Araştırma Makalesi
BibTex RIS Kaynak Göster

Biological evaluation and molecular docking of Indonesian Gracilaria salicornia as antioxidant agents

Yıl 2023, Cilt: 27 Sayı: 1, 207 - 220, 28.06.2025

Öz

The antioxidant activity of Gracilaria salicornia extract was investigated to develop natural product-based chemotherapeutic agents using more efficient and straightforward methods. The efficacy was determined through free radical scavenging activity against DPPH, phytochemical assays, GC-MS analysis, and molecular docking analysis through NADPH Oxidase (NOX) protein (PDB ID: 2CDU). The best antioxidant activity of several extracts was shown by ethyl acetate extract with an IC50 value about 179.81±6.38 µg/mL, classified as moderate activity. Based on the phytochemical assay, the extract contains alkaloids, steroids, phenolics, flavonoids, and saponin compounds. Further analysis of the extract by GC-MS showed the presence of secondary metabolites that have been shown to have bioactivity as antioxidant and anticancer agents, such as L-(+)-ascorbic acid 2,6-dihexadecanoate, cholest-5-en-3-ol (3.beta.), 1,2-benzenedicarboxylic acid, and phytol. The activity was also supported by molecular docking analysis. Cholest-5-en-3-ol (3.beta.), 1,2-benzenedicarboxylic acid, and phytol showed outstanding interaction with the target protein's active site (binding energy -10.90, -7.11, and -6.22 kcal/mol, respectively). The binding energy of cholest-5-en-3-ol (3.beta.) was significantly higher than the native ligand. The binding energy describes the potential of the compound to suppress ROS production by inhibiting NOX protein activity. These findings revealed that the phytochemicals of G. salicornia can be developed as a chemotherapeutic agent. This approach can be used as a guide in developing natural product-based chemotherapeutic agents.

Kaynakça

  • [1 ]Demarinis S. Cancer overtakes cardiovascular disease as leading cause of death in wealthy nations. Explore. 2019;16(1):1-2. [CrossRef]
  • [2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [CrossRef]
  • [3] Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: A comprehensive review.Molecules. 2020;26(1):37. [CrossRef]
  • [4] Liang Z, Liang J, Li L, Cen T, Guo H. NADPH oxidase involved in immune response via regulating the expression of antioxidant genes in Litopenaeus vannamei. Aquac Reports. 2021;21:100810. [CrossRef]
  • [5] Allegra M. Redox systems oxidative stress, and antioxidant defences in health and disease. Antioxidants. 2021;10(1955):1-5. [CrossRef]
  • [6] Ganguly U, Kaur U, Chakrabarti SS, Ganguly U,Kaur U,Chakrabarti SS,Sharma P,Agrawal BK,Saso L,Chakrabarti S. Oxidative stress, neuroinflammation, and NADPH oxidase: ımplications in the pathogenesis and treatment of alzheimer’s disease. Oxid Med Cell Longev. 2021;2021:1-19. [CrossRef]
  • [7] Han J, Jin C, Zhong Y, Zhu J,Liu Q,Sun D,Feng J,Xia X,Peng X. Involvement of NADPH oxidase in patulin-induced oxidative damage and cytotoxicity in HEK293 cells. Food Chem Toxicol. 2021;150(January):112055. [CrossRef]
  • [8] Santos WH dos, Yoguim MI, Daré RG, Da Silva-Filho LC, Lautenschlager SOS, Ximenes VF. Development of a caffeic acid-phthalimide hybrid compound for NADPH oxidase inhibition. RSC Adv. 2021;11(29):17880-17890. [CrossRef]
  • [9] Mahomoodally MF, Sadeer NB, Zengin G, Cziáky Z,Jekő J,Diuzheva A,Sinan KI,Palaniveloo K,Kim DH,Rengasamy KRR. In vitro enzyme inhibitory properties, secondary metabolite profiles and multivariate analysis of five seaweeds. Mar Drugs. 2020;18(4):1-16. [CrossRef]
  • [10] Guaratini T, Lopes NP, Marinho-Soriano E, Colepicolo P, Pinto E. Antioxidant activity and chemical composition of the non polar fraction of Gracilaria domingensis (Kützing) Sonder ex Dickie and Gracilaria birdiae (Plastino & Oliveira). Rev Bras Farmacogn. 2012;22(4):724-729. [CrossRef]
  • [11] Yap WF, Tay V, Tan SH, Yow YY, Chew J. Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics. 2019;8(3). [CrossRef]
  • [12] Chakraborty K, Antony T, Joy M. Prospective natural anti-inflammatory drimanes attenuating pro-inflammatory 5-lipoxygenase from marine macroalga Gracilaria salicornia. Algal Res. 2019;40(101472):1-11. [CrossRef]
  • [13] Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol. 2019;128:240-255. [CrossRef]
  • [14] Makkar F, Chakraborty K. Previously undescribed antioxidative azocinyl morpholinone alkaloid from red seaweed Gracilaria opuntia with anti-cyclooxygenase and lipoxygenase properties alkaloid from red seaweed Gracilaria opuntia with anti-cyclooxygenase and lipoxygenase properties. Nat Prod Res. 2018;32(10):1150-1160. [CrossRef]
  • [15] Pereira L, Edible Seaweeds of the World, CRC Press, United State, 2016. [16] Sakthivel R, Muniasamy S, Archunan G, Devi KP. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo. Food Funct. 2016;7: 1155–1165. [CrossRef]
  • [17] Dayuti S. Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. IOP Conf Ser Earth Environ Sci. 2018;137(012074):1-5. [CrossRef]
  • [18] Aroyehun AQ, Palaniveloo K, Ghazali F, Rizman-Idid M, Razak SA. Effects of seasonal variability on the physicochemical, biochemical, and nutritional composition of western Peninsular Malaysia Gracilaria manilaensis. Molecules. 2019;24(3298):1-23. [CrossRef]
  • [19] Arulkumar A, Rosemary T, Paramasivam S, Rajendran RB. Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatal Agric Biotechnol. 2018;15:63-71. [CrossRef]
  • [20] Mubarak Z, Humaira A, Gani BA, Muchlisin ZA. Preliminary study on the ınhibitory effect of seaweed Gracilaria verrucosa extract on biofilm formation of Candida albicans cultured from the saliva of a smoker. F1000Research. 2018;7(684):1-15. [CrossRef]
  • [21] Subramanian G, Nagaraj A, Sona P, Sasikala J, Ambiga K, Manivannan M. Phytochemicals and ın vitro antioxidant activities of five marine red algae species of a genus Gracilaria from southeast coast of Tamil Nadu, India. J Shanghai Jiaotong Univ. 2020;16(715):715-723.
  • [22] Sumayya SS, Lubaina AS, Murugan K. Phytochemical, HPLC and FTIR Analysis of methanolic extract from Gracilaria dura (C Agardh) J Agardh. J Drug Deliv Ther. 2020;10(3):114-118. [CrossRef]
  • [23] Gunathilaka TL, Samarakoon KW, Ranasinghe P, Peiris LDC. In‐vitro antioxidant, hypoglycemic activity, and ıdentification of bioactive compounds in phenol‐rich extract from the marine red algae Gracilaria edulis (Gmelin) Silva. Molecules. 2019;24(3708):1-16. [CrossRef]
  • [24] Lu Y, Mei S, Wang P, Ouyang P, Liao X, Ye H, Wu K, Ma X. Protective effects of Gracilaria lemaneiformis extract against ultraviolet b-ınduced damage in HaCaT cells. Pharmacogn Mag. 2020;16:510-517. [CrossRef]
  • [25] Al-saif SSA, Abdel-raouf N, Aref IA. Antibacterial substances from marine algae isolated from Jeddah coast of red sea, Saudi Arabia. Saudi J Biol Sci. 2014;21(1):57-64. [CrossRef]
  • [26] Rusli A, Metusalach, Tahir MM, Salengke, Syamsuar. Analysis of bioactive compounds of Caulerpa recemosa, Sargassum sp. and Gracillaria verrucosa using different solvents. J Teknol. 2016;78(4-2):15-19. [CrossRef]
  • [27] Cyril R, Lakshmanan R, Thiyagarajan A. In vitro bioactivity and phytochemical analysis of two marine macro-algae. J Coast Life Med. 2017;5(10):427-432. [CrossRef]
  • [28] Widowati I, Lubac D, Puspita M, Bourgougnon N. Antibacterial and antioxidant properties of the red alga Gracilaria verrucosa from the north coast of Java, Semarang, Indonesıa. Int J Latest Res Sci Technol. 2014;3(3):179-185.
  • [29] Ghannadi A, Shabani L, Yegdaneh A. Cytotoxic, antioxidant and phytochemical analysis of Gracilaria species from Persian Gulf. Adv Biomed Res. 2016;5(1):139. [CrossRef]
  • [30] Bianco ÉM, Krug JL, Zimath PL, KrogerA, PaganelliCJ, Boeder AM, dos Santos L, Tenfen A, RibeiroSM,Kuroshima KN,Alberton MD, de CordovaCMM, Rebelo RA. Antimicrobial (including antimollicutes), antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms – Evaluation of extracts and pure compounds. Rev Bras Farmacogn. 2015;25(6):668-676. [CrossRef]
  • [31] Assaw S, Rosli NL, Azmi NAM, Mazlan NW, Ismail N. Antioxidant and antibacterial activities of polysaccharides and methanolic crude extracts of local edible red seaweed Gracilaria sp. Malays Appl Biol. 2018;47(4):135-144.
  • [32] Mateos R, Pérez-correa JR, Domínguez H. Bioactive properties of marine phenolics. Mar Drugs. 2020;18(501):1-58. [CrossRef]
  • [33] Whitfield FB, Helidoniotis F, Shaw KJ, Svoronos D, American N. Distribution of bromophenols in species of marine algae from eastern Australia. J Agric Food Chem. 1999;47(6):2367-2373. [CrossRef]
  • [34] Sivaramakrishnan T, Swain S, Saravanan K, Sankar K, Roy SD, Biswas L, Shalini B. In vitro antioxidant and free radical scavenging activity and chemometric approach to reveal their variability in green macroalgae from south andaman coast of ındia. Turkish J Fish Aquat Sci. 2017;17:639-648. [CrossRef]
  • [35] Moubayed NMS, Al Houri HJ, Al Khulaifi MM, Al Farraj DA. Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J Biol Sci. 2017;24(1):162-169. [CrossRef]
  • [36] Cook-BotelhoJC, Bachmann LM, French D, Mass Spectrometry for the Clinical Laboratory, Chapter 10 – Steroid Hormones, Elsevier, United States, 2017.
  • [37] He P, Aga DS. Comparison of GC-MS/MS and LC-MS/MS for the analysis of hormones and pesticides in surface waters: Advantages and pitfalls. Anal Methods. 2019;11(11): 1436–1448. [CrossRef]
  • [38] Botzki A, Rigden DJ, Braun S,Nukui M,Salmen S, Hoechstetter J,Bernhardt G, Dove S, Jedrzejas MJ, Buschauer A. L-ascorbic acid 6-hexadecanoate, a potent hyaluronidase inhibitor: X-ray structure and molecular modeling of enzyme-inhibitor complexes. J Biol Chem. 2004;279(44):45990-45997. [CrossRef]
  • [39] Begum SMFM, Priya S, Sundararajan R, Hemalatha S. Novel anticancerous compounds from Sargassum wightii: ın silico and in vitro approaches to test the antiproliferative efficacy. J Adv Pharm Educ Res. 2017;7(3):272-277.
  • [40] Mushtaq S, Uzair B, Hameed A, Khayam AU, Irum S, Shahzad K, Khan BA, Ismail M, Ahmad N, Abbas R. In vitro cytotoxicity of secondary metabolites extracted from Pseudomonas aeruginosa BS25 strain. Arab J Sci Eng. 2020;45(1):81-94. [CrossRef]
  • [41] Tomaz ACDA, Miranda GEC, Souza MDFV, Cunha EVL. Analysis and characterization of methyl esters of fatty acids of some Gracilaria species. Biochem Syst Ecol. 2012;44:303-306. [CrossRef]
  • [42] Tassakka ACMAR, Sumule O, Massi MN, Sulfahri, Manggau M, Iskandar IW, Alam JF, Permana AD,Liao LM. Potential bioactive compounds as SARS-CoV-2 inhibitors from extracts of the marine red alga Halymenia durvillei (Rhodophyta) – A computational study. Arab J Chem.2021;14(11):103393. [CrossRef]
  • [43] Khan AYF, Asuhaimi FA, Jalal TK, Roheem FO, Natto HA, Johan MF, Ahmed QU,Wahab RA. Hystrix brachyura bezoar characterization, antioxidant activity screening, and anticancer activity on melanoma cells (A375 ): A preliminary study. Antioxidants. 2019;8(39):1-15. [CrossRef]
  • [44] Nasir M, Saeidnia S, Mashinchian-Moradi A, Gohari AR. Sterols from the red algae, Gracilaria salicornia and Hypnea flagelliformis, from persian gulf. Pharmacogn Mag. 2011;7(26):97-100. [CrossRef]
  • [45] Sheeja L, Lakshmi D, Bharadwaj S, Parveen KS. Anticancer activity of phytol purified from Gracilaria edulis against human breast cancer cell line (MCF-7). Int J Curr Sci. 2016;19(4):36-46. [46] Jenifer P, Balakrishnan CP, Pillai SC. Quantification of physicochemical and identification of bioactive compounds from marine red alga Gracilaria corticata J. Ag. Asian J Pharm Pharmacol. 2018;4(5):589-594. [CrossRef]
  • [47] Mohy El-Din SM, El-Ahwany AMD. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci. 2016;10(4):471-484. [CrossRef]
  • [48] Safavi M, Seyed M, Olia J, Haji M, Amini M. Biocatalysis and agricultural biotechnology optimization of the culture medium and characterization of antioxidant compounds of a marine isolated microalga as a promising source in aquaculture feed. Biocatal Agric Biotechnol. 2021;35(102098):1-10. [CrossRef]
  • [49] Santos CC de MP, Salvadori MS, Mota VG, Costa LM, Almeida AAC, Oliveira GAL, Costa JP, Sousa DP, Freitas RM, Almeida RN.Antinociceptive and antioxidant activities of phytol ın vivo and ın vitro models. Neurosci J. 2013;2013:1-9. [CrossRef]
  • [50] Konappa N, Udayashankar AC, Krishnamurthy S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020;10:1-23. [CrossRef]
  • [51] Lee K, Kim D. In-silico molecular binding prediction for human drug targets using deep neural multi-task learning. Genes (Basel). 2019;10(11):1-16. [CrossRef]
  • [52] Jiao X, Jin X, Ma Y, Yang Y, Li J, Liang L, Liu R,Li Z. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based chinese medicine. Comput Biol Chem. 2021;90(107402):1-8. [CrossRef]
  • [53] Desai NC, Vaja DV, Jadeja KA, Joshi SB, Khedkar VM. Synthesis, biological evaluation and molecular docking study of pyrazole, pyrazoline clubbed pyridine as potential antimicrobial agents. Anti-InfectAgents. 2019;(17):1-9. [CrossRef]
  • [54] Alsaffar DF, Yaseen A, Aljabal GA. In silico molecular docking studies of medicinal arabic plant-based bioactive compounds as a promising drug candidate against COVID-19. Int J Innov Sci Res Technol. 2020;5(5):876-896.
  • [55] Yin X, Zhang X, Yin J, Kong D, Li D. Screening and identification of potential tyrosinase inhibitors from semen oroxyli extract by ultrafiltration LC-MS and in silico molecular docking. J Chromatogr Sci. 2019;(4):1-9. [CrossRef]
  • [56] Ahmad MN, Karim NU, Normaya E. Artocarpus altilis extracts as a food- borne pathogen and oxidation inhibitors : RSM, COSMO RS, and molecular docking approaches. Sci Rep. 2020;10(9566):1-14. [CrossRef]
  • [57] Dhorajiwala TM, Halder ST, Samant L. Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against african trypanosomiasis using selected phytochemicals. J Appl Biotechnol Reports. 2019;6(3):101-108. [CrossRef]
  • [58] Lipinski CA, Lombardo F,Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997; 23(1–3): 3–25. [CrossRef]
  • [59] Hernández LG, van Steeg H, Luijten M, van Benthem J. Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat Res.2009; 682(2–3): 94–109. [CrossRef]
  • [60] Guiry MD, Guiry GM. AlgaeBase: World-wide electronic publication. National University of Ireland, Galway.
  • [61] Harborne AJ. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. Springer Science &Business Media; 1998.
  • [62] Abuelizz HA, Dib RE, MarzoukM, Anouar EH, Maklad YA, Attia HN, Al-Salahi R. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules. 2017;22(1094):1-13. [CrossRef]
  • [63] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. Software news and updates autodock4 and autodocktools4 : automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791. [CrossRef]
  • [64] DainaA, MichielinO, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(March): 1-13. [CrossRef]
  • [65] Benigni R, BossaC.Mechanisms of chemical carcinogenicity and mutagenicity: A review with implications for predictive toxicology.Chem Rev.2011; 111(4): 2507–2536. [CrossRef]
  • [66] Patlewicz G, JeliazkovaN, Safford RJ, Worth AP, Aleksiev B.An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ Res., 2008; 19(5–6): 495–524. [CrossRef]
  • [67] CramerGM, FordRA, HallRL. Estimation of toxic hazard-A decision tree approach. Food Cosmet Toxicol.1976; 16(3): 255–276. [CrossRef]
Yıl 2023, Cilt: 27 Sayı: 1, 207 - 220, 28.06.2025

Öz

Kaynakça

  • [1 ]Demarinis S. Cancer overtakes cardiovascular disease as leading cause of death in wealthy nations. Explore. 2019;16(1):1-2. [CrossRef]
  • [2] Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394-424. [CrossRef]
  • [3] Pradhan B, Nayak R, Patra S, Jit BP, Ragusa A, Jena M. bioactive metabolites from marine algae as potent pharmacophores against oxidative stress-associated human diseases: A comprehensive review.Molecules. 2020;26(1):37. [CrossRef]
  • [4] Liang Z, Liang J, Li L, Cen T, Guo H. NADPH oxidase involved in immune response via regulating the expression of antioxidant genes in Litopenaeus vannamei. Aquac Reports. 2021;21:100810. [CrossRef]
  • [5] Allegra M. Redox systems oxidative stress, and antioxidant defences in health and disease. Antioxidants. 2021;10(1955):1-5. [CrossRef]
  • [6] Ganguly U, Kaur U, Chakrabarti SS, Ganguly U,Kaur U,Chakrabarti SS,Sharma P,Agrawal BK,Saso L,Chakrabarti S. Oxidative stress, neuroinflammation, and NADPH oxidase: ımplications in the pathogenesis and treatment of alzheimer’s disease. Oxid Med Cell Longev. 2021;2021:1-19. [CrossRef]
  • [7] Han J, Jin C, Zhong Y, Zhu J,Liu Q,Sun D,Feng J,Xia X,Peng X. Involvement of NADPH oxidase in patulin-induced oxidative damage and cytotoxicity in HEK293 cells. Food Chem Toxicol. 2021;150(January):112055. [CrossRef]
  • [8] Santos WH dos, Yoguim MI, Daré RG, Da Silva-Filho LC, Lautenschlager SOS, Ximenes VF. Development of a caffeic acid-phthalimide hybrid compound for NADPH oxidase inhibition. RSC Adv. 2021;11(29):17880-17890. [CrossRef]
  • [9] Mahomoodally MF, Sadeer NB, Zengin G, Cziáky Z,Jekő J,Diuzheva A,Sinan KI,Palaniveloo K,Kim DH,Rengasamy KRR. In vitro enzyme inhibitory properties, secondary metabolite profiles and multivariate analysis of five seaweeds. Mar Drugs. 2020;18(4):1-16. [CrossRef]
  • [10] Guaratini T, Lopes NP, Marinho-Soriano E, Colepicolo P, Pinto E. Antioxidant activity and chemical composition of the non polar fraction of Gracilaria domingensis (Kützing) Sonder ex Dickie and Gracilaria birdiae (Plastino & Oliveira). Rev Bras Farmacogn. 2012;22(4):724-729. [CrossRef]
  • [11] Yap WF, Tay V, Tan SH, Yow YY, Chew J. Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera. Antibiotics. 2019;8(3). [CrossRef]
  • [12] Chakraborty K, Antony T, Joy M. Prospective natural anti-inflammatory drimanes attenuating pro-inflammatory 5-lipoxygenase from marine macroalga Gracilaria salicornia. Algal Res. 2019;40(101472):1-11. [CrossRef]
  • [13] Dutta S, Mahalanobish S, Saha S, Ghosh S, Sil PC. Natural products: An upcoming therapeutic approach to cancer. Food Chem Toxicol. 2019;128:240-255. [CrossRef]
  • [14] Makkar F, Chakraborty K. Previously undescribed antioxidative azocinyl morpholinone alkaloid from red seaweed Gracilaria opuntia with anti-cyclooxygenase and lipoxygenase properties alkaloid from red seaweed Gracilaria opuntia with anti-cyclooxygenase and lipoxygenase properties. Nat Prod Res. 2018;32(10):1150-1160. [CrossRef]
  • [15] Pereira L, Edible Seaweeds of the World, CRC Press, United State, 2016. [16] Sakthivel R, Muniasamy S, Archunan G, Devi KP. Gracilaria edulis exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect in vitro and in vivo. Food Funct. 2016;7: 1155–1165. [CrossRef]
  • [17] Dayuti S. Antibacterial activity of red algae (Gracilaria verrucosa) extract against Escherichia coli and Salmonella typhimurium. IOP Conf Ser Earth Environ Sci. 2018;137(012074):1-5. [CrossRef]
  • [18] Aroyehun AQ, Palaniveloo K, Ghazali F, Rizman-Idid M, Razak SA. Effects of seasonal variability on the physicochemical, biochemical, and nutritional composition of western Peninsular Malaysia Gracilaria manilaensis. Molecules. 2019;24(3298):1-23. [CrossRef]
  • [19] Arulkumar A, Rosemary T, Paramasivam S, Rajendran RB. Phytochemical composition, in vitro antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (Gracilaria corticata and Gracilaria edulis) from Palk Bay, India. Biocatal Agric Biotechnol. 2018;15:63-71. [CrossRef]
  • [20] Mubarak Z, Humaira A, Gani BA, Muchlisin ZA. Preliminary study on the ınhibitory effect of seaweed Gracilaria verrucosa extract on biofilm formation of Candida albicans cultured from the saliva of a smoker. F1000Research. 2018;7(684):1-15. [CrossRef]
  • [21] Subramanian G, Nagaraj A, Sona P, Sasikala J, Ambiga K, Manivannan M. Phytochemicals and ın vitro antioxidant activities of five marine red algae species of a genus Gracilaria from southeast coast of Tamil Nadu, India. J Shanghai Jiaotong Univ. 2020;16(715):715-723.
  • [22] Sumayya SS, Lubaina AS, Murugan K. Phytochemical, HPLC and FTIR Analysis of methanolic extract from Gracilaria dura (C Agardh) J Agardh. J Drug Deliv Ther. 2020;10(3):114-118. [CrossRef]
  • [23] Gunathilaka TL, Samarakoon KW, Ranasinghe P, Peiris LDC. In‐vitro antioxidant, hypoglycemic activity, and ıdentification of bioactive compounds in phenol‐rich extract from the marine red algae Gracilaria edulis (Gmelin) Silva. Molecules. 2019;24(3708):1-16. [CrossRef]
  • [24] Lu Y, Mei S, Wang P, Ouyang P, Liao X, Ye H, Wu K, Ma X. Protective effects of Gracilaria lemaneiformis extract against ultraviolet b-ınduced damage in HaCaT cells. Pharmacogn Mag. 2020;16:510-517. [CrossRef]
  • [25] Al-saif SSA, Abdel-raouf N, Aref IA. Antibacterial substances from marine algae isolated from Jeddah coast of red sea, Saudi Arabia. Saudi J Biol Sci. 2014;21(1):57-64. [CrossRef]
  • [26] Rusli A, Metusalach, Tahir MM, Salengke, Syamsuar. Analysis of bioactive compounds of Caulerpa recemosa, Sargassum sp. and Gracillaria verrucosa using different solvents. J Teknol. 2016;78(4-2):15-19. [CrossRef]
  • [27] Cyril R, Lakshmanan R, Thiyagarajan A. In vitro bioactivity and phytochemical analysis of two marine macro-algae. J Coast Life Med. 2017;5(10):427-432. [CrossRef]
  • [28] Widowati I, Lubac D, Puspita M, Bourgougnon N. Antibacterial and antioxidant properties of the red alga Gracilaria verrucosa from the north coast of Java, Semarang, Indonesıa. Int J Latest Res Sci Technol. 2014;3(3):179-185.
  • [29] Ghannadi A, Shabani L, Yegdaneh A. Cytotoxic, antioxidant and phytochemical analysis of Gracilaria species from Persian Gulf. Adv Biomed Res. 2016;5(1):139. [CrossRef]
  • [30] Bianco ÉM, Krug JL, Zimath PL, KrogerA, PaganelliCJ, Boeder AM, dos Santos L, Tenfen A, RibeiroSM,Kuroshima KN,Alberton MD, de CordovaCMM, Rebelo RA. Antimicrobial (including antimollicutes), antioxidant and anticholinesterase activities of Brazilian and Spanish marine organisms – Evaluation of extracts and pure compounds. Rev Bras Farmacogn. 2015;25(6):668-676. [CrossRef]
  • [31] Assaw S, Rosli NL, Azmi NAM, Mazlan NW, Ismail N. Antioxidant and antibacterial activities of polysaccharides and methanolic crude extracts of local edible red seaweed Gracilaria sp. Malays Appl Biol. 2018;47(4):135-144.
  • [32] Mateos R, Pérez-correa JR, Domínguez H. Bioactive properties of marine phenolics. Mar Drugs. 2020;18(501):1-58. [CrossRef]
  • [33] Whitfield FB, Helidoniotis F, Shaw KJ, Svoronos D, American N. Distribution of bromophenols in species of marine algae from eastern Australia. J Agric Food Chem. 1999;47(6):2367-2373. [CrossRef]
  • [34] Sivaramakrishnan T, Swain S, Saravanan K, Sankar K, Roy SD, Biswas L, Shalini B. In vitro antioxidant and free radical scavenging activity and chemometric approach to reveal their variability in green macroalgae from south andaman coast of ındia. Turkish J Fish Aquat Sci. 2017;17:639-648. [CrossRef]
  • [35] Moubayed NMS, Al Houri HJ, Al Khulaifi MM, Al Farraj DA. Antimicrobial, antioxidant properties and chemical composition of seaweeds collected from Saudi Arabia (Red Sea and Arabian Gulf). Saudi J Biol Sci. 2017;24(1):162-169. [CrossRef]
  • [36] Cook-BotelhoJC, Bachmann LM, French D, Mass Spectrometry for the Clinical Laboratory, Chapter 10 – Steroid Hormones, Elsevier, United States, 2017.
  • [37] He P, Aga DS. Comparison of GC-MS/MS and LC-MS/MS for the analysis of hormones and pesticides in surface waters: Advantages and pitfalls. Anal Methods. 2019;11(11): 1436–1448. [CrossRef]
  • [38] Botzki A, Rigden DJ, Braun S,Nukui M,Salmen S, Hoechstetter J,Bernhardt G, Dove S, Jedrzejas MJ, Buschauer A. L-ascorbic acid 6-hexadecanoate, a potent hyaluronidase inhibitor: X-ray structure and molecular modeling of enzyme-inhibitor complexes. J Biol Chem. 2004;279(44):45990-45997. [CrossRef]
  • [39] Begum SMFM, Priya S, Sundararajan R, Hemalatha S. Novel anticancerous compounds from Sargassum wightii: ın silico and in vitro approaches to test the antiproliferative efficacy. J Adv Pharm Educ Res. 2017;7(3):272-277.
  • [40] Mushtaq S, Uzair B, Hameed A, Khayam AU, Irum S, Shahzad K, Khan BA, Ismail M, Ahmad N, Abbas R. In vitro cytotoxicity of secondary metabolites extracted from Pseudomonas aeruginosa BS25 strain. Arab J Sci Eng. 2020;45(1):81-94. [CrossRef]
  • [41] Tomaz ACDA, Miranda GEC, Souza MDFV, Cunha EVL. Analysis and characterization of methyl esters of fatty acids of some Gracilaria species. Biochem Syst Ecol. 2012;44:303-306. [CrossRef]
  • [42] Tassakka ACMAR, Sumule O, Massi MN, Sulfahri, Manggau M, Iskandar IW, Alam JF, Permana AD,Liao LM. Potential bioactive compounds as SARS-CoV-2 inhibitors from extracts of the marine red alga Halymenia durvillei (Rhodophyta) – A computational study. Arab J Chem.2021;14(11):103393. [CrossRef]
  • [43] Khan AYF, Asuhaimi FA, Jalal TK, Roheem FO, Natto HA, Johan MF, Ahmed QU,Wahab RA. Hystrix brachyura bezoar characterization, antioxidant activity screening, and anticancer activity on melanoma cells (A375 ): A preliminary study. Antioxidants. 2019;8(39):1-15. [CrossRef]
  • [44] Nasir M, Saeidnia S, Mashinchian-Moradi A, Gohari AR. Sterols from the red algae, Gracilaria salicornia and Hypnea flagelliformis, from persian gulf. Pharmacogn Mag. 2011;7(26):97-100. [CrossRef]
  • [45] Sheeja L, Lakshmi D, Bharadwaj S, Parveen KS. Anticancer activity of phytol purified from Gracilaria edulis against human breast cancer cell line (MCF-7). Int J Curr Sci. 2016;19(4):36-46. [46] Jenifer P, Balakrishnan CP, Pillai SC. Quantification of physicochemical and identification of bioactive compounds from marine red alga Gracilaria corticata J. Ag. Asian J Pharm Pharmacol. 2018;4(5):589-594. [CrossRef]
  • [47] Mohy El-Din SM, El-Ahwany AMD. Bioactivity and phytochemical constituents of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea). J Taibah Univ Sci. 2016;10(4):471-484. [CrossRef]
  • [48] Safavi M, Seyed M, Olia J, Haji M, Amini M. Biocatalysis and agricultural biotechnology optimization of the culture medium and characterization of antioxidant compounds of a marine isolated microalga as a promising source in aquaculture feed. Biocatal Agric Biotechnol. 2021;35(102098):1-10. [CrossRef]
  • [49] Santos CC de MP, Salvadori MS, Mota VG, Costa LM, Almeida AAC, Oliveira GAL, Costa JP, Sousa DP, Freitas RM, Almeida RN.Antinociceptive and antioxidant activities of phytol ın vivo and ın vitro models. Neurosci J. 2013;2013:1-9. [CrossRef]
  • [50] Konappa N, Udayashankar AC, Krishnamurthy S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020;10:1-23. [CrossRef]
  • [51] Lee K, Kim D. In-silico molecular binding prediction for human drug targets using deep neural multi-task learning. Genes (Basel). 2019;10(11):1-16. [CrossRef]
  • [52] Jiao X, Jin X, Ma Y, Yang Y, Li J, Liang L, Liu R,Li Z. A comprehensive application: Molecular docking and network pharmacology for the prediction of bioactive constituents and elucidation of mechanisms of action in component-based chinese medicine. Comput Biol Chem. 2021;90(107402):1-8. [CrossRef]
  • [53] Desai NC, Vaja DV, Jadeja KA, Joshi SB, Khedkar VM. Synthesis, biological evaluation and molecular docking study of pyrazole, pyrazoline clubbed pyridine as potential antimicrobial agents. Anti-InfectAgents. 2019;(17):1-9. [CrossRef]
  • [54] Alsaffar DF, Yaseen A, Aljabal GA. In silico molecular docking studies of medicinal arabic plant-based bioactive compounds as a promising drug candidate against COVID-19. Int J Innov Sci Res Technol. 2020;5(5):876-896.
  • [55] Yin X, Zhang X, Yin J, Kong D, Li D. Screening and identification of potential tyrosinase inhibitors from semen oroxyli extract by ultrafiltration LC-MS and in silico molecular docking. J Chromatogr Sci. 2019;(4):1-9. [CrossRef]
  • [56] Ahmad MN, Karim NU, Normaya E. Artocarpus altilis extracts as a food- borne pathogen and oxidation inhibitors : RSM, COSMO RS, and molecular docking approaches. Sci Rep. 2020;10(9566):1-14. [CrossRef]
  • [57] Dhorajiwala TM, Halder ST, Samant L. Comparative in silico molecular docking analysis of l-threonine-3-dehydrogenase, a protein target against african trypanosomiasis using selected phytochemicals. J Appl Biotechnol Reports. 2019;6(3):101-108. [CrossRef]
  • [58] Lipinski CA, Lombardo F,Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997; 23(1–3): 3–25. [CrossRef]
  • [59] Hernández LG, van Steeg H, Luijten M, van Benthem J. Mechanisms of non-genotoxic carcinogens and importance of a weight of evidence approach. Mutat Res.2009; 682(2–3): 94–109. [CrossRef]
  • [60] Guiry MD, Guiry GM. AlgaeBase: World-wide electronic publication. National University of Ireland, Galway.
  • [61] Harborne AJ. Phytochemical Methods a Guide to Modern Techniques of Plant Analysis. Springer Science &Business Media; 1998.
  • [62] Abuelizz HA, Dib RE, MarzoukM, Anouar EH, Maklad YA, Attia HN, Al-Salahi R. Molecular docking and anticonvulsant activity of newly synthesized quinazoline derivatives. Molecules. 2017;22(1094):1-13. [CrossRef]
  • [63] Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ. Software news and updates autodock4 and autodocktools4 : automated docking with selective receptor flexibility. J Comput Chem. 2009;30:2785–2791. [CrossRef]
  • [64] DainaA, MichielinO, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep. 2017; 7(March): 1-13. [CrossRef]
  • [65] Benigni R, BossaC.Mechanisms of chemical carcinogenicity and mutagenicity: A review with implications for predictive toxicology.Chem Rev.2011; 111(4): 2507–2536. [CrossRef]
  • [66] Patlewicz G, JeliazkovaN, Safford RJ, Worth AP, Aleksiev B.An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ Res., 2008; 19(5–6): 495–524. [CrossRef]
  • [67] CramerGM, FordRA, HallRL. Estimation of toxic hazard-A decision tree approach. Food Cosmet Toxicol.1976; 16(3): 255–276. [CrossRef]
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Bahrun Bahrun 0000-0001-5243-014X

Tatsufumi Okino 0000-0002-8363-0467

Herlina Rasyid 0000-0001-9136-9716

Nunuk Hariani Soekamto 0000-0001-8281-1752

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 1

Kaynak Göster

APA Bahrun, B., Okino, T., Rasyid, H., Soekamto, N. H. (2025). Biological evaluation and molecular docking of Indonesian Gracilaria salicornia as antioxidant agents. Journal of Research in Pharmacy, 27(1), 207-220.
AMA Bahrun B, Okino T, Rasyid H, Soekamto NH. Biological evaluation and molecular docking of Indonesian Gracilaria salicornia as antioxidant agents. J. Res. Pharm. Haziran 2025;27(1):207-220.
Chicago Bahrun, Bahrun, Tatsufumi Okino, Herlina Rasyid, ve Nunuk Hariani Soekamto. “Biological Evaluation and Molecular Docking of Indonesian Gracilaria Salicornia As Antioxidant Agents”. Journal of Research in Pharmacy 27, sy. 1 (Haziran 2025): 207-20.
EndNote Bahrun B, Okino T, Rasyid H, Soekamto NH (01 Haziran 2025) Biological evaluation and molecular docking of Indonesian Gracilaria salicornia as antioxidant agents. Journal of Research in Pharmacy 27 1 207–220.
IEEE B. Bahrun, T. Okino, H. Rasyid, ve N. H. Soekamto, “Biological evaluation and molecular docking of Indonesian Gracilaria salicornia as antioxidant agents”, J. Res. Pharm., c. 27, sy. 1, ss. 207–220, 2025.
ISNAD Bahrun, Bahrun vd. “Biological Evaluation and Molecular Docking of Indonesian Gracilaria Salicornia As Antioxidant Agents”. Journal of Research in Pharmacy 27/1 (Haziran 2025), 207-220.
JAMA Bahrun B, Okino T, Rasyid H, Soekamto NH. Biological evaluation and molecular docking of Indonesian Gracilaria salicornia as antioxidant agents. J. Res. Pharm. 2025;27:207–220.
MLA Bahrun, Bahrun vd. “Biological Evaluation and Molecular Docking of Indonesian Gracilaria Salicornia As Antioxidant Agents”. Journal of Research in Pharmacy, c. 27, sy. 1, 2025, ss. 207-20.
Vancouver Bahrun B, Okino T, Rasyid H, Soekamto NH. Biological evaluation and molecular docking of Indonesian Gracilaria salicornia as antioxidant agents. J. Res. Pharm. 2025;27(1):207-20.