Yıl 2025,
Cilt: 29 Sayı: 4, 1542 - 1550, 05.07.2025
Zehra Margot Çelik
,
Kadriye Kurt
,
Erkan Rayaman
,
Miraç Albayrak
,
Oktay Akpınar
,
Gizem Emre
Kaynakça
- Kazimierski M, Reguła J, Molska M. Cornelian cherry (Cornus mas L.)– characteristics, nutritional and pro-health
properties. Acta Sci Pol Technol Aliment. 2019; 18(1): 5-12. https://doi.org/10.17306/J.AFS.2019.0628
- Kucharska AZ, Szumny A, Sokół-Łętowska A, Piórecki N, Klymenko SV. Iridoids and anthocyanins in cornelian
cherry (Cornus mas L.) cultivars. J Food Compos Anal. 2015; 40: 95-102. https://doi.org/10.1016/j.jfca.2014.12.016
- Dinda B, Kyriakopoulos AM, Dinda S, Zoumpourlis V, Thomaidis NS, Velegraki A, Markopoulos C, Dinda M. Cornus
mas L. (cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine,
phytochemistry and pharmacology for its commercial utilization in drug industry. J Ethnopharmacol. 2016; 193: 670-
690. https://doi.org/10.1016/j.jep.2016.09.042
- Ercisli S. A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol. 2004; 51(4): 419-435.
https://doi.org/10.1023/B:GRES.0000023458.60138.79
- Bayram HM, Ozturkcan SA. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A
comprehensive review. J Funct Foods. 2020; 75: 104252. https://doi.org/10.1016/j.jff.2020.10425
- Hosseinpour-Jaghdani F, Shomali T, Gholipour-Shahraki S, Rahimi-Madiseh M, Rafieian-Kopaei M. Cornus mas: a
review on traditional uses and pharmacological properties. J Complement Integr Med.
2017;14(3):/j/jcim.2017.14.issue-3/jcim-2016-0137/jcim-2016-0137.xml. https://doi.org/10.1515/jcim-2016-0137
- Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high-
fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J Agric Food Chem. 2006;
54(1): 243–248. https://doi.org/10.1021/jf052 0342
- Pawlowska AM, Camangi F, Braca A. Quali-quantitative analysis of flavonoids of Cornus mas L.(Cornaceae) fruits.
Food Chem. 2010; 119(3): 1257-1261. https://doi.org/10.1016/j.foodchem.2009.07.063
- Asgary S, Kelishadi R, Rafieian-Kopaei M, Najafi S, Najafi M, Sahebkar A. Investigation of the lipid-modifying and
antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr
Cardiol. 2013; 34(7): 1729-1735. https://doi.org/10.1007/s00246-013-0693-5
- Asgary S, Rafieian-Kopaei M, Shamsi F, Najafi S, Sahebkar A. Biochemical and histopathological study of the anti-
hyperglycemic and anti-hyperlipidemic effects of cornelian cherry (Cornus mas L.) in alloxan-induced diabetic rats. J
Complement Integr Med. 2014; 11(2): 63-69. https://doi.org/10.1515/jcim-2013-0022
- Celık ZM, Sargin M, Tamer HG, Gunes FE. The effect of lyophilized dried cornelian cherry (Cornus mas L.) intake on
anthropometric and biochemical parameters in women with insulin resistance: A randomized controlled trial. Food
Sci Nutr. 2023; 11(12): 8060-8071. https://doi.org/10.1002/fsn3.3725
- Beyaz S, Dalkılıç LK, Gök Ö, Aslan, A. Effect of black mulberry (Morus nigra L.) and cranberry (Cornus mas L.) on
some molecular biological and biochemical parameters against oxidative damage caused by hydrogen peroxide in
Saccharomyces cerevisiae. Bitlis Eren Univ J Sci. 2020; 9(3): 1134-1144.
- Aurori M, Niculae M, Hanganu D, Pall E, Cenariu M, Vodnar DC, Bunea A, Fit N, Andrei, S. Phytochemical Profile,
Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts.
Pharmaceuticals. 2023; 16(3): 420. https://doi.org/10.3390/ph16030420
- Zagórska-Dziok M, Ziemlewska A, Mokrzyńska A, Nizioł-Łukaszewska Z, Sowa I, Szczepanek D, Wójciak M.
Comparative study of cytotoxicity and antioxidant, anti-aging and antibacterial properties of unfermented and
fermented extract of Cornus mas L. Int J Mol Sci. 2023; 24(17): 13232. https://doi.org/10.3390/ijms241713232
- Morrison L, Zembower TR. Antimicrobial Resistance. Gastroint Endosc Clin N Am. 2020; 30(4): 619-635.
https://doi.org/10.1016/j.giec.2020.06.004.
- Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, Barfipoursalar A,
Yousefimashouf R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 2020;
72(7)1271-1285. https://doi.org/10.1002/iub.2266.
- Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for
developing antibiofilm agents. Future Med Chem. 2015; 7(4): 493-512. https://doi.org/10.4155/fmc.15.6.
- Ramalingam K, Amaechi BT. Antimicrobial effect of herbal extract of Acacia arabica with triphala on the biofilm
forming cariogenic microorganisms. J Ayurveda Integr Med. 2020; 11(3): 322-328.
https://doi.org/10.1016/j.jaim.2018.01.005.
- Eldin AB, Ezzat M, Afifi M, Sabry O, Caprioli G. Herbal medicine: the magic way crouching microbial resistance. Nat
Prod Res. 2023; 37(24): 4280-4289. https://doi.org/10.1080/14786419.2023.2172009.
- Kokoska L, Kloucek P, Leuner O, Novy P. Plant-derived products as antibacterial and antifungal agents in human
health care. Curr Med Chem. 2019; 26(29): 5501-5541. https://doi.org/10.2174/0929867325666180831144344.
- Bayram HM, Iliaz R, Gunes FE. Effects of Cornus mas L. on anthropometric and biochemical parameters among
metabolic associated fatty liver disease patients: Randomized clinical trial. J Ethnopharmacol. 2024; 318: 117068.
https://doi.org/10.1016/j.jep.2023.117068
- WHO, 2024. Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research,
development and strategies to prevent and control antimicrobial resistance. World Health Organization. Geneva.
- Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control
strategies. Brazil J Microbiol. 2021; 52(4): 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
- Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;
284(5418): 1318-1322. https://doi.org/10.1126/science.284.5418.1318
- Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical
settings through plant-based antibiofilm agents. Phytomedicine. 2023; 119: 154973.
https://doi.org/10.1016/j.phymed.2023.154973
- Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Mico, V. Antimicrobial Capacity of Plant
Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem. 2020; 27(15): 2576–2606.
https://doi.org/10.2174/0929867325666181008115650
- Çömlekcioğlu N, Dağlı F, Çömlekcioğlu U, Aygan A. Antioxidant capacity and some phytochemical properties of
Cornus mas and Rosa canina fruits. Turk J Agric-Food Sci Technol. 2022; 10(9): 1724-1731.
https://doi.org/10.24925/turjaf.v10i9.1724-1731.5434
- Yigit D. Antimicrobial and Antioxidant evaluation of fruit extract from Cornus mas L. Aksaray Univ J Sci Eng. 2018;
2(1): 41-51. https://doi.org/10.29002/asujse. 329856
- Krzyściak P, Krośniak M, Gąstoł M, Ochońska D, Krzyściak W. Antimicrobial activity of Cornelian cherry (Cornus
mas L.). Postępy Fitoterapii. 2011; 4: 227-231.
- Krisch J. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta
Biol Szeged. 2008; 52(2): 267-270.
- Turker AU, Yildirim AB, Karakas FP. Antibacterial and antitumor activities of some wild fruits grown in Turkey.
Biotechnol Biotechnol Equip. 2012; 26(1): 2765–2772. https://doi.org/10.5504/BBEQ.2011.0156
- Milenković-Andjelković AS, Andjelković MZ, Radovanović AN, Radovanović BC, Nikolić, V. Phenol composition,
DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Chem
Ind. Hemijska Industrija. 2015; 69(4): 331-337. https://doi.org/10.2298/HEMIND140216046M
- Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial
peptides. Peptides. 2014; 62: 32-37. https://doi.org/10.1016/j.peptides.2014.09.021.
- Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR.
Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med
Microbiol. 2007; 56(4):519-523. https://doi.org/10.1099/jmm.0.46804-0
- Di Cagno R, Filannino P, Cantatore V, Polo A, Celano G, Martinovic A, Cavoski I, Gobbetti M. Design of potential
probiotic yeast starters tailored for making a cornelian cherry (Cornus mas L.) functional beverage. Int J Food
Microbiol. 2020; 323: 108591. https://doi.org/10.1016/j.ijfoodmicro.2020.108591
- Kyriakopoulos AM, Dinda B. Cornus mas (Linnaeus) novel devised medicinal preparations: Bactericidal effect against
Staphylococcus aureus and Pseudomonas aeruginosa. Molecules. 2015; 20(6): 11202–11218.
https://doi.org/10.3390/molecules200611202
- Bayan Y, Yılar M, Onaran A. Evaluation of antifungal activity of methanol plant extracts from Cornus mas L. and
Morus alba L. Sixth International Scientific Agricultural Symposium “Agrosym 2015”. 2015; 640-643.
https://doi.org/10.7251/AGSY1505640B
- Cioch M, Satora P, Skotniczy M, Semik-Szczurak D, Tarko T. Characterisation of antimicrobial properties of extracts
of selected medicinal plants. Polish J Microbiol. 2017; 66(4): 463.
- Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr
Protocol Food Anal Chem. 2001; (1): F1-2. https://doi.org/10.1002/0471142913.faf0102s00
- Fuleki T, Francis FJ. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in
cranberries. J Food Sci. 1986; 33(1): 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
- EUCAST, Antimicrobial susceptibility testing EUCAST disk diffusion method. Version 12, 2024.
Perez C, Pauli M, Bazerque P. An Antibiotic Assay by the Agar-Well Diffusion Method. Acta Biol Med Exp. 1990; 15:
113-115.
- ISO. ISO 20776–1: Susceptibility testing of infectious agents and evaluation of performance of antimicrobial
susceptibility devices. Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial
agents against rapidly growing aerobic bacteria involved in infectious diseases. International Organization for
Standardization, Geneva, Switzerland. 2019.
Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.)
Yıl 2025,
Cilt: 29 Sayı: 4, 1542 - 1550, 05.07.2025
Zehra Margot Çelik
,
Kadriye Kurt
,
Erkan Rayaman
,
Miraç Albayrak
,
Oktay Akpınar
,
Gizem Emre
Öz
This study investigates the antimicrobial and antibiofilm activities of lyophilized Cornelian cherry (Cornus
mas L.) and its methanol extract against a range of clinically significant pathogens. The research aimed to evaluate the
potential of these natural compounds as alternative antimicrobial agents, given the global rise in antimicrobial
resistance. Antibacterial activity was assessed using agar well diffusion and broth microdilution methods, while
antibiofilm efficacy was determined through biofilm inhibition assays. The methanol extract exhibited broad-spectrum
antibacterial activity, effectively inhibiting all tested bacterial strains, whereas the lyophilized form demonstrated no
activity against Klebsiella pneumoniae and Escherichia coli. Both forms showed strong biofilm inhibition, particularly
against Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Pseudomonas aeruginosa, and Acinetobacter
baumannii, with inhibition increasing in a dose-dependent manner and peaking at the minimum inhibitory
concentration. No antifungal activity was observed against the tested Candida species. The superior efficacy of the
methanol extract may be attributed to a higher concentration of phenolic and anthocyanin compounds. These findings
suggest that Cornelian cherry, particularly in its methanol-extracted form, holds promise as a natural antimicrobial and
antibiofilm agent. Further research is warranted to explore its potential applications in clinical and industrial settings.
Kaynakça
- Kazimierski M, Reguła J, Molska M. Cornelian cherry (Cornus mas L.)– characteristics, nutritional and pro-health
properties. Acta Sci Pol Technol Aliment. 2019; 18(1): 5-12. https://doi.org/10.17306/J.AFS.2019.0628
- Kucharska AZ, Szumny A, Sokół-Łętowska A, Piórecki N, Klymenko SV. Iridoids and anthocyanins in cornelian
cherry (Cornus mas L.) cultivars. J Food Compos Anal. 2015; 40: 95-102. https://doi.org/10.1016/j.jfca.2014.12.016
- Dinda B, Kyriakopoulos AM, Dinda S, Zoumpourlis V, Thomaidis NS, Velegraki A, Markopoulos C, Dinda M. Cornus
mas L. (cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine,
phytochemistry and pharmacology for its commercial utilization in drug industry. J Ethnopharmacol. 2016; 193: 670-
690. https://doi.org/10.1016/j.jep.2016.09.042
- Ercisli S. A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol. 2004; 51(4): 419-435.
https://doi.org/10.1023/B:GRES.0000023458.60138.79
- Bayram HM, Ozturkcan SA. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A
comprehensive review. J Funct Foods. 2020; 75: 104252. https://doi.org/10.1016/j.jff.2020.10425
- Hosseinpour-Jaghdani F, Shomali T, Gholipour-Shahraki S, Rahimi-Madiseh M, Rafieian-Kopaei M. Cornus mas: a
review on traditional uses and pharmacological properties. J Complement Integr Med.
2017;14(3):/j/jcim.2017.14.issue-3/jcim-2016-0137/jcim-2016-0137.xml. https://doi.org/10.1515/jcim-2016-0137
- Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high-
fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J Agric Food Chem. 2006;
54(1): 243–248. https://doi.org/10.1021/jf052 0342
- Pawlowska AM, Camangi F, Braca A. Quali-quantitative analysis of flavonoids of Cornus mas L.(Cornaceae) fruits.
Food Chem. 2010; 119(3): 1257-1261. https://doi.org/10.1016/j.foodchem.2009.07.063
- Asgary S, Kelishadi R, Rafieian-Kopaei M, Najafi S, Najafi M, Sahebkar A. Investigation of the lipid-modifying and
antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr
Cardiol. 2013; 34(7): 1729-1735. https://doi.org/10.1007/s00246-013-0693-5
- Asgary S, Rafieian-Kopaei M, Shamsi F, Najafi S, Sahebkar A. Biochemical and histopathological study of the anti-
hyperglycemic and anti-hyperlipidemic effects of cornelian cherry (Cornus mas L.) in alloxan-induced diabetic rats. J
Complement Integr Med. 2014; 11(2): 63-69. https://doi.org/10.1515/jcim-2013-0022
- Celık ZM, Sargin M, Tamer HG, Gunes FE. The effect of lyophilized dried cornelian cherry (Cornus mas L.) intake on
anthropometric and biochemical parameters in women with insulin resistance: A randomized controlled trial. Food
Sci Nutr. 2023; 11(12): 8060-8071. https://doi.org/10.1002/fsn3.3725
- Beyaz S, Dalkılıç LK, Gök Ö, Aslan, A. Effect of black mulberry (Morus nigra L.) and cranberry (Cornus mas L.) on
some molecular biological and biochemical parameters against oxidative damage caused by hydrogen peroxide in
Saccharomyces cerevisiae. Bitlis Eren Univ J Sci. 2020; 9(3): 1134-1144.
- Aurori M, Niculae M, Hanganu D, Pall E, Cenariu M, Vodnar DC, Bunea A, Fit N, Andrei, S. Phytochemical Profile,
Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts.
Pharmaceuticals. 2023; 16(3): 420. https://doi.org/10.3390/ph16030420
- Zagórska-Dziok M, Ziemlewska A, Mokrzyńska A, Nizioł-Łukaszewska Z, Sowa I, Szczepanek D, Wójciak M.
Comparative study of cytotoxicity and antioxidant, anti-aging and antibacterial properties of unfermented and
fermented extract of Cornus mas L. Int J Mol Sci. 2023; 24(17): 13232. https://doi.org/10.3390/ijms241713232
- Morrison L, Zembower TR. Antimicrobial Resistance. Gastroint Endosc Clin N Am. 2020; 30(4): 619-635.
https://doi.org/10.1016/j.giec.2020.06.004.
- Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, Barfipoursalar A,
Yousefimashouf R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 2020;
72(7)1271-1285. https://doi.org/10.1002/iub.2266.
- Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for
developing antibiofilm agents. Future Med Chem. 2015; 7(4): 493-512. https://doi.org/10.4155/fmc.15.6.
- Ramalingam K, Amaechi BT. Antimicrobial effect of herbal extract of Acacia arabica with triphala on the biofilm
forming cariogenic microorganisms. J Ayurveda Integr Med. 2020; 11(3): 322-328.
https://doi.org/10.1016/j.jaim.2018.01.005.
- Eldin AB, Ezzat M, Afifi M, Sabry O, Caprioli G. Herbal medicine: the magic way crouching microbial resistance. Nat
Prod Res. 2023; 37(24): 4280-4289. https://doi.org/10.1080/14786419.2023.2172009.
- Kokoska L, Kloucek P, Leuner O, Novy P. Plant-derived products as antibacterial and antifungal agents in human
health care. Curr Med Chem. 2019; 26(29): 5501-5541. https://doi.org/10.2174/0929867325666180831144344.
- Bayram HM, Iliaz R, Gunes FE. Effects of Cornus mas L. on anthropometric and biochemical parameters among
metabolic associated fatty liver disease patients: Randomized clinical trial. J Ethnopharmacol. 2024; 318: 117068.
https://doi.org/10.1016/j.jep.2023.117068
- WHO, 2024. Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research,
development and strategies to prevent and control antimicrobial resistance. World Health Organization. Geneva.
- Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control
strategies. Brazil J Microbiol. 2021; 52(4): 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
- Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;
284(5418): 1318-1322. https://doi.org/10.1126/science.284.5418.1318
- Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical
settings through plant-based antibiofilm agents. Phytomedicine. 2023; 119: 154973.
https://doi.org/10.1016/j.phymed.2023.154973
- Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Mico, V. Antimicrobial Capacity of Plant
Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem. 2020; 27(15): 2576–2606.
https://doi.org/10.2174/0929867325666181008115650
- Çömlekcioğlu N, Dağlı F, Çömlekcioğlu U, Aygan A. Antioxidant capacity and some phytochemical properties of
Cornus mas and Rosa canina fruits. Turk J Agric-Food Sci Technol. 2022; 10(9): 1724-1731.
https://doi.org/10.24925/turjaf.v10i9.1724-1731.5434
- Yigit D. Antimicrobial and Antioxidant evaluation of fruit extract from Cornus mas L. Aksaray Univ J Sci Eng. 2018;
2(1): 41-51. https://doi.org/10.29002/asujse. 329856
- Krzyściak P, Krośniak M, Gąstoł M, Ochońska D, Krzyściak W. Antimicrobial activity of Cornelian cherry (Cornus
mas L.). Postępy Fitoterapii. 2011; 4: 227-231.
- Krisch J. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta
Biol Szeged. 2008; 52(2): 267-270.
- Turker AU, Yildirim AB, Karakas FP. Antibacterial and antitumor activities of some wild fruits grown in Turkey.
Biotechnol Biotechnol Equip. 2012; 26(1): 2765–2772. https://doi.org/10.5504/BBEQ.2011.0156
- Milenković-Andjelković AS, Andjelković MZ, Radovanović AN, Radovanović BC, Nikolić, V. Phenol composition,
DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Chem
Ind. Hemijska Industrija. 2015; 69(4): 331-337. https://doi.org/10.2298/HEMIND140216046M
- Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial
peptides. Peptides. 2014; 62: 32-37. https://doi.org/10.1016/j.peptides.2014.09.021.
- Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR.
Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med
Microbiol. 2007; 56(4):519-523. https://doi.org/10.1099/jmm.0.46804-0
- Di Cagno R, Filannino P, Cantatore V, Polo A, Celano G, Martinovic A, Cavoski I, Gobbetti M. Design of potential
probiotic yeast starters tailored for making a cornelian cherry (Cornus mas L.) functional beverage. Int J Food
Microbiol. 2020; 323: 108591. https://doi.org/10.1016/j.ijfoodmicro.2020.108591
- Kyriakopoulos AM, Dinda B. Cornus mas (Linnaeus) novel devised medicinal preparations: Bactericidal effect against
Staphylococcus aureus and Pseudomonas aeruginosa. Molecules. 2015; 20(6): 11202–11218.
https://doi.org/10.3390/molecules200611202
- Bayan Y, Yılar M, Onaran A. Evaluation of antifungal activity of methanol plant extracts from Cornus mas L. and
Morus alba L. Sixth International Scientific Agricultural Symposium “Agrosym 2015”. 2015; 640-643.
https://doi.org/10.7251/AGSY1505640B
- Cioch M, Satora P, Skotniczy M, Semik-Szczurak D, Tarko T. Characterisation of antimicrobial properties of extracts
of selected medicinal plants. Polish J Microbiol. 2017; 66(4): 463.
- Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr
Protocol Food Anal Chem. 2001; (1): F1-2. https://doi.org/10.1002/0471142913.faf0102s00
- Fuleki T, Francis FJ. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in
cranberries. J Food Sci. 1986; 33(1): 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
- EUCAST, Antimicrobial susceptibility testing EUCAST disk diffusion method. Version 12, 2024.
Perez C, Pauli M, Bazerque P. An Antibiotic Assay by the Agar-Well Diffusion Method. Acta Biol Med Exp. 1990; 15:
113-115.
- ISO. ISO 20776–1: Susceptibility testing of infectious agents and evaluation of performance of antimicrobial
susceptibility devices. Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial
agents against rapidly growing aerobic bacteria involved in infectious diseases. International Organization for
Standardization, Geneva, Switzerland. 2019.