Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 29 Sayı: 4, 1542 - 1550, 05.07.2025
https://doi.org/10.12991/jrespharm.1734691

Öz

Kaynakça

  • Kazimierski M, Reguła J, Molska M. Cornelian cherry (Cornus mas L.)– characteristics, nutritional and pro-health properties. Acta Sci Pol Technol Aliment. 2019; 18(1): 5-12. https://doi.org/10.17306/J.AFS.2019.0628
  • Kucharska AZ, Szumny A, Sokół-Łętowska A, Piórecki N, Klymenko SV. Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J Food Compos Anal. 2015; 40: 95-102. https://doi.org/10.1016/j.jfca.2014.12.016
  • Dinda B, Kyriakopoulos AM, Dinda S, Zoumpourlis V, Thomaidis NS, Velegraki A, Markopoulos C, Dinda M. Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J Ethnopharmacol. 2016; 193: 670- 690. https://doi.org/10.1016/j.jep.2016.09.042
  • Ercisli S. A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol. 2004; 51(4): 419-435. https://doi.org/10.1023/B:GRES.0000023458.60138.79
  • Bayram HM, Ozturkcan SA. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A comprehensive review. J Funct Foods. 2020; 75: 104252. https://doi.org/10.1016/j.jff.2020.10425
  • Hosseinpour-Jaghdani F, Shomali T, Gholipour-Shahraki S, Rahimi-Madiseh M, Rafieian-Kopaei M. Cornus mas: a review on traditional uses and pharmacological properties. J Complement Integr Med. 2017;14(3):/j/jcim.2017.14.issue-3/jcim-2016-0137/jcim-2016-0137.xml. https://doi.org/10.1515/jcim-2016-0137
  • Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high- fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J Agric Food Chem. 2006; 54(1): 243–248. https://doi.org/10.1021/jf052 0342
  • Pawlowska AM, Camangi F, Braca A. Quali-quantitative analysis of flavonoids of Cornus mas L.(Cornaceae) fruits. Food Chem. 2010; 119(3): 1257-1261. https://doi.org/10.1016/j.foodchem.2009.07.063
  • Asgary S, Kelishadi R, Rafieian-Kopaei M, Najafi S, Najafi M, Sahebkar A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr Cardiol. 2013; 34(7): 1729-1735. https://doi.org/10.1007/s00246-013-0693-5
  • Asgary S, Rafieian-Kopaei M, Shamsi F, Najafi S, Sahebkar A. Biochemical and histopathological study of the anti- hyperglycemic and anti-hyperlipidemic effects of cornelian cherry (Cornus mas L.) in alloxan-induced diabetic rats. J Complement Integr Med. 2014; 11(2): 63-69. https://doi.org/10.1515/jcim-2013-0022
  • Celık ZM, Sargin M, Tamer HG, Gunes FE. The effect of lyophilized dried cornelian cherry (Cornus mas L.) intake on anthropometric and biochemical parameters in women with insulin resistance: A randomized controlled trial. Food Sci Nutr. 2023; 11(12): 8060-8071. https://doi.org/10.1002/fsn3.3725
  • Beyaz S, Dalkılıç LK, Gök Ö, Aslan, A. Effect of black mulberry (Morus nigra L.) and cranberry (Cornus mas L.) on some molecular biological and biochemical parameters against oxidative damage caused by hydrogen peroxide in Saccharomyces cerevisiae. Bitlis Eren Univ J Sci. 2020; 9(3): 1134-1144.
  • Aurori M, Niculae M, Hanganu D, Pall E, Cenariu M, Vodnar DC, Bunea A, Fit N, Andrei, S. Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals. 2023; 16(3): 420. https://doi.org/10.3390/ph16030420
  • Zagórska-Dziok M, Ziemlewska A, Mokrzyńska A, Nizioł-Łukaszewska Z, Sowa I, Szczepanek D, Wójciak M. Comparative study of cytotoxicity and antioxidant, anti-aging and antibacterial properties of unfermented and fermented extract of Cornus mas L. Int J Mol Sci. 2023; 24(17): 13232. https://doi.org/10.3390/ijms241713232
  • Morrison L, Zembower TR. Antimicrobial Resistance. Gastroint Endosc Clin N Am. 2020; 30(4): 619-635. https://doi.org/10.1016/j.giec.2020.06.004.
  • Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, Barfipoursalar A, Yousefimashouf R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 2020; 72(7)1271-1285. https://doi.org/10.1002/iub.2266.
  • Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015; 7(4): 493-512. https://doi.org/10.4155/fmc.15.6.
  • Ramalingam K, Amaechi BT. Antimicrobial effect of herbal extract of Acacia arabica with triphala on the biofilm forming cariogenic microorganisms. J Ayurveda Integr Med. 2020; 11(3): 322-328. https://doi.org/10.1016/j.jaim.2018.01.005.
  • Eldin AB, Ezzat M, Afifi M, Sabry O, Caprioli G. Herbal medicine: the magic way crouching microbial resistance. Nat Prod Res. 2023; 37(24): 4280-4289. https://doi.org/10.1080/14786419.2023.2172009.
  • Kokoska L, Kloucek P, Leuner O, Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr Med Chem. 2019; 26(29): 5501-5541. https://doi.org/10.2174/0929867325666180831144344.
  • Bayram HM, Iliaz R, Gunes FE. Effects of Cornus mas L. on anthropometric and biochemical parameters among metabolic associated fatty liver disease patients: Randomized clinical trial. J Ethnopharmacol. 2024; 318: 117068. https://doi.org/10.1016/j.jep.2023.117068
  • WHO, 2024. Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. World Health Organization. Geneva.
  • Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazil J Microbiol. 2021; 52(4): 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-1322. https://doi.org/10.1126/science.284.5418.1318
  • Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. Phytomedicine. 2023; 119: 154973. https://doi.org/10.1016/j.phymed.2023.154973
  • Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Mico, V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem. 2020; 27(15): 2576–2606. https://doi.org/10.2174/0929867325666181008115650
  • Çömlekcioğlu N, Dağlı F, Çömlekcioğlu U, Aygan A. Antioxidant capacity and some phytochemical properties of Cornus mas and Rosa canina fruits. Turk J Agric-Food Sci Technol. 2022; 10(9): 1724-1731. https://doi.org/10.24925/turjaf.v10i9.1724-1731.5434
  • Yigit D. Antimicrobial and Antioxidant evaluation of fruit extract from Cornus mas L. Aksaray Univ J Sci Eng. 2018; 2(1): 41-51. https://doi.org/10.29002/asujse. 329856
  • Krzyściak P, Krośniak M, Gąstoł M, Ochońska D, Krzyściak W. Antimicrobial activity of Cornelian cherry (Cornus mas L.). Postępy Fitoterapii. 2011; 4: 227-231.
  • Krisch J. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta Biol Szeged. 2008; 52(2): 267-270.
  • Turker AU, Yildirim AB, Karakas FP. Antibacterial and antitumor activities of some wild fruits grown in Turkey. Biotechnol Biotechnol Equip. 2012; 26(1): 2765–2772. https://doi.org/10.5504/BBEQ.2011.0156
  • Milenković-Andjelković AS, Andjelković MZ, Radovanović AN, Radovanović BC, Nikolić, V. Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Chem Ind. Hemijska Industrija. 2015; 69(4): 331-337. https://doi.org/10.2298/HEMIND140216046M
  • Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014; 62: 32-37. https://doi.org/10.1016/j.peptides.2014.09.021.
  • Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 2007; 56(4):519-523. https://doi.org/10.1099/jmm.0.46804-0
  • Di Cagno R, Filannino P, Cantatore V, Polo A, Celano G, Martinovic A, Cavoski I, Gobbetti M. Design of potential probiotic yeast starters tailored for making a cornelian cherry (Cornus mas L.) functional beverage. Int J Food Microbiol. 2020; 323: 108591. https://doi.org/10.1016/j.ijfoodmicro.2020.108591
  • Kyriakopoulos AM, Dinda B. Cornus mas (Linnaeus) novel devised medicinal preparations: Bactericidal effect against Staphylococcus aureus and Pseudomonas aeruginosa. Molecules. 2015; 20(6): 11202–11218. https://doi.org/10.3390/molecules200611202
  • Bayan Y, Yılar M, Onaran A. Evaluation of antifungal activity of methanol plant extracts from Cornus mas L. and Morus alba L. Sixth International Scientific Agricultural Symposium “Agrosym 2015”. 2015; 640-643. https://doi.org/10.7251/AGSY1505640B
  • Cioch M, Satora P, Skotniczy M, Semik-Szczurak D, Tarko T. Characterisation of antimicrobial properties of extracts of selected medicinal plants. Polish J Microbiol. 2017; 66(4): 463.
  • Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr Protocol Food Anal Chem. 2001; (1): F1-2. https://doi.org/10.1002/0471142913.faf0102s00
  • Fuleki T, Francis FJ. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci. 1986; 33(1): 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  • EUCAST, Antimicrobial susceptibility testing EUCAST disk diffusion method. Version 12, 2024. Perez C, Pauli M, Bazerque P. An Antibiotic Assay by the Agar-Well Diffusion Method. Acta Biol Med Exp. 1990; 15: 113-115.
  • ISO. ISO 20776–1: Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility devices. Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. International Organization for Standardization, Geneva, Switzerland. 2019.

Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.)

Yıl 2025, Cilt: 29 Sayı: 4, 1542 - 1550, 05.07.2025
https://doi.org/10.12991/jrespharm.1734691

Öz

This study investigates the antimicrobial and antibiofilm activities of lyophilized Cornelian cherry (Cornus
mas L.) and its methanol extract against a range of clinically significant pathogens. The research aimed to evaluate the
potential of these natural compounds as alternative antimicrobial agents, given the global rise in antimicrobial
resistance. Antibacterial activity was assessed using agar well diffusion and broth microdilution methods, while
antibiofilm efficacy was determined through biofilm inhibition assays. The methanol extract exhibited broad-spectrum
antibacterial activity, effectively inhibiting all tested bacterial strains, whereas the lyophilized form demonstrated no
activity against Klebsiella pneumoniae and Escherichia coli. Both forms showed strong biofilm inhibition, particularly
against Staphylococcus aureus, Enterococcus faecalis, Streptococcus pyogenes, Pseudomonas aeruginosa, and Acinetobacter
baumannii, with inhibition increasing in a dose-dependent manner and peaking at the minimum inhibitory
concentration. No antifungal activity was observed against the tested Candida species. The superior efficacy of the
methanol extract may be attributed to a higher concentration of phenolic and anthocyanin compounds. These findings
suggest that Cornelian cherry, particularly in its methanol-extracted form, holds promise as a natural antimicrobial and
antibiofilm agent. Further research is warranted to explore its potential applications in clinical and industrial settings.

Kaynakça

  • Kazimierski M, Reguła J, Molska M. Cornelian cherry (Cornus mas L.)– characteristics, nutritional and pro-health properties. Acta Sci Pol Technol Aliment. 2019; 18(1): 5-12. https://doi.org/10.17306/J.AFS.2019.0628
  • Kucharska AZ, Szumny A, Sokół-Łętowska A, Piórecki N, Klymenko SV. Iridoids and anthocyanins in cornelian cherry (Cornus mas L.) cultivars. J Food Compos Anal. 2015; 40: 95-102. https://doi.org/10.1016/j.jfca.2014.12.016
  • Dinda B, Kyriakopoulos AM, Dinda S, Zoumpourlis V, Thomaidis NS, Velegraki A, Markopoulos C, Dinda M. Cornus mas L. (cornelian cherry), an important European and Asian traditional food and medicine: ethnomedicine, phytochemistry and pharmacology for its commercial utilization in drug industry. J Ethnopharmacol. 2016; 193: 670- 690. https://doi.org/10.1016/j.jep.2016.09.042
  • Ercisli S. A short review of the fruit germplasm resources of Turkey. Genet Resour Crop Evol. 2004; 51(4): 419-435. https://doi.org/10.1023/B:GRES.0000023458.60138.79
  • Bayram HM, Ozturkcan SA. Bioactive components and biological properties of cornelian cherry (Cornus mas L.): A comprehensive review. J Funct Foods. 2020; 75: 104252. https://doi.org/10.1016/j.jff.2020.10425
  • Hosseinpour-Jaghdani F, Shomali T, Gholipour-Shahraki S, Rahimi-Madiseh M, Rafieian-Kopaei M. Cornus mas: a review on traditional uses and pharmacological properties. J Complement Integr Med. 2017;14(3):/j/jcim.2017.14.issue-3/jcim-2016-0137/jcim-2016-0137.xml. https://doi.org/10.1515/jcim-2016-0137
  • Jayaprakasam B, Olson LK, Schutzki RE, Tai MH, Nair MG. Amelioration of obesity and glucose intolerance in high- fat-fed C57BL/6 mice by anthocyanins and ursolic acid in cornelian cherry (Cornus mas). J Agric Food Chem. 2006; 54(1): 243–248. https://doi.org/10.1021/jf052 0342
  • Pawlowska AM, Camangi F, Braca A. Quali-quantitative analysis of flavonoids of Cornus mas L.(Cornaceae) fruits. Food Chem. 2010; 119(3): 1257-1261. https://doi.org/10.1016/j.foodchem.2009.07.063
  • Asgary S, Kelishadi R, Rafieian-Kopaei M, Najafi S, Najafi M, Sahebkar A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr Cardiol. 2013; 34(7): 1729-1735. https://doi.org/10.1007/s00246-013-0693-5
  • Asgary S, Rafieian-Kopaei M, Shamsi F, Najafi S, Sahebkar A. Biochemical and histopathological study of the anti- hyperglycemic and anti-hyperlipidemic effects of cornelian cherry (Cornus mas L.) in alloxan-induced diabetic rats. J Complement Integr Med. 2014; 11(2): 63-69. https://doi.org/10.1515/jcim-2013-0022
  • Celık ZM, Sargin M, Tamer HG, Gunes FE. The effect of lyophilized dried cornelian cherry (Cornus mas L.) intake on anthropometric and biochemical parameters in women with insulin resistance: A randomized controlled trial. Food Sci Nutr. 2023; 11(12): 8060-8071. https://doi.org/10.1002/fsn3.3725
  • Beyaz S, Dalkılıç LK, Gök Ö, Aslan, A. Effect of black mulberry (Morus nigra L.) and cranberry (Cornus mas L.) on some molecular biological and biochemical parameters against oxidative damage caused by hydrogen peroxide in Saccharomyces cerevisiae. Bitlis Eren Univ J Sci. 2020; 9(3): 1134-1144.
  • Aurori M, Niculae M, Hanganu D, Pall E, Cenariu M, Vodnar DC, Bunea A, Fit N, Andrei, S. Phytochemical Profile, Antioxidant, Antimicrobial and Cytoprotective Effects of Cornelian Cherry (Cornus mas L.) Fruit Extracts. Pharmaceuticals. 2023; 16(3): 420. https://doi.org/10.3390/ph16030420
  • Zagórska-Dziok M, Ziemlewska A, Mokrzyńska A, Nizioł-Łukaszewska Z, Sowa I, Szczepanek D, Wójciak M. Comparative study of cytotoxicity and antioxidant, anti-aging and antibacterial properties of unfermented and fermented extract of Cornus mas L. Int J Mol Sci. 2023; 24(17): 13232. https://doi.org/10.3390/ijms241713232
  • Morrison L, Zembower TR. Antimicrobial Resistance. Gastroint Endosc Clin N Am. 2020; 30(4): 619-635. https://doi.org/10.1016/j.giec.2020.06.004.
  • Mirzaei R, Mohammadzadeh R, Alikhani MY, Shokri Moghadam M, Karampoor S, Kazemi S, Barfipoursalar A, Yousefimashouf R. The biofilm-associated bacterial infections unrelated to indwelling devices. IUBMB Life. 2020; 72(7)1271-1285. https://doi.org/10.1002/iub.2266.
  • Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem. 2015; 7(4): 493-512. https://doi.org/10.4155/fmc.15.6.
  • Ramalingam K, Amaechi BT. Antimicrobial effect of herbal extract of Acacia arabica with triphala on the biofilm forming cariogenic microorganisms. J Ayurveda Integr Med. 2020; 11(3): 322-328. https://doi.org/10.1016/j.jaim.2018.01.005.
  • Eldin AB, Ezzat M, Afifi M, Sabry O, Caprioli G. Herbal medicine: the magic way crouching microbial resistance. Nat Prod Res. 2023; 37(24): 4280-4289. https://doi.org/10.1080/14786419.2023.2172009.
  • Kokoska L, Kloucek P, Leuner O, Novy P. Plant-derived products as antibacterial and antifungal agents in human health care. Curr Med Chem. 2019; 26(29): 5501-5541. https://doi.org/10.2174/0929867325666180831144344.
  • Bayram HM, Iliaz R, Gunes FE. Effects of Cornus mas L. on anthropometric and biochemical parameters among metabolic associated fatty liver disease patients: Randomized clinical trial. J Ethnopharmacol. 2024; 318: 117068. https://doi.org/10.1016/j.jep.2023.117068
  • WHO, 2024. Bacterial Priority Pathogens List, 2024: bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance. World Health Organization. Geneva.
  • Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Brazil J Microbiol. 2021; 52(4): 1701–1718. https://doi.org/10.1007/s42770-021-00624-x
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999; 284(5418): 1318-1322. https://doi.org/10.1126/science.284.5418.1318
  • Silva E, Teixeira JA, Pereira MO, Rocha CMR, Sousa AM. Evolving biofilm inhibition and eradication in clinical settings through plant-based antibiofilm agents. Phytomedicine. 2023; 119: 154973. https://doi.org/10.1016/j.phymed.2023.154973
  • Álvarez-Martínez FJ, Barrajón-Catalán E, Encinar JA, Rodríguez-Díaz JC, Mico, V. Antimicrobial Capacity of Plant Polyphenols against Gram-positive Bacteria: A Comprehensive Review. Curr Med Chem. 2020; 27(15): 2576–2606. https://doi.org/10.2174/0929867325666181008115650
  • Çömlekcioğlu N, Dağlı F, Çömlekcioğlu U, Aygan A. Antioxidant capacity and some phytochemical properties of Cornus mas and Rosa canina fruits. Turk J Agric-Food Sci Technol. 2022; 10(9): 1724-1731. https://doi.org/10.24925/turjaf.v10i9.1724-1731.5434
  • Yigit D. Antimicrobial and Antioxidant evaluation of fruit extract from Cornus mas L. Aksaray Univ J Sci Eng. 2018; 2(1): 41-51. https://doi.org/10.29002/asujse. 329856
  • Krzyściak P, Krośniak M, Gąstoł M, Ochońska D, Krzyściak W. Antimicrobial activity of Cornelian cherry (Cornus mas L.). Postępy Fitoterapii. 2011; 4: 227-231.
  • Krisch J. Effect of fruit juices and pomace extracts on the growth of Gram-positive and Gram-negative bacteria. Acta Biol Szeged. 2008; 52(2): 267-270.
  • Turker AU, Yildirim AB, Karakas FP. Antibacterial and antitumor activities of some wild fruits grown in Turkey. Biotechnol Biotechnol Equip. 2012; 26(1): 2765–2772. https://doi.org/10.5504/BBEQ.2011.0156
  • Milenković-Andjelković AS, Andjelković MZ, Radovanović AN, Radovanović BC, Nikolić, V. Phenol composition, DPPH radical scavenging and antimicrobial activity of Cornelian cherry (Cornus mas) fruit and leaf extracts. Chem Ind. Hemijska Industrija. 2015; 69(4): 331-337. https://doi.org/10.2298/HEMIND140216046M
  • Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014; 62: 32-37. https://doi.org/10.1016/j.peptides.2014.09.021.
  • Nostro A, Roccaro AS, Bisignano G, Marino A, Cannatelli MA, Pizzimenti FC, Cioni PL, Procopio F, Blanco AR. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Med Microbiol. 2007; 56(4):519-523. https://doi.org/10.1099/jmm.0.46804-0
  • Di Cagno R, Filannino P, Cantatore V, Polo A, Celano G, Martinovic A, Cavoski I, Gobbetti M. Design of potential probiotic yeast starters tailored for making a cornelian cherry (Cornus mas L.) functional beverage. Int J Food Microbiol. 2020; 323: 108591. https://doi.org/10.1016/j.ijfoodmicro.2020.108591
  • Kyriakopoulos AM, Dinda B. Cornus mas (Linnaeus) novel devised medicinal preparations: Bactericidal effect against Staphylococcus aureus and Pseudomonas aeruginosa. Molecules. 2015; 20(6): 11202–11218. https://doi.org/10.3390/molecules200611202
  • Bayan Y, Yılar M, Onaran A. Evaluation of antifungal activity of methanol plant extracts from Cornus mas L. and Morus alba L. Sixth International Scientific Agricultural Symposium “Agrosym 2015”. 2015; 640-643. https://doi.org/10.7251/AGSY1505640B
  • Cioch M, Satora P, Skotniczy M, Semik-Szczurak D, Tarko T. Characterisation of antimicrobial properties of extracts of selected medicinal plants. Polish J Microbiol. 2017; 66(4): 463.
  • Giusti MM, Wrolstad RE. Characterization and measurement of anthocyanins by UV‐visible spectroscopy. Curr Protocol Food Anal Chem. 2001; (1): F1-2. https://doi.org/10.1002/0471142913.faf0102s00
  • Fuleki T, Francis FJ. Quantitative methods for anthocyanins. 1. Extraction and determination of total anthocyanin in cranberries. J Food Sci. 1986; 33(1): 72-77. https://doi.org/10.1111/j.1365-2621.1968.tb00887.x
  • EUCAST, Antimicrobial susceptibility testing EUCAST disk diffusion method. Version 12, 2024. Perez C, Pauli M, Bazerque P. An Antibiotic Assay by the Agar-Well Diffusion Method. Acta Biol Med Exp. 1990; 15: 113-115.
  • ISO. ISO 20776–1: Susceptibility testing of infectious agents and evaluation of performance of antimicrobial susceptibility devices. Part 1: Broth micro-dilution reference method for testing the in vitro activity of antimicrobial agents against rapidly growing aerobic bacteria involved in infectious diseases. International Organization for Standardization, Geneva, Switzerland. 2019.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Botanik, Farmasotik Mikrobiyoloji
Bölüm Articles
Yazarlar

Zehra Margot Çelik

Kadriye Kurt

Erkan Rayaman

Miraç Albayrak

Oktay Akpınar

Gizem Emre

Yayımlanma Tarihi 5 Temmuz 2025
Gönderilme Tarihi 21 Mart 2025
Kabul Tarihi 15 Mayıs 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 4

Kaynak Göster

APA Çelik, Z. M., Kurt, K., Rayaman, E., Albayrak, M., vd. (2025). Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.). Journal of Research in Pharmacy, 29(4), 1542-1550. https://doi.org/10.12991/jrespharm.1734691
AMA Çelik ZM, Kurt K, Rayaman E, Albayrak M, Akpınar O, Emre G. Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.). J. Res. Pharm. Temmuz 2025;29(4):1542-1550. doi:10.12991/jrespharm.1734691
Chicago Çelik, Zehra Margot, Kadriye Kurt, Erkan Rayaman, Miraç Albayrak, Oktay Akpınar, ve Gizem Emre. “Determination of the Antimicrobial and Antibiofilm Activity of Lyophilized Cornelian Cherry (Cornus Mas L.)”. Journal of Research in Pharmacy 29, sy. 4 (Temmuz 2025): 1542-50. https://doi.org/10.12991/jrespharm.1734691.
EndNote Çelik ZM, Kurt K, Rayaman E, Albayrak M, Akpınar O, Emre G (01 Temmuz 2025) Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.). Journal of Research in Pharmacy 29 4 1542–1550.
IEEE Z. M. Çelik, K. Kurt, E. Rayaman, M. Albayrak, O. Akpınar, ve G. Emre, “Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.)”, J. Res. Pharm., c. 29, sy. 4, ss. 1542–1550, 2025, doi: 10.12991/jrespharm.1734691.
ISNAD Çelik, Zehra Margot vd. “Determination of the Antimicrobial and Antibiofilm Activity of Lyophilized Cornelian Cherry (Cornus Mas L.)”. Journal of Research in Pharmacy 29/4 (Temmuz 2025), 1542-1550. https://doi.org/10.12991/jrespharm.1734691.
JAMA Çelik ZM, Kurt K, Rayaman E, Albayrak M, Akpınar O, Emre G. Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.). J. Res. Pharm. 2025;29:1542–1550.
MLA Çelik, Zehra Margot vd. “Determination of the Antimicrobial and Antibiofilm Activity of Lyophilized Cornelian Cherry (Cornus Mas L.)”. Journal of Research in Pharmacy, c. 29, sy. 4, 2025, ss. 1542-50, doi:10.12991/jrespharm.1734691.
Vancouver Çelik ZM, Kurt K, Rayaman E, Albayrak M, Akpınar O, Emre G. Determination of the antimicrobial and antibiofilm activity of lyophilized cornelian cherry (Cornus mas L.). J. Res. Pharm. 2025;29(4):1542-50.