Araştırma Makalesi
BibTex RIS Kaynak Göster

The effect of Sideritis species on Alzheimer’s disease: In vitro evaluation

Yıl 2023, Cilt: 27 Sayı: 6, 2353 - 2361, 28.06.2025

Öz

Alzheimer's Disease (AD), which is quite prevalent in our society, not only makes the lives of patients and their families more challenging but also brings significant economic burdens. Sideritis species are widely used in folk medicine due to their various effects such as anti-inflammatory, antimicrobial, diuretic, and antispasmodic properties. Although there are many studies with the hypothesis that ROS is effective in the pathogenesis of neurodegenerative diseases, there are not enough studies on Sideritis germanicopolitana Bornm. subsp. viridis Hausskn. ex Bornm. (SGV) and Sideritis libanotica Labill. subsp. linearis (Bentham) Bornm. (SLL) species. In this study, the antioxidant activities of SGV and SLL plant extracts were compared using DPPH, FRAP, and CUPRAC methods to aid in AD treatment research. It was determined that SGV extract has higher DPPH (0.023±0.005 mg/mL), FRAP (1.074± 0.180 mM FeSO4/mg extract) and CUPRAC (2,988± 0,041 mM trolox equivalent/mg extract) activity potential than SLL extract. Additionally, as a result of cytotoxicity studies performed on SH-SY5Y neuroblastoma cells, ethanol extracts of SGV may be more suitable for use in AD at higher concentrations (250 μg/mL).

Kaynakça

  • [1] Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem. 2021; 296: 100105. https://doi.org/10.1074/jbc.REV120.008207
  • [2] Atri A. The Alzheimer's disease clinical spectrum: Diagnosis and management. Med Clin North Am. 2019; 103(2): 263-293. https://doi.org/10.1016/j.mcna.2018.10.009
  • [3] Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019; 19(14): 5541-5554. https://doi.org/10.2147/IJN.S200490
  • [4] Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease. Curr Neuropharmacol. 2020; 18(11): 1106-1125. https://doi.org/10.2174/1570159X18666200528142429
  • [5] Passeri E, Elkhoury K, Morsink M, Broersen K, Linder M, Tamayol A, Malaplate C, Yen FT, Arab-Tehrany E. Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci. 2022; 23(22): 13954. https://doi.org/10.3390/ijms232213954
  • [6] Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol Aging. 2021; 107: 86-95. https://doi.org/10.1016/j.neurobiolaging.2021.07.014
  • [7] Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 2019; 24(8): 1583. https://doi.org/10.3390/molecules24081583
  • [8] Aneva I, Zhelev P, Kozuharova E, Danova K, Nabavi SF, Behzad S. Genus Sideritis, section Empedoclia in southeastern Europe and Turkey - studies in ethnopharmacology and recent progress of biological activities. Daru. 2019; 27(1): 407-421. https://doi.org/10.1007/s40199-019-00261-8
  • [9] González-Burgos E, Carretero ME, Gómez-Serranillos MP. Nrf2-dependent neuroprotective activity of diterpenoids isolated from Sideritis spp. J Ethnopharmacol. 2013; 147(3): 645-652. https://doi.org/10.1016/j.jep.2013.03.062
  • [10] Aneva I, Zhelev P, Bonchev G. Sideritis elica, a new species of Lamiaceae from Bulgaria, revealed by morphology and molecular phylogeny. Plants (Basel). 2022; 11(21): 2900. https://doi.org/10.3390/plants11212900
  • [11] Simsek Sezer EN, Uysal T. Phytochemical analysis, antioxidant and anticancer potential of Sideritis niveotomentosa: endemic wild species of Turkey. Molecules. 2021; 26(9): 2420. https://doi.org/10.3390/molecules26092420
  • [12] Żyżelewicz D, Kulbat-Warycha K, Oracz J, Żyżelewicz K. Polyphenols and other bioactive compounds of Sideritis plants and their potential biological activity. Molecules. 2020; 25(16): 3763. https://doi.org/10.3390/molecules25163763
  • [13] Zengin G, Sarikürkçü C, Aktümsek A, Ceylan R. Antioxidant potential and inhibition of key enzymes linked to Alzheimer's diseases and diabetes mellitus by monoterpene-rich essential oil from Sideritis galatica Bornm. endemic to Turkey. Rec Nat Prod. 2016; 10(2): 195.
  • [14] Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B, Pahnke J. Sideritis spp. extracts enhance memory and learning in Alzheimer's β-amyloidosis mouse models and aged C57Bl/6 mice. J Alzheimers Dis. 2016; 53(3): 967-980. https://doi.org/10.3233/JAD-160301
  • [15] Turkmenoglu FP, Baysal İ, Ciftci-Yabanoglu S, Yelekci K, Temel H, Paşa S, Ezer N, Çalış İ, Ucar G. Flavonoids from Sideritis species: Human monoamine oxidase (hMAO) inhibitory activities, molecular docking studies and crystal structure of xanthomicrol. Molecules. 2015; 20(5): 7454-7473. https://doi.org/10.3390/molecules20057454
  • [16] Ververis A, Ioannou K, Kyriakou S, Violaki N, Panayiotidis MI, Plioukas M, Christodoulou K. Sideritis scardica extracts demonstrate neuroprotective activity against Aβ25-35 toxicity. Plants (Basel). 2023; 12(8):1716. https://doi.org/10.3390/plants12081716
  • [17] Kwon Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease. Exp Gerontol. 2017; 95:39-43. https://doi.org/10.1016/j.exger.2017.05.014
  • [18] Hase T, Shishido S, Yamamoto S, Yamashita R, Nukima H, Taira S, Toyoda T, Abe K, Hamaguchi T, Ono K, Noguchi-Shinohara M, Yamada M, Kobayashi S. Rosmarinic acid suppresses Alzheimer's disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep. 2019; 9(1):8711. https://doi.org/10.1038/s41598-019-45168-1
  • [19] Dourado NS, Souza CDS, de Almeida MMA, Bispo da Silva A, Dos Santos BL, Silva VDA, De Assis AM, da Silva JS, Souza DO, Costa MFD, Butt AM, Costa SL. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer's disease. Front Aging Neurosci. 2020; 12:119. https://doi.org/10.3389/fnagi.2020.00119
  • [20] Dawidowicz AL, Wianowska D, Olszowy M. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). J Food Chem. 2012; 131(3): 1037-1043. https://doi.org/10.1016/j.foodchem.2011.09.067
  • [21] Guvenc, A, Houghton, PJ, Duman H, Coskun M, Sahin P. Antioxidant activity studies on selected Sideritis species native Turkey. Pharm Biol. 2005; 43(2): 173-177. https://doi.org/10.1080/13880200590919528
  • [22] Gulcan Z, Saltan N, Iscan G, Kurkcuoglu M, Kose YB. Antimicrobial and antioxidant activities of Sideritis lanata L. extracts. Eur J Life Sci. 2022; 1(2): 63-79. https://doi.org/10.55971/EJLS.1181461
  • [23] Demirtas I, Erenler R, Elmastas M, Goktasoglu A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. J Food Chem. 2013;136(1): 34-40. https://doi.org/10.1016/j.foodchem.2012.07.086
  • [24] Deveci E, Tel-Çayan G, Duru ME, Öztürk M. Phytochemical contents, antioxidant effects, and inhibitory activities of key enzymes associated with Alzheimer's disease, ulcer, and skin disorders of Sideritis albiflora and Sideritis leptoclada. J Food Biochem. 2019; 43(12): e13078. https://doi.org/10.1111/jfbc.13078
  • [25] Ceylan R, Zengin G, Aktümsek A. GC-MS analysis and antioxidant potential of essential oil from endemic Sideritis rubriflora Hub.-Mor. Proceedings. 2019; 40(1):24. https://doi.org/10.3390/proceedings2019040024
  • [26] de Torre MP, Cavero RY, Calvo MI. Anticholinesterase activity of selected medicinal plants from Navarra region of Spain and a detailed phytochemical investigation of Origanum vulgare L. ssp. vulgare. Molecules. 2022; 27(20): 7100. https://doi.org/10.3390/molecules27207100
  • [27] Deveci E, Tel-Çayan G, Duru ME. Phenolic profile, antioxidant, anticholinesterase, and anti-tyrosinase activities of the various extracts of Ferula elaeochytris and Sideritis stricta. Int J Food Prop. 2018; 21(1): 771-783. https://doi.org/10.1080/10942912.2018.1431660
  • [28] Sagir, ZO, Carikci S, Kilic T, Goren AC. Metabolic profile and biological activity of Sideritis brevibracteata PH Davis endemic to Turkey. Int J Food Prop. 2017; 20(12): 2994-3005. https://doi.org/10.1080/10942912.2016.1265981
  • [29] Chalatsa I, Arvanitis DA, Mikropoulou EV, Giagini A, Papadopoulou-Daifoti Z, Aligiannis N, Halabalaki M, Tsarbopoulos A, Skaltsounis LA, Sanoudou D. Beneficial effects of Sideritis scardica and Cichorium spinosum against amyloidogenic pathway and tau misprocessing in Alzheimer's disease neuronal cell culture models. J Alzheimers Dis. 2018; 64(3):787-800. https://doi.org/10.3233/JAD-170862
  • [30] Fu W, Chen J, Cai Y, Lei Y, Chen L, Pei L, Zhou D, Liang X, Ruan J. Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch. et Sav.) Ching. J Ethnopharmacol. 2010; 130(3): 521-528. https://doi.org/10.1016/j.jep.2010.05.039
  • [31] Taşkın D, Yılmaz BN, Taşkın T, Omurtag, GZ. The influence of different extraction methods/solvents on composition, biological activities and ADMET predictions of phenolics in Tribulus terrestris. Braz Arch Biol Technol. 2021; 64: e21210249.
  • [32] Dziurka M, Kubica P, Kwiecień I, Biesaga-Kościelniak J, Ekiert H, Abdelmohsen SAM, Al-Harbi FF, Elansary DO, Elansary HO, Szopa A. In vitro cultures of some medicinal plant species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a rich potential source of antioxidants-evaluation by CUPRAC and QUENCHER-CUPRAC assays. Plants (Basel). 2021; 10(3): 454. https://doi.org/10.3390/plants10030454
  • [33] Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • [34] Guo S, Zhang B, Qi W, Cao X, Xu Y, Zhang X, Li X, Zhou L, Ye L. Role of estrogen receptor alpha in MEHP-induced proliferation and invasion of SH-SY5Y cells. Toxicology. 2021; 453:152734. https://doi.org/10.1016/j.tox.2021.152734
  • [35] Sucu BO, Ipek OS, Kurtulus SO, Yazici BE, Karakas N, Guzel M. Synthesis of novel methyl jasmonate derivatives and evaluation of their biological activity in various cancer cell lines. Bioorg Chem. 2019; 91: 103146. https://doi.org/10.1016/j.bioorg.2019.103146
Yıl 2023, Cilt: 27 Sayı: 6, 2353 - 2361, 28.06.2025

Öz

Kaynakça

  • [1] Lei P, Ayton S, Bush AI. The essential elements of Alzheimer's disease. J Biol Chem. 2021; 296: 100105. https://doi.org/10.1074/jbc.REV120.008207
  • [2] Atri A. The Alzheimer's disease clinical spectrum: Diagnosis and management. Med Clin North Am. 2019; 103(2): 263-293. https://doi.org/10.1016/j.mcna.2018.10.009
  • [3] Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine. 2019; 19(14): 5541-5554. https://doi.org/10.2147/IJN.S200490
  • [4] Khan S, Barve KH, Kumar MS. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer's disease. Curr Neuropharmacol. 2020; 18(11): 1106-1125. https://doi.org/10.2174/1570159X18666200528142429
  • [5] Passeri E, Elkhoury K, Morsink M, Broersen K, Linder M, Tamayol A, Malaplate C, Yen FT, Arab-Tehrany E. Alzheimer's Disease: Treatment Strategies and Their Limitations. Int J Mol Sci. 2022; 23(22): 13954. https://doi.org/10.3390/ijms232213954
  • [6] Ionescu-Tucker A, Cotman CW. Emerging roles of oxidative stress in brain aging and Alzheimer's disease. Neurobiol Aging. 2021; 107: 86-95. https://doi.org/10.1016/j.neurobiolaging.2021.07.014
  • [7] Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules. 2019; 24(8): 1583. https://doi.org/10.3390/molecules24081583
  • [8] Aneva I, Zhelev P, Kozuharova E, Danova K, Nabavi SF, Behzad S. Genus Sideritis, section Empedoclia in southeastern Europe and Turkey - studies in ethnopharmacology and recent progress of biological activities. Daru. 2019; 27(1): 407-421. https://doi.org/10.1007/s40199-019-00261-8
  • [9] González-Burgos E, Carretero ME, Gómez-Serranillos MP. Nrf2-dependent neuroprotective activity of diterpenoids isolated from Sideritis spp. J Ethnopharmacol. 2013; 147(3): 645-652. https://doi.org/10.1016/j.jep.2013.03.062
  • [10] Aneva I, Zhelev P, Bonchev G. Sideritis elica, a new species of Lamiaceae from Bulgaria, revealed by morphology and molecular phylogeny. Plants (Basel). 2022; 11(21): 2900. https://doi.org/10.3390/plants11212900
  • [11] Simsek Sezer EN, Uysal T. Phytochemical analysis, antioxidant and anticancer potential of Sideritis niveotomentosa: endemic wild species of Turkey. Molecules. 2021; 26(9): 2420. https://doi.org/10.3390/molecules26092420
  • [12] Żyżelewicz D, Kulbat-Warycha K, Oracz J, Żyżelewicz K. Polyphenols and other bioactive compounds of Sideritis plants and their potential biological activity. Molecules. 2020; 25(16): 3763. https://doi.org/10.3390/molecules25163763
  • [13] Zengin G, Sarikürkçü C, Aktümsek A, Ceylan R. Antioxidant potential and inhibition of key enzymes linked to Alzheimer's diseases and diabetes mellitus by monoterpene-rich essential oil from Sideritis galatica Bornm. endemic to Turkey. Rec Nat Prod. 2016; 10(2): 195.
  • [14] Hofrichter J, Krohn M, Schumacher T, Lange C, Feistel B, Walbroel B, Pahnke J. Sideritis spp. extracts enhance memory and learning in Alzheimer's β-amyloidosis mouse models and aged C57Bl/6 mice. J Alzheimers Dis. 2016; 53(3): 967-980. https://doi.org/10.3233/JAD-160301
  • [15] Turkmenoglu FP, Baysal İ, Ciftci-Yabanoglu S, Yelekci K, Temel H, Paşa S, Ezer N, Çalış İ, Ucar G. Flavonoids from Sideritis species: Human monoamine oxidase (hMAO) inhibitory activities, molecular docking studies and crystal structure of xanthomicrol. Molecules. 2015; 20(5): 7454-7473. https://doi.org/10.3390/molecules20057454
  • [16] Ververis A, Ioannou K, Kyriakou S, Violaki N, Panayiotidis MI, Plioukas M, Christodoulou K. Sideritis scardica extracts demonstrate neuroprotective activity against Aβ25-35 toxicity. Plants (Basel). 2023; 12(8):1716. https://doi.org/10.3390/plants12081716
  • [17] Kwon Y. Luteolin as a potential preventive and therapeutic candidate for Alzheimer's disease. Exp Gerontol. 2017; 95:39-43. https://doi.org/10.1016/j.exger.2017.05.014
  • [18] Hase T, Shishido S, Yamamoto S, Yamashita R, Nukima H, Taira S, Toyoda T, Abe K, Hamaguchi T, Ono K, Noguchi-Shinohara M, Yamada M, Kobayashi S. Rosmarinic acid suppresses Alzheimer's disease development by reducing amyloid β aggregation by increasing monoamine secretion. Sci Rep. 2019; 9(1):8711. https://doi.org/10.1038/s41598-019-45168-1
  • [19] Dourado NS, Souza CDS, de Almeida MMA, Bispo da Silva A, Dos Santos BL, Silva VDA, De Assis AM, da Silva JS, Souza DO, Costa MFD, Butt AM, Costa SL. Neuroimmunomodulatory and neuroprotective effects of the flavonoid apigenin in in vitro models of neuroinflammation associated with Alzheimer's disease. Front Aging Neurosci. 2020; 12:119. https://doi.org/10.3389/fnagi.2020.00119
  • [20] Dawidowicz AL, Wianowska D, Olszowy M. On practical problems in estimation of antioxidant activity of compounds by DPPH method (Problems in estimation of antioxidant activity). J Food Chem. 2012; 131(3): 1037-1043. https://doi.org/10.1016/j.foodchem.2011.09.067
  • [21] Guvenc, A, Houghton, PJ, Duman H, Coskun M, Sahin P. Antioxidant activity studies on selected Sideritis species native Turkey. Pharm Biol. 2005; 43(2): 173-177. https://doi.org/10.1080/13880200590919528
  • [22] Gulcan Z, Saltan N, Iscan G, Kurkcuoglu M, Kose YB. Antimicrobial and antioxidant activities of Sideritis lanata L. extracts. Eur J Life Sci. 2022; 1(2): 63-79. https://doi.org/10.55971/EJLS.1181461
  • [23] Demirtas I, Erenler R, Elmastas M, Goktasoglu A. Studies on the antioxidant potential of flavones of Allium vineale isolated from its water-soluble fraction. J Food Chem. 2013;136(1): 34-40. https://doi.org/10.1016/j.foodchem.2012.07.086
  • [24] Deveci E, Tel-Çayan G, Duru ME, Öztürk M. Phytochemical contents, antioxidant effects, and inhibitory activities of key enzymes associated with Alzheimer's disease, ulcer, and skin disorders of Sideritis albiflora and Sideritis leptoclada. J Food Biochem. 2019; 43(12): e13078. https://doi.org/10.1111/jfbc.13078
  • [25] Ceylan R, Zengin G, Aktümsek A. GC-MS analysis and antioxidant potential of essential oil from endemic Sideritis rubriflora Hub.-Mor. Proceedings. 2019; 40(1):24. https://doi.org/10.3390/proceedings2019040024
  • [26] de Torre MP, Cavero RY, Calvo MI. Anticholinesterase activity of selected medicinal plants from Navarra region of Spain and a detailed phytochemical investigation of Origanum vulgare L. ssp. vulgare. Molecules. 2022; 27(20): 7100. https://doi.org/10.3390/molecules27207100
  • [27] Deveci E, Tel-Çayan G, Duru ME. Phenolic profile, antioxidant, anticholinesterase, and anti-tyrosinase activities of the various extracts of Ferula elaeochytris and Sideritis stricta. Int J Food Prop. 2018; 21(1): 771-783. https://doi.org/10.1080/10942912.2018.1431660
  • [28] Sagir, ZO, Carikci S, Kilic T, Goren AC. Metabolic profile and biological activity of Sideritis brevibracteata PH Davis endemic to Turkey. Int J Food Prop. 2017; 20(12): 2994-3005. https://doi.org/10.1080/10942912.2016.1265981
  • [29] Chalatsa I, Arvanitis DA, Mikropoulou EV, Giagini A, Papadopoulou-Daifoti Z, Aligiannis N, Halabalaki M, Tsarbopoulos A, Skaltsounis LA, Sanoudou D. Beneficial effects of Sideritis scardica and Cichorium spinosum against amyloidogenic pathway and tau misprocessing in Alzheimer's disease neuronal cell culture models. J Alzheimers Dis. 2018; 64(3):787-800. https://doi.org/10.3233/JAD-170862
  • [30] Fu W, Chen J, Cai Y, Lei Y, Chen L, Pei L, Zhou D, Liang X, Ruan J. Antioxidant, free radical scavenging, anti-inflammatory and hepatoprotective potential of the extract from Parathelypteris nipponica (Franch. et Sav.) Ching. J Ethnopharmacol. 2010; 130(3): 521-528. https://doi.org/10.1016/j.jep.2010.05.039
  • [31] Taşkın D, Yılmaz BN, Taşkın T, Omurtag, GZ. The influence of different extraction methods/solvents on composition, biological activities and ADMET predictions of phenolics in Tribulus terrestris. Braz Arch Biol Technol. 2021; 64: e21210249.
  • [32] Dziurka M, Kubica P, Kwiecień I, Biesaga-Kościelniak J, Ekiert H, Abdelmohsen SAM, Al-Harbi FF, Elansary DO, Elansary HO, Szopa A. In vitro cultures of some medicinal plant species (Cistus × incanus, Verbena officinalis, Scutellaria lateriflora, and Scutellaria baicalensis) as a rich potential source of antioxidants-evaluation by CUPRAC and QUENCHER-CUPRAC assays. Plants (Basel). 2021; 10(3): 454. https://doi.org/10.3390/plants10030454
  • [33] Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961; 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  • [34] Guo S, Zhang B, Qi W, Cao X, Xu Y, Zhang X, Li X, Zhou L, Ye L. Role of estrogen receptor alpha in MEHP-induced proliferation and invasion of SH-SY5Y cells. Toxicology. 2021; 453:152734. https://doi.org/10.1016/j.tox.2021.152734
  • [35] Sucu BO, Ipek OS, Kurtulus SO, Yazici BE, Karakas N, Guzel M. Synthesis of novel methyl jasmonate derivatives and evaluation of their biological activity in various cancer cell lines. Bioorg Chem. 2019; 91: 103146. https://doi.org/10.1016/j.bioorg.2019.103146
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Saliha Aydın

Mizgin Ermanoğlu 0000-0003-3146-1988

Şükran Özdatlı Kurtuluş 0000-0002-5735-7276

Beyza Nur Yılmaz 0000-0002-4418-3182

Turgut Taşkın 0000-0001-8475-6478

Muhammet Emin Çam 0000-0001-5398-6801

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 6

Kaynak Göster

APA Aydın, S., Ermanoğlu, M., Özdatlı Kurtuluş, Ş., Yılmaz, B. N., vd. (2025). The effect of Sideritis species on Alzheimer’s disease: In vitro evaluation. Journal of Research in Pharmacy, 27(6), 2353-2361. https://doi.org/10.29228/jrp.523
AMA Aydın S, Ermanoğlu M, Özdatlı Kurtuluş Ş, Yılmaz BN, Taşkın T, Çam ME. The effect of Sideritis species on Alzheimer’s disease: In vitro evaluation. J. Res. Pharm. Temmuz 2025;27(6):2353-2361. doi:10.29228/jrp.523
Chicago Aydın, Saliha, Mizgin Ermanoğlu, Şükran Özdatlı Kurtuluş, Beyza Nur Yılmaz, Turgut Taşkın, ve Muhammet Emin Çam. “The Effect of Sideritis Species on Alzheimer’s Disease: In Vitro Evaluation”. Journal of Research in Pharmacy 27, sy. 6 (Temmuz 2025): 2353-61. https://doi.org/10.29228/jrp.523.
EndNote Aydın S, Ermanoğlu M, Özdatlı Kurtuluş Ş, Yılmaz BN, Taşkın T, Çam ME (01 Temmuz 2025) The effect of Sideritis species on Alzheimer’s disease: In vitro evaluation. Journal of Research in Pharmacy 27 6 2353–2361.
IEEE S. Aydın, M. Ermanoğlu, Ş. Özdatlı Kurtuluş, B. N. Yılmaz, T. Taşkın, ve M. E. Çam, “The effect of Sideritis species on Alzheimer’s disease: In vitro evaluation”, J. Res. Pharm., c. 27, sy. 6, ss. 2353–2361, 2025, doi: 10.29228/jrp.523.
ISNAD Aydın, Saliha vd. “The Effect of Sideritis Species on Alzheimer’s Disease: In Vitro Evaluation”. Journal of Research in Pharmacy 27/6 (Temmuz 2025), 2353-2361. https://doi.org/10.29228/jrp.523.
JAMA Aydın S, Ermanoğlu M, Özdatlı Kurtuluş Ş, Yılmaz BN, Taşkın T, Çam ME. The effect of Sideritis species on Alzheimer’s disease: In vitro evaluation. J. Res. Pharm. 2025;27:2353–2361.
MLA Aydın, Saliha vd. “The Effect of Sideritis Species on Alzheimer’s Disease: In Vitro Evaluation”. Journal of Research in Pharmacy, c. 27, sy. 6, 2025, ss. 2353-61, doi:10.29228/jrp.523.
Vancouver Aydın S, Ermanoğlu M, Özdatlı Kurtuluş Ş, Yılmaz BN, Taşkın T, Çam ME. The effect of Sideritis species on Alzheimer’s disease: In vitro evaluation. J. Res. Pharm. 2025;27(6):2353-61.