversity in the genus Aspergillus. Appl Microbio. Biotechnol. 2015; 99: 7859–7877. https://doi.org/10.1007/s00253-015-6839-z
  • Hamed AA, Abdel-Aziz MS, Abd El Hady FK. Antimicrobial and antioxidant activities of different extracts from Aspergillus unguis SPMD-EGY grown on different media. Bull Natl Res Cent. 2018; 42(1): 29. https://doi.org/10.1186/s42269-018-0027-0
  • Nuraini FR, Setyaningsih R, Susilowati A. Antioxidant activity of bioactive compound produced by endophytic fungi isolated from endemic plant of South Kalimantan Mangifera casturi Kosterm. AIP Conf Proc. 2019; 2120(1) https://doi.org/10.1063/1.5115751.
  • Gülçin I. Antioxidant properties of resveratrol: A structure–activity insight. Innov Food Sci Emerg Technol. 2010; 11(1): 210-218. https://doi.org/10.1016/j.ifset.2009.07.002
  • Salar RK, Purewal SS, Sandhu KS. Bioactive profile, free-radical scavenging potential, DNA damage protection activity, and mycochemicals in Aspergillus awamori (MTCC 548) extracts: A novel report on filamentous fungi. 3 Biotech. 2017; 7(3): 164. https://doi.org/10.1007/s13205-017-0834-2
  • Ton That Huu D, Phuong HT, Diem Tran PT, Souvannalath B, Trung HL, Ho DV, Viet CLC. Secondary metabolites from the grasshopper-derived entomopathogenic fungus Aspergillus tamarii NL3 and their biological activities. Nat Prod Commun. 2022; 17:12. https://doi.org/10.1177/1934578X221141548
  • Wu P, Tan H, Zhan J, Wang W, Hu T, Li S. Optimization of bioprocess extraction of Poria cocos polysaccharide (PCP) with Aspergillus niger β-glucanase and the evaluation of PCP antioxidant property. Molecules. 2020; 25(24): 5930. https://doi.org/10.3390/molecules25245930
  • Sakhri A. PhD Thesis. Exploitation et caractérisation des substances bioactives sécrétées par une souche d’Aspergillus sp. Department of microbiology, Faculty of Natural and Life Sciences, University of Mentouri Brothers Constantine, Algeria, 2020.
  • Moharram AM, Zohri AA, Omar HM, Abd El-Ghani OA. In vitro assessment of antimicrobial and anti-inflammatory potential of endophytic fungal metabolites extracts. Eur J Biol Res. 2017; 7 (3): 234-244. http://dx.doi.org/10.5281/zenodo.839696
  • Skanda S, Vijayakumar BS. Antioxidant and anti-inflammatory metabolites of a soil-derived fungus Aspergillus arcoverdensis SSSIHL-01. Curr Microbiol. 2021; 78(4): 1317‑1323. https://doi.org/10.1007/s00284-021-02401-3
  • Yan JK, Wu LX, Qiao ZR, Cai WD, Ma H. Effect of different drying methods on the product quality and bioactive polysaccharides of bitter gourd (Momordica charantia L.) slices. Food Chem. 2019; 271: 588‑596. https://doi.org/10.1016/j.foodchem.2018.08.012
  • Zida A, Bamba S, Yacouba A, Ouedraogo-Traore R, Guiguemdé RT. Anti- Candida albicans natural products, sources of new antifungal drugs: A review. J Mycol Méd Suppl. 2017; 27(1): 1-19. https://doi.org/10.1016/j.mycmed.2016.10.002
  • Furtado NAJC, Said S, Ito IY, Bastos JK. The antimicrobial activity of Aspergillus fumigatus is enhanced by a pool of bacteria. Microbiol Res. 2002; 157(3): 207-211. https://doi.org/10.1078/0944-5013-00150
  • Alkhulaifi MM, Awaad AS, AL-Mudhayyif HA, Alothman MR, Alqasoumi SI, Zain SM. Evaluation of antimicrobial activity of secondary metabolites of fungi isolated from Sultanate Oman soil. Saudi Pharm J. 2019; 27(3): 401-405. https://doi.org/10.1016/j.jsps.2018.12.009
  • Bladt TT, Frisvad JC, Knudsen PB, Ostenfeld LT. Anticancer and antifungal compounds from Aspergillus, Penicillium and other filamentous fungi. Molecules. 2013; 18: 11338-11376. https://doi.org/10.3390/molecules180911338
  • Zhang Z, Miao L, Sun W, Jiao B, Wang B, Yao L, Huang C. Wentilactone B from Aspergillus wentii induces apoptosis and inhibits proliferation and migration of human hepatoma SMMC-7721 cells. Bio Pharm Bull. 2012; 35: 1964–1971. https://doi.org/10.1248/bpb.b12-00368
  • Kanoh K, Kohno S, Asari T, Harada T, Katada J, Muramatsu M, Kawashima H, Sekiya H, Uno I. (−)-phenylahistin: A new mammalian cell cycle inhibitor produced by Aspergillus ustus. Bioorg Med Chem Lett. 1997; 7 (22): 2847–2852. https://doi.org/10.1016/S0960-894X(97)10104-4
  • Wang CCC, Chiang YM, Kuo PL, Chang JK, Hsu YLP. Norsolorinic acid inhibits proliferation of T24 human bladder cancer cells by arresting the cell cycle at the G0/G1 phase and inducing a Fas/membrane-bound Fas ligand-mediated apoptotic pathway. Clin Exp Pharmacol. 2008; 35: 1301–1308. https://doi.org/10.1111/j.1440-1681.2008.05007.x
  • Bramki A, Ghorri S, Jaouani A, Dehimat L, Chaouche NK. Antibacterial activity of Aspergillus isolated from different Algerian ecosystems. Afr J Biotechnol. 2017; 16 (32): 1699-1704. https://doi.org/10.5897/AJB2017.16086
  • Gengan RM, Chuturgoon AA, Mulholland DA, Dutton MF. Synthesis of sterigmatocystin derivatives and their biotransformation to aflatoxins by a blocked mutant of Aspergillus parasiticus. Mycopathologia. 1998; 144 (2): 115-122. https://doi.org/10.1023/A:1007064304292
  • Bramki A, De Pauw E, Frahtia M, McCann A, Mazzucchelli G, Dehimat L. Chromatographic separations and characterization of bioactive secondary metabolites of Apergillus quadrilineatus (MH109538) fungal strain. AsPac J Mol Biol Biotechnol. 2020; 28(3): 13-21. https://doi.org/10.35118/apjmbb.2020.028.3.02
  • Blois MS. Antioxydant determinations by the use of a stable free radical. Nature. 1958; 4617(181): 1119-1200. https://doi.org/10.1038/1811199a0
  • Tel G, Apaydın M, Duru ME. Antioxidant and cholinesterase ınhibition activities of three Tricholoma species with total phenolic and flavonoid contents: The edible mushrooms from Anatolia. Food Anal Methods. 2012; 5: 495–504. https://doi.org/10.1007/s12161-011-9275-4.
  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 1999; 26 (9‑10): 1231‑1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  • Szydlowska-Czerniak A, Dianoczki C, Recseg K, Karlovits G, Szlyk E. Determination of antioxidant capacities of vegetable oils by ferric-ion spectrophotometric methods. Talanta. 2008; 76(4): 899‑905. https://doi.org/10.1016/j.talanta.2008.04.055
  • Oyaizu M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr Diet. 1986; 44(6): 307‑315. http://dx.doi.org/10.5264/eiyogakuzashi.44.307
  • Carmona-Jiménez Y, García-Moreno MV, Igartuburu JM, Garcia Barroso C. Simplification of the DPPH assay for estimating the antioxidant activity of wine and wine by-products. Food Chem. 2014; 165: 198 204. https://doi.org/10.1016/j.foodchem.2014.05.106
  • Kar B, Kumar RS, Karmakar I, Dola N, Bala A, Mazumder UK, Hadar PK. Antioxidant and in vitro anti-inflammatory activities of Mimusops elengi leaves. Asian Pac J Trop Biomed. 2012; 2(2): S976-S980. https://doi.org/10.1016/S2221- 1691(12)60346-3
  • Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R, Ceylan O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. Endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind Crops Prod. 2014; 53: 244-251. https://doi.org/10.1016/j.indcrop.2013.12.043
  • Barboucha G, Rahim N, Boulebd H, Bramki A, Andolfi A, Salvatore MM, Masi M. Chemical Composition, In Silico Investigations and Evaluation of Antifungal, Antibacterial, Insecticidal and Repellent Activities of Eucalyptus camaldulensis Dehn. Leaf Essential Oil from ALGERIA. Plants. 2024; 13: 3229. https://doi.org/10.3390/plants13223229
  • Hossain MA, Biva IJ, Kidd SE, Whittle JD, Griesser HJ, Coad BR. Antifungal Activity in Compounds from the Australian Desert Plant Eremophila alternifolia with Potency Against Cryptococcus spp. J Antibiot. 2019; 8: 1-12. https://doi.org/10.3390/antibiotics8020034
  • Yamaç M, Bilgili F. Antimicrobial activities of fruit bodies and/or mycelial cultures of some mushroom isolates. Pharm Biol. 2006; 44: 660- 667. https://doi.org/10.1080/13880200601006897
  • Prabavathy D, Valli Nachiyar C. Study on the antimicrobial activity of Aspergillus sp. isolated from Justicia adathoda. Indian J Sci Technol. 2012; 5(9): 3317-3320. http://dx.doi.org/10.17485/ijst/2012/v5i9/30679
  • Mostafa AA, Al-Askar AA, Almaary KS, Dawoud TM, Sholkamy EN, Bakri MM. Antimicrobial activity of some plant extracts against bacterial strains causing food poisoning diseases. Saudi J Biol Sci. 2018; 25 (2): 361–366. https://doi.org/10.1016/j.sjbs.2017.02.004.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Amina Bramki

Virginie Bertrand

Fatima Zohra Makhlouf

Rym Latifi

Aya Salahouali

Chawki Bensouici

Romeila Mebirouk

Marie-claire De Pauw-gillet

Yayımlanma Tarihi 5 Temmuz 2025
Gönderilme Tarihi 21 Haziran 2024
Kabul Tarihi 27 Ağustos 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 4

Kaynak Göster

APA Bramki, A., Bertrand, V., Makhlouf, F. Z., Latifi, R., vd. (2025). Biological activities assessment of secondary metabolites derived from Aspergillus species. Journal of Research in Pharmacy, 29(4), 1562-1572. https://doi.org/10.12991/jrespharm.1734651
AMA Bramki A, Bertrand V, Makhlouf FZ, Latifi R, Salahouali A, Bensouici C, Mebirouk R, De Pauw-gillet Mc. Biological activities assessment of secondary metabolites derived from Aspergillus species. J. Res. Pharm. Temmuz 2025;29(4):1562-1572. doi:10.12991/jrespharm.1734651
Chicago Bramki, Amina, Virginie Bertrand, Fatima Zohra Makhlouf, Rym Latifi, Aya Salahouali, Chawki Bensouici, Romeila Mebirouk, ve Marie-claire De Pauw-gillet. “Biological Activities Assessment of Secondary Metabolites Derived from Aspergillus Species”. Journal of Research in Pharmacy 29, sy. 4 (Temmuz 2025): 1562-72. https://doi.org/10.12991/jrespharm.1734651.
EndNote Bramki A, Bertrand V, Makhlouf FZ, Latifi R, Salahouali A, Bensouici C, Mebirouk R, De Pauw-gillet M-c (01 Temmuz 2025) Biological activities assessment of secondary metabolites derived from Aspergillus species. Journal of Research in Pharmacy 29 4 1562–1572.
IEEE A. Bramki, V. Bertrand, F. Z. Makhlouf, R. Latifi, A. Salahouali, C. Bensouici, R. Mebirouk, ve M.-c. De Pauw-gillet, “Biological activities assessment of secondary metabolites derived from Aspergillus species”, J. Res. Pharm., c. 29, sy. 4, ss. 1562–1572, 2025, doi: 10.12991/jrespharm.1734651.
ISNAD Bramki, Amina vd. “Biological Activities Assessment of Secondary Metabolites Derived from Aspergillus Species”. Journal of Research in Pharmacy 29/4 (Temmuz 2025), 1562-1572. https://doi.org/10.12991/jrespharm.1734651.
JAMA Bramki A, Bertrand V, Makhlouf FZ, Latifi R, Salahouali A, Bensouici C, Mebirouk R, De Pauw-gillet M-c. Biological activities assessment of secondary metabolites derived from Aspergillus species. J. Res. Pharm. 2025;29:1562–1572.
MLA Bramki, Amina vd. “Biological Activities Assessment of Secondary Metabolites Derived from Aspergillus Species”. Journal of Research in Pharmacy, c. 29, sy. 4, 2025, ss. 1562-7, doi:10.12991/jrespharm.1734651.
Vancouver Bramki A, Bertrand V, Makhlouf FZ, Latifi R, Salahouali A, Bensouici C, Mebirouk R, De Pauw-gillet M-c. Biological activities assessment of secondary metabolites derived from Aspergillus species. J. Res. Pharm. 2025;29(4):1562-7.