Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2025, Cilt: 29 Sayı: 3, 1122 - 1133, 04.06.2025
https://doi.org/10.12991/jrespharm.1694295

Öz

Kaynakça

  • [1] Murray PR, Rosenthal KS, Pfaller MA. Tıbbi Mikrobiyoloji, 6. Baskı, Atlas Kitapçılık, Ankara, Türkiye 2010.
  • [2] Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci. 2004; 101(26): 9786-9791. https://doi.org/10.1073/pnas.0402521101.
  • [3] Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett. 2013; 150(1-2): 12-22. https://doi.org/10.1016/j.imlet.2013.01.004.
  • [4] Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, O'Neill G, Day NP. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun. 2002; 70(9): 4987-4996. https://doi.org/10.1128/IAI.70.9.4987-4996.2002.
  • [5] Kaplan JB, Izano EA, Gopal P, Karwacki MT, Kim S, Bose JL, Bayles KW, Horswill AR. Low levels of beta-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. mBio. 2012; 3(4): e00198-00112. https://doi.org/10.1128/mBio.00198-12.
  • [6] Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998; 339(8): 520-532. https://doi.org/10.1056/NEJM199808203390806.
  • [7] Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The natural product curcumin as an antibacterial agent: current achievements and problems. Antioxidants (Basel). 2022; 11(3):459. https://doi.org/10.3390/antiox11030459.
  • [8] Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med. 2017; 7(2): 205-233. https://doi.org/10.1016/j.jtcme.2016.05.005.
  • [9] Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: From ancient medicine to current clinical trials. Cell Mol Life Sci. 2008; 65(11): 1631-1652. https://doi.org/10.1007/s00018-008-7452-4.
  • [10] Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods (Basel). 2017; 6(10). https://doi.org/10.3390/foods6100092.
  • [11] Kocaadam B, Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017; 57(13): 2889-2895. https://doi.org/10.1080/10408398.2015.1077195.
  • [12] Teow SY, Liew K, Ali SA, Khoo AS, Peh SC. Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J Trop Med. 2016; 2016: 2853045. https://doi.org/10.1155/2016/2853045.
  • [13] Niamsa N, Sittiwet C. Antimicrobial activity of Curcuma longa aqueous extract. J Pharm Toxicol. 2009; 4: 173-177. https://doi.org/10.3923/jpt.2009.173.177.
  • [14] Singchangchai P, Itharat A, Rattanasuwan P, Sungkarak S, Ungphaiboon S, Supavita T. Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients. Songklanakarin J Sci Technol. 2005; 27: 569-578.
  • [15] Lawhavinit O, Kongkathip N, Kongkathip B. Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken. Kasetsart J. 2010; 44: 364-371.
  • [16] Gul P, Bakht J. Antimicrobial activity of turmeric extract and its potential use in food industry. J Food Sci Technol. 2015; 52(4): 2272-2279. https://doi.org/10.1007/s13197-013-1195-4.
  • [17] Gupta A, Mahajan S, Sharma R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotech Rep (Amst). 2015; 6: 51-55. https://doi.org/10.1016/j.btre.2015.02.001.
  • [18] Peng Q, Tang X, Dong W, Sun N, Yuan W. A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. Antibiotics. 2023; 12(1): 12. https://doi.org/10.3390/antibiotics12010012.
  • [19] Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: Properties, regulation, and roles in human disease. Virulence. 2011; 2(5): 445-459. https://doi.org/10.4161/viru.2.5.17724.
  • [20] Uzunbayir-Akel N, Tekintas Y, Yilmaz FF, Ozturk I, Okeer M, Aydemir SS, Cilli FF, Hosgor-Limoncu M. Effects of disinfectants and ciprofloxacin on quorum sensing genes and biofilm of clinical Pseudomonas aeruginosa isolates. J Infect Public Health. 2020; 13(12): 1932-1938. https://doi.org/10.1016/j.jiph.2020.10.002.
  • [21] Rapinel V, Claux O, Abert-Vian M, McAlinden C, Bartier M, Patouillard N, Jacques L, Chemat F. 2-Methyloxolane (2-MeOx) as sustainable lipophilic solvent to substitute hexane for green extraction of natural products. Properties, applications, and perspectives. Molecules. 2020; 25(15): 3417. https://doi.org/10.3390/molecules25153417.
  • [22] Koyu H, Istanbullu H, Turunc Ozoglu SE, Kaya Temiz T. Investigation of in vitro HDAC 1 inhibitory activity of Curcuma longa L. extracts, isolated fractions and curcumin. Eur Food Res Technol. 2024; 250(2): 623-631. https://doi.org/10.1007/s00217-023-04424-5.
  • [23] Li QQ, Kang OH, Kwon DY. Study on demethoxycurcumin as a promising approach to reverse methicillin-resistance of Staphylococcus aureus. Int J Mol Sci. 2021; 22(7). https://doi.org/10.3390/ijms22073778.
  • [24] Wang S, Kim MC, Kang OH, Kwon DY. The mechanism of bisdemethoxycurcumin enhances conventional antibiotics against methicillin-resistant Staphylococcus aureus. Int J Mol Sci. 2020; 21(21):7945. https://doi.org/10.3390/ijms21217945.
  • [25] Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kim YC, Lee DS, Shin DW, Kweon KT, Kwon DY. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomed. 2013; 20(8-9): 714-718. https://doi.org/10.1016/j.phymed.2013.02.006.
  • [26] Mun SH, Kim SB, Kong R, Choi JG, Kim YC, Shin DW, Kang OH, Kwon DY. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 2014; 19(11): 18283-18295. https://doi.org/10.3390/molecules191118283.
  • [27] Teow SY, Ali SA. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak J Pharm Sci. 2015; 28(6): 2109-2114.
  • [28] Foster TJ. Surface proteins of Staphylococcus aureus. Microbiol Spectr. 2019; 7(4): https://doi.org/10.1128/microbiolspec.GPP3-0046-2018.
  • [29] Irazoki O, Hernandez SB, Cava F. Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Front Microbiol. 2019; 10. https://doi.org/10.3389/fmicb.2019.00500.
  • [30] Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett. 2013; 150(1-2): 12–22. https://doi.org/10.1016/j.imlet.2013.01.004.
  • [31] Hauck CR, Ohlsen K. Sticky connections: Extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol. 2006; 9(1): 5-11. https://doi.org/10.1016/j.mib.2005.12.002.
  • [32] Herman-Bausier P, El-Kirat-Chatel S, Foster TJ, Geoghegan JA, Dufrêne YF. Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. mBio. 2015; 6(3). https://doi.org/10.1128/mBio.00413-15.
  • [33] McDevitt D, Nanavaty T, House-Pompeo K, Bell E, Turner N, McIntire L, Foster T, Höök M. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur J Biochem. 1997; 247(1): 416-24. https://doi.org/10.1111/j.1432-1033.1997.00416.x
  • [34] Ní Eidhin D, Perkins S, Francois P, Vaudaux P, Höök M, Foster TJ. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol. 1998; 30(2): 245-57. https://doi.org/10.1046/j.1365-2958.1998.01050.x.
  • [35] Entenza JM, Foster TJ, Ni Eidhin D, Vaudaux P, Francioli P, Moreillon P. Contribution of clumping factor B to pathogenesis of experimental endocarditis due to Staphylococcus aureus. Infect Immun. 2000; 68(9): 5443-5446. https://doi.org/10.1128/IAI.68.9.5443-5446.2000.
  • [36] Yurtsever SG, Aygul A, Oztürk I, Nemli SA, Kaya S, Ermertcan S. Investigation of various virulence factors and SCCmec types in the healthcare-associated and community-associated methicillin resistant Staphylococcus aureus strains. Eur J Ther. 2020; 26(2): 111-116. https://doi.org/10.5152/eurjther.2019.19062.
  • [37] Bernardo WL, Boriollo MF, Gonçalves RB, Höfling JF. Staphylococcus aureus ampicillin-resistant from the odontological clinic environment. Rev Inst Med Trop Sao Paulo. 2005; 47(1): 19-24. https://doi.org/10.1590/s0036-46652005000100004.
  • [38] Mehndiratta PL, Bhalla P. Typing of methicillin resistant Staphylococcus aureus: A technical review. Indian J Med Microbiol. 2012; 30(1) :16-23. https://doi.org/10.4103/0255-0857.93015.
  • [39] Jonasson E, Matuschek E, Kahlmeter G. The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J Antimicrob Chemother. 2020; 75(4): 968-978. https://doi.org/10.1093/jac/dkz548.
  • [40] Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS. 2007; 115(8): 891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x.
  • [41] Ozturk I, Tekintas Y, Temel A, Ermertcan S, Kurutepe S, Hosgor Limoncu M. In vitro effects of antibiofilm agents and antibiotics oncoagulase-negative Staphylococci. J Res Pharm. 2020; 24(6): 821-832. https://doi.org/10.35333/jrp.2020.241.
  • [42] Merlino J, Watson J, Rose B, Beard-Pegler M, Gottlieb T, Bradbury R, Harbour C. Detection and expression of methicillin/oxacillin resistance in multidrug-resistant and non-multidrug-resistant Staphylococcus aureus in Central Sydney, Australia. J Antimicrob Chemother. 2002; 49(5): 793-801. https://doi.org/10.1093/jac/dkf021.
  • [43] Ozturk I, Erac Y, Ballar Kirmizibayrak P, Ermertcan S. Nonsteroidal antiinflammatory drugs alter antibiotic susceptibility and expression of virulence-related genes and protein A of Staphylococcus aureus. Turk J Med Sci. 2021; 51(2): 835-847. https://doi.org/10.3906/sag-2003-60.

Investigation of antimicrobial and antibiofilm activity of Curcuma longa L. extracts against methicillin-resistant Staphylococcus aureus (MRSA) isolates

Yıl 2025, Cilt: 29 Sayı: 3, 1122 - 1133, 04.06.2025
https://doi.org/10.12991/jrespharm.1694295

Öz

New antibacterial strategies are needed in response to increasing antibiotic resistance. Methicillin-resistant Staphylococcus aureus infections are serious problem in many countries. Morbidity and mortality due to MRSA have increased over time worldwide. Natural products continue to be a notable source for development of new antibacterial agents. Curcuma longa L. products and active constituents have been shown to exhibit remarkable bioactivity. While most studies have focused on curcumin alone, a comparative study on Curcuma longa extracts with solvents of differing polarity is needed to determine its potential against MRSA isolates and strains. In this study, antibacterial, antifungal and antibiofilm activity of hexane, dichloromethane, ethanol and water extracts of turmeric rhizomes were assessed against clinical isolates and standard strains. The hexane (MIC: 32 μg/ml, inhibition zone: 10 mm) and dichloromethane extracts (MIC: 32 μg/ml, inhibition zone: 10 mm) exhibited highest activity against clinical isolates. For standard strains of S. aureus, MIC values were determined to be 64 μg/ml and 128 μg/ml with an inhibition zone of 11 mm for hexane and dichloromethane extracts, respectively. Both extracts reduced total protein levels in clinical isolates. At MIC values, hexane extract was able to inhibit biofilm formation, whereas dichloromethane extract was not. Against standard strains of E. coli and C. albicans, highest activity was also determined with hexane and dichloromethane extracts with a MIC value of 64 μg/ml. Although dichloromethane or ethanol extracts have been the main interest to date, hexane extract from turmeric rhizomes may also be evaluated for further research against MRSA.

Kaynakça

  • [1] Murray PR, Rosenthal KS, Pfaller MA. Tıbbi Mikrobiyoloji, 6. Baskı, Atlas Kitapçılık, Ankara, Türkiye 2010.
  • [2] Holden MT, Feil EJ, Lindsay JA, Peacock SJ, Day NP, Enright MC, Foster TJ, Moore CE, Hurst L, Atkin R, Barron A, Bason N, Bentley SD, Chillingworth C, Chillingworth T, Churcher C, Clark L, Corton C, Cronin A, Doggett J, Dowd L, Feltwell T, Hance Z, Harris B, Hauser H, Holroyd S, Jagels K, James KD, Lennard N, Line A, Mayes R, Moule S, Mungall K, Ormond D, Quail MA, Rabbinowitsch E, Rutherford K, Sanders M, Sharp S, Simmonds M, Stevens K, Whitehead S, Barrell BG, Spratt BG, Parkhill J. Complete genomes of two clinical Staphylococcus aureus strains: Evidence for the rapid evolution of virulence and drug resistance. Proc Natl Acad Sci. 2004; 101(26): 9786-9791. https://doi.org/10.1073/pnas.0402521101.
  • [3] Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett. 2013; 150(1-2): 12-22. https://doi.org/10.1016/j.imlet.2013.01.004.
  • [4] Peacock SJ, Moore CE, Justice A, Kantzanou M, Story L, Mackie K, O'Neill G, Day NP. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect Immun. 2002; 70(9): 4987-4996. https://doi.org/10.1128/IAI.70.9.4987-4996.2002.
  • [5] Kaplan JB, Izano EA, Gopal P, Karwacki MT, Kim S, Bose JL, Bayles KW, Horswill AR. Low levels of beta-lactam antibiotics induce extracellular DNA release and biofilm formation in Staphylococcus aureus. mBio. 2012; 3(4): e00198-00112. https://doi.org/10.1128/mBio.00198-12.
  • [6] Lowy FD. Staphylococcus aureus infections. N Engl J Med. 1998; 339(8): 520-532. https://doi.org/10.1056/NEJM199808203390806.
  • [7] Dai C, Lin J, Li H, Shen Z, Wang Y, Velkov T, Shen J. The natural product curcumin as an antibacterial agent: current achievements and problems. Antioxidants (Basel). 2022; 11(3):459. https://doi.org/10.3390/antiox11030459.
  • [8] Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives - A review. J Tradit Complement Med. 2017; 7(2): 205-233. https://doi.org/10.1016/j.jtcme.2016.05.005.
  • [9] Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: From ancient medicine to current clinical trials. Cell Mol Life Sci. 2008; 65(11): 1631-1652. https://doi.org/10.1007/s00018-008-7452-4.
  • [10] Hewlings SJ, Kalman DS. Curcumin: A review of its effects on human health. Foods (Basel). 2017; 6(10). https://doi.org/10.3390/foods6100092.
  • [11] Kocaadam B, Sanlier N. Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr. 2017; 57(13): 2889-2895. https://doi.org/10.1080/10408398.2015.1077195.
  • [12] Teow SY, Liew K, Ali SA, Khoo AS, Peh SC. Antibacterial action of curcumin against Staphylococcus aureus: A brief review. J Trop Med. 2016; 2016: 2853045. https://doi.org/10.1155/2016/2853045.
  • [13] Niamsa N, Sittiwet C. Antimicrobial activity of Curcuma longa aqueous extract. J Pharm Toxicol. 2009; 4: 173-177. https://doi.org/10.3923/jpt.2009.173.177.
  • [14] Singchangchai P, Itharat A, Rattanasuwan P, Sungkarak S, Ungphaiboon S, Supavita T. Study on antioxidant and antimicrobial activities of turmeric clear liquid soap for wound treatment of HIV patients. Songklanakarin J Sci Technol. 2005; 27: 569-578.
  • [15] Lawhavinit O, Kongkathip N, Kongkathip B. Antimicrobial activity of curcuminoids from Curcuma longa L. on pathogenic bacteria of shrimp and chicken. Kasetsart J. 2010; 44: 364-371.
  • [16] Gul P, Bakht J. Antimicrobial activity of turmeric extract and its potential use in food industry. J Food Sci Technol. 2015; 52(4): 2272-2279. https://doi.org/10.1007/s13197-013-1195-4.
  • [17] Gupta A, Mahajan S, Sharma R. Evaluation of antimicrobial activity of Curcuma longa rhizome extract against Staphylococcus aureus. Biotech Rep (Amst). 2015; 6: 51-55. https://doi.org/10.1016/j.btre.2015.02.001.
  • [18] Peng Q, Tang X, Dong W, Sun N, Yuan W. A review of biofilm formation of Staphylococcus aureus and its regulation mechanism. Antibiotics. 2023; 12(1): 12. https://doi.org/10.3390/antibiotics12010012.
  • [19] Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME. Staphylococcus aureus biofilms: Properties, regulation, and roles in human disease. Virulence. 2011; 2(5): 445-459. https://doi.org/10.4161/viru.2.5.17724.
  • [20] Uzunbayir-Akel N, Tekintas Y, Yilmaz FF, Ozturk I, Okeer M, Aydemir SS, Cilli FF, Hosgor-Limoncu M. Effects of disinfectants and ciprofloxacin on quorum sensing genes and biofilm of clinical Pseudomonas aeruginosa isolates. J Infect Public Health. 2020; 13(12): 1932-1938. https://doi.org/10.1016/j.jiph.2020.10.002.
  • [21] Rapinel V, Claux O, Abert-Vian M, McAlinden C, Bartier M, Patouillard N, Jacques L, Chemat F. 2-Methyloxolane (2-MeOx) as sustainable lipophilic solvent to substitute hexane for green extraction of natural products. Properties, applications, and perspectives. Molecules. 2020; 25(15): 3417. https://doi.org/10.3390/molecules25153417.
  • [22] Koyu H, Istanbullu H, Turunc Ozoglu SE, Kaya Temiz T. Investigation of in vitro HDAC 1 inhibitory activity of Curcuma longa L. extracts, isolated fractions and curcumin. Eur Food Res Technol. 2024; 250(2): 623-631. https://doi.org/10.1007/s00217-023-04424-5.
  • [23] Li QQ, Kang OH, Kwon DY. Study on demethoxycurcumin as a promising approach to reverse methicillin-resistance of Staphylococcus aureus. Int J Mol Sci. 2021; 22(7). https://doi.org/10.3390/ijms22073778.
  • [24] Wang S, Kim MC, Kang OH, Kwon DY. The mechanism of bisdemethoxycurcumin enhances conventional antibiotics against methicillin-resistant Staphylococcus aureus. Int J Mol Sci. 2020; 21(21):7945. https://doi.org/10.3390/ijms21217945.
  • [25] Mun SH, Joung DK, Kim YS, Kang OH, Kim SB, Seo YS, Kim YC, Lee DS, Shin DW, Kweon KT, Kwon DY. Synergistic antibacterial effect of curcumin against methicillin-resistant Staphylococcus aureus. Phytomed. 2013; 20(8-9): 714-718. https://doi.org/10.1016/j.phymed.2013.02.006.
  • [26] Mun SH, Kim SB, Kong R, Choi JG, Kim YC, Shin DW, Kang OH, Kwon DY. Curcumin reverse methicillin resistance in Staphylococcus aureus. Molecules. 2014; 19(11): 18283-18295. https://doi.org/10.3390/molecules191118283.
  • [27] Teow SY, Ali SA. Synergistic antibacterial activity of Curcumin with antibiotics against Staphylococcus aureus. Pak J Pharm Sci. 2015; 28(6): 2109-2114.
  • [28] Foster TJ. Surface proteins of Staphylococcus aureus. Microbiol Spectr. 2019; 7(4): https://doi.org/10.1128/microbiolspec.GPP3-0046-2018.
  • [29] Irazoki O, Hernandez SB, Cava F. Peptidoglycan muropeptides: Release, perception, and functions as signaling molecules. Front Microbiol. 2019; 10. https://doi.org/10.3389/fmicb.2019.00500.
  • [30] Zecconi A, Scali F. Staphylococcus aureus virulence factors in evasion from innate immune defenses in human and animal diseases. Immunol Lett. 2013; 150(1-2): 12–22. https://doi.org/10.1016/j.imlet.2013.01.004.
  • [31] Hauck CR, Ohlsen K. Sticky connections: Extracellular matrix protein recognition and integrin-mediated cellular invasion by Staphylococcus aureus. Curr Opin Microbiol. 2006; 9(1): 5-11. https://doi.org/10.1016/j.mib.2005.12.002.
  • [32] Herman-Bausier P, El-Kirat-Chatel S, Foster TJ, Geoghegan JA, Dufrêne YF. Staphylococcus aureus fibronectin-binding protein A mediates cell-cell adhesion through low-affinity homophilic bonds. mBio. 2015; 6(3). https://doi.org/10.1128/mBio.00413-15.
  • [33] McDevitt D, Nanavaty T, House-Pompeo K, Bell E, Turner N, McIntire L, Foster T, Höök M. Characterization of the interaction between the Staphylococcus aureus clumping factor (ClfA) and fibrinogen. Eur J Biochem. 1997; 247(1): 416-24. https://doi.org/10.1111/j.1432-1033.1997.00416.x
  • [34] Ní Eidhin D, Perkins S, Francois P, Vaudaux P, Höök M, Foster TJ. Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol. 1998; 30(2): 245-57. https://doi.org/10.1046/j.1365-2958.1998.01050.x.
  • [35] Entenza JM, Foster TJ, Ni Eidhin D, Vaudaux P, Francioli P, Moreillon P. Contribution of clumping factor B to pathogenesis of experimental endocarditis due to Staphylococcus aureus. Infect Immun. 2000; 68(9): 5443-5446. https://doi.org/10.1128/IAI.68.9.5443-5446.2000.
  • [36] Yurtsever SG, Aygul A, Oztürk I, Nemli SA, Kaya S, Ermertcan S. Investigation of various virulence factors and SCCmec types in the healthcare-associated and community-associated methicillin resistant Staphylococcus aureus strains. Eur J Ther. 2020; 26(2): 111-116. https://doi.org/10.5152/eurjther.2019.19062.
  • [37] Bernardo WL, Boriollo MF, Gonçalves RB, Höfling JF. Staphylococcus aureus ampicillin-resistant from the odontological clinic environment. Rev Inst Med Trop Sao Paulo. 2005; 47(1): 19-24. https://doi.org/10.1590/s0036-46652005000100004.
  • [38] Mehndiratta PL, Bhalla P. Typing of methicillin resistant Staphylococcus aureus: A technical review. Indian J Med Microbiol. 2012; 30(1) :16-23. https://doi.org/10.4103/0255-0857.93015.
  • [39] Jonasson E, Matuschek E, Kahlmeter G. The EUCAST rapid disc diffusion method for antimicrobial susceptibility testing directly from positive blood culture bottles. J Antimicrob Chemother. 2020; 75(4): 968-978. https://doi.org/10.1093/jac/dkz548.
  • [40] Stepanović S, Vuković D, Hola V, Di Bonaventura G, Djukić S, Cirković I, Ruzicka F. Quantification of biofilm in microtiter plates: overview of testing conditions and practical recommendations for assessment of biofilm production by Staphylococci. APMIS. 2007; 115(8): 891-899. https://doi.org/10.1111/j.1600-0463.2007.apm_630.x.
  • [41] Ozturk I, Tekintas Y, Temel A, Ermertcan S, Kurutepe S, Hosgor Limoncu M. In vitro effects of antibiofilm agents and antibiotics oncoagulase-negative Staphylococci. J Res Pharm. 2020; 24(6): 821-832. https://doi.org/10.35333/jrp.2020.241.
  • [42] Merlino J, Watson J, Rose B, Beard-Pegler M, Gottlieb T, Bradbury R, Harbour C. Detection and expression of methicillin/oxacillin resistance in multidrug-resistant and non-multidrug-resistant Staphylococcus aureus in Central Sydney, Australia. J Antimicrob Chemother. 2002; 49(5): 793-801. https://doi.org/10.1093/jac/dkf021.
  • [43] Ozturk I, Erac Y, Ballar Kirmizibayrak P, Ermertcan S. Nonsteroidal antiinflammatory drugs alter antibiotic susceptibility and expression of virulence-related genes and protein A of Staphylococcus aureus. Turk J Med Sci. 2021; 51(2): 835-847. https://doi.org/10.3906/sag-2003-60.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Halil Koyu

İsmail Öztürk

Yamaç Tekintaş

Süreyya Gül Yurtsever

Yayımlanma Tarihi 4 Haziran 2025
Gönderilme Tarihi 25 Temmuz 2024
Kabul Tarihi 13 Eylül 2024
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 3

Kaynak Göster

APA Koyu, H., Öztürk, İ., Tekintaş, Y., Gül Yurtsever, S. (2025). Investigation of antimicrobial and antibiofilm activity of Curcuma longa L. extracts against methicillin-resistant Staphylococcus aureus (MRSA) isolates. Journal of Research in Pharmacy, 29(3), 1122-1133. https://doi.org/10.12991/jrespharm.1694295
AMA Koyu H, Öztürk İ, Tekintaş Y, Gül Yurtsever S. Investigation of antimicrobial and antibiofilm activity of Curcuma longa L. extracts against methicillin-resistant Staphylococcus aureus (MRSA) isolates. J. Res. Pharm. Haziran 2025;29(3):1122-1133. doi:10.12991/jrespharm.1694295
Chicago Koyu, Halil, İsmail Öztürk, Yamaç Tekintaş, ve Süreyya Gül Yurtsever. “Investigation of Antimicrobial and Antibiofilm Activity of Curcuma Longa L. Extracts Against Methicillin-Resistant Staphylococcus Aureus (MRSA) Isolates”. Journal of Research in Pharmacy 29, sy. 3 (Haziran 2025): 1122-33. https://doi.org/10.12991/jrespharm.1694295.
EndNote Koyu H, Öztürk İ, Tekintaş Y, Gül Yurtsever S (01 Haziran 2025) Investigation of antimicrobial and antibiofilm activity of Curcuma longa L. extracts against methicillin-resistant Staphylococcus aureus (MRSA) isolates. Journal of Research in Pharmacy 29 3 1122–1133.
IEEE H. Koyu, İ. Öztürk, Y. Tekintaş, ve S. Gül Yurtsever, “Investigation of antimicrobial and antibiofilm activity of Curcuma longa L. extracts against methicillin-resistant Staphylococcus aureus (MRSA) isolates”, J. Res. Pharm., c. 29, sy. 3, ss. 1122–1133, 2025, doi: 10.12991/jrespharm.1694295.
ISNAD Koyu, Halil vd. “Investigation of Antimicrobial and Antibiofilm Activity of Curcuma Longa L. Extracts Against Methicillin-Resistant Staphylococcus Aureus (MRSA) Isolates”. Journal of Research in Pharmacy 29/3 (Haziran 2025), 1122-1133. https://doi.org/10.12991/jrespharm.1694295.
JAMA Koyu H, Öztürk İ, Tekintaş Y, Gül Yurtsever S. Investigation of antimicrobial and antibiofilm activity of Curcuma longa L. extracts against methicillin-resistant Staphylococcus aureus (MRSA) isolates. J. Res. Pharm. 2025;29:1122–1133.
MLA Koyu, Halil vd. “Investigation of Antimicrobial and Antibiofilm Activity of Curcuma Longa L. Extracts Against Methicillin-Resistant Staphylococcus Aureus (MRSA) Isolates”. Journal of Research in Pharmacy, c. 29, sy. 3, 2025, ss. 1122-33, doi:10.12991/jrespharm.1694295.
Vancouver Koyu H, Öztürk İ, Tekintaş Y, Gül Yurtsever S. Investigation of antimicrobial and antibiofilm activity of Curcuma longa L. extracts against methicillin-resistant Staphylococcus aureus (MRSA) isolates. J. Res. Pharm. 2025;29(3):1122-33.