Araştırma Makalesi
BibTex RIS Kaynak Göster

Endophytic Bacillus spp. isolated from Archidendron pauciflorum: Pharmacological property and their phytochemical constituents

Yıl 2023, Cilt: 27 Sayı: 6, 2511 - 2521, 28.06.2025

Öz

Endophytic Bacillus spp. associated with Archidendron pauciflorum could be the potential source of active compounds attributed to the pharmacological property. The present study aimed to determine the antioxidant, antibacterial, antibiofilm activities, and phytochemical profiles of the crude extracts derived from four endophytic Bacillus spp. isolated from A. pauciflorum. Among all extracts tested, extract from Bacillus pseudomycoides strain DJ8 displayed the strongest antioxidant activity against DPPH and ABTS with IC50 values of 24.87±1.81 and 9.18±0.10 µg/mL, respectively. As evaluated by the dual culture-agar diffusion and disc diffusion methods, three out of four Bacillus spp. extracts also exhibited broad spectra of antibacterial activity against four ATCC strains. Among other extracts, B. pseudomycoides strain DJ8 extract became the most active extract inhibiting Staphylococcus aureus strain ATCC 6538, indicated by the lowest MIC (31.25 µg/mL) and MBC (125 µg/mL), which is considered a highly active antibacterial agent. Three extracts attributed to broad spectra antibacterial activity were also capable to inhibit biofilm formation of four ATCC strains, up to 62.59% in 2 MIC of the extract concentration. Phytochemicals (flavonoid, alkaloid, and terpenoid) were present in four endophytic Bacillus extracts. Among other extracts, an extract derived from B. pseudomycoides strain DJ8 contains the highest flavonoid content (40.10±1.18 mg QE/g extract) and phenol (58.50±4.56 mg GAE/g extract). In conclusion, these four endophytic Bacillus spp. could be the source of pharmaceutically valuable compounds attributed to antioxidant, antibacterial, and antibiofilm properties.

Kaynakça

  • [1] Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016;7:1538. https://doi.org/10.3389/fmicb.2016.01538
  • [2] Jiao R, Cai Y, He P, Munir S, Li X, Wu Y, Wang J, Xia M, He P, Wang G, Yang H, Karunarathna SC, Xie Y, He Y. Bacillus amyloliquefaciens YN201732 produces lipopeptides with promising biocontrol activity against fungal pathogen Erysiphe cichoracearum. Front Cell Infect Microbiol. 2021;11:598999. https://doi.org/10.3389/fcimb.2021.598999
  • [3] Hazarika DJ, Goswami G, Gautom T, Parveen A, Das P, Barooah M, Boro RC. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol. 2019;19(1):71. https://doi.org/10.1186/s12866-019-1440-8
  • [4] Jasim B, Sreeakshmi S, Mathew J, Radhakrishnan EK. Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Biotech. 2016;6(2):187. https://doi.org/10.1007/s13205-016-0508-5
  • [5] Nalli Y, Singh S, Gajjar A, Mahizhaveni B, Dusthackeer VNA, Shinde PB. Bacillibactin class siderophores produced by the endophyte Bacillus subtilis NPROOT3 as antimycobacterial agents. Lett Appl Microbiol. 2023;76(2):ovac026. https://doi.org/10.1093/lambio/ovac026
  • [6] Rasiya KT, Sebastian D. Iturin and surfactin from the endophyte Bacillus amyloliquefaciens strain RKEA3 exhibits antagonism against Staphylococcus aureus. Biocat Agric Biotech. 2021;36:102125. https://doi.org/10.1016/j.bcab.2021.102125
  • [7] Nisa S, Shoukat M, Bibi Y, Ayoubi SA, Shah W, Masood S, Sabir M, Bano SA, Qayyum A. Therapeutic prospects of endophytic Bacillus species from Berberis lycium against oxidative stress and microbial pathogens. Saudi J Biol Sci. 2022;29(1):287-295. https://doi.org/10.1016/j.sjbs.2021.08.099
  • [8] Bhoonobtong A, Sodngam S, Boonlue S, Bunyatratchata W, Mongkolthanarukk W. Antibiotics constituents of endophytic Bacillus amyloliquefaciens UD25 extracted from a medicinal plant, Memecylon edule Roxb. Chiang Mai J Sci. 2017;44(3):788-799.
  • [9] Gond SK, Bergen MS, Torres MS, Junior JFW. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res. 2015;172:79-87. https://doi.org/10.1016/j.micres.2014.11.004
  • [10] Sorokan A, Cherepanova E, Burkhanova G, Veselova S, Rumyantsev S, Alekseev V, Mardanshin I, Sarvarova E, Khairullin R, Benkovskaya G, Maksimov I. Endophytic Bacillus spp. as a prospective biological tool for control of viral diseases and non-vector Leptinotarsa decemlineata Say. in Solanum tuberosum L. Front Microbiol. 2020;11:569457. https://doi.org/10.3389/fmicb.2020.569457
  • [11] Romero-Arguelles R, Romo-Sáenz CI, Morán-Santibáñez K, Tamez-Guerra P, Quintanilla-Licea R, Orozco-Flores AA, Ramírez-Villalobos JM, Tamez-Guerra R, Rodríguez-Padilla C, Gomez-Flores R. In vitro antitumor activity of endophytic and rhizosphere Gram-positive bacteria from Ibervillea sonorae (S. Watson) Greene against L5178Y-R lymphoma cells. Int J Environ Res Public Health. 2022;19(2):894. https://doi.org/10.3390/ijerph19020894
  • [12] Żymańczyk-Duda E, Szmigie-Merena B, Brzezińska-Rodak M, Klimek-Ochab M. Natural antioxidants–properties and possible applications. J Appl Biotechnol Bioeng. 2018;5(4):251-258. https://doi.org/10.15406/jabb.2018.05.00146
  • [13] Rani K. Role of antioxidants in prevention of diseases. J Appl Biotech Bioeng. 2017;4(1):495‒496. https://doi.org/10.15406/jabb.2017.04.00091
  • [14] Li D, Zhou B, Lv B. Antibacterial therapeutic agents composed of functional biological molecules. J Chem. 2021;2020:6578579. https://doi.org/10.1155/2020/6578579
  • [15] Kohanski MA, Tharakan A, Lane AP, Ramanathan MJ. Bactericidal antibiotics promote reactive oxygen species formation and inflammation in human sinonasal epithelial cells. Int Forum Allergy Rhinol. 2016;6(2):191-200. https://doi.org/10.1002/alr.21646
  • [16] Bunawan H, Dusik L, Bunawan SN, Amin NM. Botany, traditional uses, phytochemistry and pharmacology of Archidendron jiringa: a review. Global J Pharmacol. 2013;7(4):474-478. https://doi.org/10.5829/idosi.gjp.2013.7.4.824
  • [17] Priyanto JA, Prastya ME, Astuti RI, Kristiana R. The antibacterial and antibiofilm activities of the endophytic bacteria associated with Archidendron pauciflorum against multidrug-resistant strains. Appl Biochem Biotech. 2023;Published online. https://doi.org/10.1007/s12010-023-04382-4
  • [18] Molla MM, Kamal MM, Sabuz AA, Chowdhury MGF, Khan MHH, Khatun A, Miaruddin M, Zashimuddin M, Islam MM. Chemical composition, bioactive compounds, antioxidants potential and mycotoxin of minor exotic Archidendron pauciflorum fruit with the focus to Bangladesh. Biocat Agric Biotech. 2021;34:102039. https://doi.org/10.1016/j.bcab.2021.102039
  • [19] Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25(6):1340. https://doi.org/10.3390/molecules25061340
  • [20] Nasution HM, Yuniarti R, Rani Z, Nursyafira A. Phytochemical screening and antibacterial activity test of ethanol extract of jengkol leaves (Archidendron pauciflorum Benth.) IC Nielsen against Staphylococcus epidermidis and Propionibacterium acnes. Int J Sci Tech Manag. 2022;3(3):647-653. https://doi.org/10.46729/ijstm.v3i3.509
  • [21] Silva ACO, Santana EF, Saraiva AM, Coutinho FN, Castro RHA, Pisciottano MNC, Amorim ILC, Albuquerque UP. Which approach is more effective in the selection of plants with antimicrobial activity? Evid-Based Complement Alternat Med. 2013;2013:308980. https://doi.org/10.1155/2013/308980
  • [22] Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Cont. 2019;8:76. https://doi.org/10.1186/s13756-019-0533-3
  • [23] Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–554. https://doi.org/10.1080/21505594.2017.1313372
  • [24] Sihombing JR, Dharma A, Chaidir Z, Almahdy, Fachrial E, Munaf E. Phytochemical screening and antioxidant activities of 31 fruit peel extract from Sumatera, Indonesia. J Chem Pharm Res. 2015;7(11):190-196.
  • [25] Rathod ZR, Shah D, Shukla P, Meghani S, Patel C. Citrus limon as an abundant source of phytochemicals: their evaluation and antioxidant analysis with bacterial endophytes. Curr Trends Biomed Eng Biosci. 2022;20(4):556045. https://doi.org/10.19080/CTBEB.2022.20.556045
  • [26] Morare RF, Ubomba-Jaswa E, Serepa-Dlamini MH. Isolation and identification of bacterial endophytes from Crinum macowanii Baker. Afr J Biotech. 2018;17(33):1040-1047. https://doi.org/10.5897/AJB2017.16350
  • [27] Achika JI, Ayo RG, Oyewale AO, Habila JD. Flavonoids with antibacterial and antioxidant potentials from the stem bark of Uapaca heudelotti. Heliyon. 2020;6(2):e03381. https://doi.org/10.1016/J.HELIYON.2020.E03381
  • [28] Achika JI, Ayo RG, Habila JD, Oyewale AO. Terpenes with antimicrobial and antioxidant activities from Lannea humilis (Oliv.). Sci Afr. 2020;10:e00552. https://doi.org/10.1016/j.sciaf.2020.e00552
  • [29] Mabhiza D, Chitemerere T, Mukanganyama S. Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Chem. 2016;2016:6304163. https://doi.org/10.1155/2016/6304163
  • [30] Bac Dive. Escherichia coli Crooks is a mesophilic human pathogen that has multiple antibiotic resistances and was isolated from faeces. 2021. https://bacdive.dsmz.de/strain/4433. Accessed on 22 March 2023.
  • [31] Mbaveng AT, Sandjo LP, Tankeo SB, Ndifor AR, Pantaleon A, Nagdjui BT, Kuete V. Antibacterial activity of nineteen selected natural products against multi-drug resistant Gram-negative phenotypes. Springer Plus. 2015;4:823. https://doi.org/10.1186/s40064-015-1645-8
  • [32] Osman ME-S, El-Hendawy HH, Abd El-All SM, Hassan AM, Mahmoud DE. Correlation between resistance of Pseudomonas aeruginosa to benzalkonium chloride and expression of efflux pump genes. J Appl Pharm Sci. 2018;8(12):044–052. https://doi.org/10.7324/JAPS.2018.81206
  • [33] Speck S, Wenke C, Feßler AT, Kacza J, Geber F, Scholtzek AD, Hanke D, Eichhorn I, Schwarz S, Rosolowski M, Truyen U. Borderline resistance to oxacillin in Staphylococcus aureus after treatment with sub-lethal sodium hypochlorite concentrations. Heliyon. 2020;6(6):e04070. https://doi.org/10.1016/j.heliyon.2020.e04070
  • [34] Priyanto JA, Astuti RI, Nomura J, Wahyudi AT. Bioactive compounds from sponge-associated bacteria: anticancer activity and NRPS-PKS gene expression in different carbon sources. Am J Biochem Biotech. 2017;13(4):148-156. https://doi.org/10.3844/ajbbsp.2017.148.156
  • [35] Prastya ME, Astuti RI, Batubara I, Takagi H, Wahyudi AT. Natural extract and its fractions isolated from the marine bacterium Pseudoalteromonas flavipulchra STILL-33 have antioxidant and antiaging activities in Schizosaccharomyces pombe. FEMS Yeast Res. 2020;20(3):foaa014. https://doi.org/10.1093/femsyr/foaa014
  • [36] Abramovič H, Grobin B, Ulrih NP, Cigić B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. J Chem. 2018;2018:4608405. https://doi.org/10.1155/2018/4608405
  • [37] Wołosiak R, Drużyńska B, Derewiaka D, Piecyk M, Majewska E, Ciecierska M, Worobiej E, Pakosz P. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—a practical approach. Molecules. 2022;27(1):50. https://doi.org/10.3390/molecules27010050
  • [38] Rini AF, Yuhana M, Wahyudi AT. Potency of sponge-associated bacteria producing bioactive compounds as biological control of vibriosis on shrimp. J Akuakult Ind. 2017;16(1):41–50. https://doi.org/10.19027/jai.16.1.41-50
  • [39] Diale MO, Aswa EU, Serepa-Dlamini MH. The antibacterial activity of bacterial endophytes isolated from Combretum mole. Afr J Biotech. 2018;17(8):255-262. https://doi.org/10.5897/AJB2017.16349
  • [40] NCCLS (National Committee for Clinical Laboratory Standard). Performance Standard for Antimicrobial Susceptibility Testing. Ninth informational supplement. 30th ed. NCCLS, Malvern 2020.
  • [41] Harbourne JB. Phytochemical Methods: A Guide to Modern Techniques of Plants Analysis. Chapman and Hall, London 1983.
  • [42] Prastya ME, Astuti RI, Batubara I, Wahyudi AT. Antioxidant, antiglycation and in vivo antiaging effects of metabolite extracts from marine sponge-associated bacteria. Indian J Pharm Sci. 2019;81(2):344-353. https://doi.org/10.36468/pharmaceutical-sciences.516
Yıl 2023, Cilt: 27 Sayı: 6, 2511 - 2521, 28.06.2025

Öz

Kaynakça

  • [1] Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front Microbiol. 2016;7:1538. https://doi.org/10.3389/fmicb.2016.01538
  • [2] Jiao R, Cai Y, He P, Munir S, Li X, Wu Y, Wang J, Xia M, He P, Wang G, Yang H, Karunarathna SC, Xie Y, He Y. Bacillus amyloliquefaciens YN201732 produces lipopeptides with promising biocontrol activity against fungal pathogen Erysiphe cichoracearum. Front Cell Infect Microbiol. 2021;11:598999. https://doi.org/10.3389/fcimb.2021.598999
  • [3] Hazarika DJ, Goswami G, Gautom T, Parveen A, Das P, Barooah M, Boro RC. Lipopeptide mediated biocontrol activity of endophytic Bacillus subtilis against fungal phytopathogens. BMC Microbiol. 2019;19(1):71. https://doi.org/10.1186/s12866-019-1440-8
  • [4] Jasim B, Sreeakshmi S, Mathew J, Radhakrishnan EK. Identification of endophytic Bacillus mojavensis with highly specialized broad spectrum antibacterial activity. 3 Biotech. 2016;6(2):187. https://doi.org/10.1007/s13205-016-0508-5
  • [5] Nalli Y, Singh S, Gajjar A, Mahizhaveni B, Dusthackeer VNA, Shinde PB. Bacillibactin class siderophores produced by the endophyte Bacillus subtilis NPROOT3 as antimycobacterial agents. Lett Appl Microbiol. 2023;76(2):ovac026. https://doi.org/10.1093/lambio/ovac026
  • [6] Rasiya KT, Sebastian D. Iturin and surfactin from the endophyte Bacillus amyloliquefaciens strain RKEA3 exhibits antagonism against Staphylococcus aureus. Biocat Agric Biotech. 2021;36:102125. https://doi.org/10.1016/j.bcab.2021.102125
  • [7] Nisa S, Shoukat M, Bibi Y, Ayoubi SA, Shah W, Masood S, Sabir M, Bano SA, Qayyum A. Therapeutic prospects of endophytic Bacillus species from Berberis lycium against oxidative stress and microbial pathogens. Saudi J Biol Sci. 2022;29(1):287-295. https://doi.org/10.1016/j.sjbs.2021.08.099
  • [8] Bhoonobtong A, Sodngam S, Boonlue S, Bunyatratchata W, Mongkolthanarukk W. Antibiotics constituents of endophytic Bacillus amyloliquefaciens UD25 extracted from a medicinal plant, Memecylon edule Roxb. Chiang Mai J Sci. 2017;44(3):788-799.
  • [9] Gond SK, Bergen MS, Torres MS, Junior JFW. Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res. 2015;172:79-87. https://doi.org/10.1016/j.micres.2014.11.004
  • [10] Sorokan A, Cherepanova E, Burkhanova G, Veselova S, Rumyantsev S, Alekseev V, Mardanshin I, Sarvarova E, Khairullin R, Benkovskaya G, Maksimov I. Endophytic Bacillus spp. as a prospective biological tool for control of viral diseases and non-vector Leptinotarsa decemlineata Say. in Solanum tuberosum L. Front Microbiol. 2020;11:569457. https://doi.org/10.3389/fmicb.2020.569457
  • [11] Romero-Arguelles R, Romo-Sáenz CI, Morán-Santibáñez K, Tamez-Guerra P, Quintanilla-Licea R, Orozco-Flores AA, Ramírez-Villalobos JM, Tamez-Guerra R, Rodríguez-Padilla C, Gomez-Flores R. In vitro antitumor activity of endophytic and rhizosphere Gram-positive bacteria from Ibervillea sonorae (S. Watson) Greene against L5178Y-R lymphoma cells. Int J Environ Res Public Health. 2022;19(2):894. https://doi.org/10.3390/ijerph19020894
  • [12] Żymańczyk-Duda E, Szmigie-Merena B, Brzezińska-Rodak M, Klimek-Ochab M. Natural antioxidants–properties and possible applications. J Appl Biotechnol Bioeng. 2018;5(4):251-258. https://doi.org/10.15406/jabb.2018.05.00146
  • [13] Rani K. Role of antioxidants in prevention of diseases. J Appl Biotech Bioeng. 2017;4(1):495‒496. https://doi.org/10.15406/jabb.2017.04.00091
  • [14] Li D, Zhou B, Lv B. Antibacterial therapeutic agents composed of functional biological molecules. J Chem. 2021;2020:6578579. https://doi.org/10.1155/2020/6578579
  • [15] Kohanski MA, Tharakan A, Lane AP, Ramanathan MJ. Bactericidal antibiotics promote reactive oxygen species formation and inflammation in human sinonasal epithelial cells. Int Forum Allergy Rhinol. 2016;6(2):191-200. https://doi.org/10.1002/alr.21646
  • [16] Bunawan H, Dusik L, Bunawan SN, Amin NM. Botany, traditional uses, phytochemistry and pharmacology of Archidendron jiringa: a review. Global J Pharmacol. 2013;7(4):474-478. https://doi.org/10.5829/idosi.gjp.2013.7.4.824
  • [17] Priyanto JA, Prastya ME, Astuti RI, Kristiana R. The antibacterial and antibiofilm activities of the endophytic bacteria associated with Archidendron pauciflorum against multidrug-resistant strains. Appl Biochem Biotech. 2023;Published online. https://doi.org/10.1007/s12010-023-04382-4
  • [18] Molla MM, Kamal MM, Sabuz AA, Chowdhury MGF, Khan MHH, Khatun A, Miaruddin M, Zashimuddin M, Islam MM. Chemical composition, bioactive compounds, antioxidants potential and mycotoxin of minor exotic Archidendron pauciflorum fruit with the focus to Bangladesh. Biocat Agric Biotech. 2021;34:102039. https://doi.org/10.1016/j.bcab.2021.102039
  • [19] Breijyeh Z, Jubeh B, Karaman R. Resistance of Gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules. 2020;25(6):1340. https://doi.org/10.3390/molecules25061340
  • [20] Nasution HM, Yuniarti R, Rani Z, Nursyafira A. Phytochemical screening and antibacterial activity test of ethanol extract of jengkol leaves (Archidendron pauciflorum Benth.) IC Nielsen against Staphylococcus epidermidis and Propionibacterium acnes. Int J Sci Tech Manag. 2022;3(3):647-653. https://doi.org/10.46729/ijstm.v3i3.509
  • [21] Silva ACO, Santana EF, Saraiva AM, Coutinho FN, Castro RHA, Pisciottano MNC, Amorim ILC, Albuquerque UP. Which approach is more effective in the selection of plants with antimicrobial activity? Evid-Based Complement Alternat Med. 2013;2013:308980. https://doi.org/10.1155/2013/308980
  • [22] Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Cont. 2019;8:76. https://doi.org/10.1186/s13756-019-0533-3
  • [23] Roy R, Tiwari M, Donelli G, Tiwari V. Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence. 2018;9(1):522–554. https://doi.org/10.1080/21505594.2017.1313372
  • [24] Sihombing JR, Dharma A, Chaidir Z, Almahdy, Fachrial E, Munaf E. Phytochemical screening and antioxidant activities of 31 fruit peel extract from Sumatera, Indonesia. J Chem Pharm Res. 2015;7(11):190-196.
  • [25] Rathod ZR, Shah D, Shukla P, Meghani S, Patel C. Citrus limon as an abundant source of phytochemicals: their evaluation and antioxidant analysis with bacterial endophytes. Curr Trends Biomed Eng Biosci. 2022;20(4):556045. https://doi.org/10.19080/CTBEB.2022.20.556045
  • [26] Morare RF, Ubomba-Jaswa E, Serepa-Dlamini MH. Isolation and identification of bacterial endophytes from Crinum macowanii Baker. Afr J Biotech. 2018;17(33):1040-1047. https://doi.org/10.5897/AJB2017.16350
  • [27] Achika JI, Ayo RG, Oyewale AO, Habila JD. Flavonoids with antibacterial and antioxidant potentials from the stem bark of Uapaca heudelotti. Heliyon. 2020;6(2):e03381. https://doi.org/10.1016/J.HELIYON.2020.E03381
  • [28] Achika JI, Ayo RG, Habila JD, Oyewale AO. Terpenes with antimicrobial and antioxidant activities from Lannea humilis (Oliv.). Sci Afr. 2020;10:e00552. https://doi.org/10.1016/j.sciaf.2020.e00552
  • [29] Mabhiza D, Chitemerere T, Mukanganyama S. Antibacterial properties of alkaloid extracts from Callistemon citrinus and Vernonia adoensis against Staphylococcus aureus and Pseudomonas aeruginosa. Int J Med Chem. 2016;2016:6304163. https://doi.org/10.1155/2016/6304163
  • [30] Bac Dive. Escherichia coli Crooks is a mesophilic human pathogen that has multiple antibiotic resistances and was isolated from faeces. 2021. https://bacdive.dsmz.de/strain/4433. Accessed on 22 March 2023.
  • [31] Mbaveng AT, Sandjo LP, Tankeo SB, Ndifor AR, Pantaleon A, Nagdjui BT, Kuete V. Antibacterial activity of nineteen selected natural products against multi-drug resistant Gram-negative phenotypes. Springer Plus. 2015;4:823. https://doi.org/10.1186/s40064-015-1645-8
  • [32] Osman ME-S, El-Hendawy HH, Abd El-All SM, Hassan AM, Mahmoud DE. Correlation between resistance of Pseudomonas aeruginosa to benzalkonium chloride and expression of efflux pump genes. J Appl Pharm Sci. 2018;8(12):044–052. https://doi.org/10.7324/JAPS.2018.81206
  • [33] Speck S, Wenke C, Feßler AT, Kacza J, Geber F, Scholtzek AD, Hanke D, Eichhorn I, Schwarz S, Rosolowski M, Truyen U. Borderline resistance to oxacillin in Staphylococcus aureus after treatment with sub-lethal sodium hypochlorite concentrations. Heliyon. 2020;6(6):e04070. https://doi.org/10.1016/j.heliyon.2020.e04070
  • [34] Priyanto JA, Astuti RI, Nomura J, Wahyudi AT. Bioactive compounds from sponge-associated bacteria: anticancer activity and NRPS-PKS gene expression in different carbon sources. Am J Biochem Biotech. 2017;13(4):148-156. https://doi.org/10.3844/ajbbsp.2017.148.156
  • [35] Prastya ME, Astuti RI, Batubara I, Takagi H, Wahyudi AT. Natural extract and its fractions isolated from the marine bacterium Pseudoalteromonas flavipulchra STILL-33 have antioxidant and antiaging activities in Schizosaccharomyces pombe. FEMS Yeast Res. 2020;20(3):foaa014. https://doi.org/10.1093/femsyr/foaa014
  • [36] Abramovič H, Grobin B, Ulrih NP, Cigić B. Relevance and standardization of in vitro antioxidant assays: ABTS, DPPH, and Folin–Ciocalteu. J Chem. 2018;2018:4608405. https://doi.org/10.1155/2018/4608405
  • [37] Wołosiak R, Drużyńska B, Derewiaka D, Piecyk M, Majewska E, Ciecierska M, Worobiej E, Pakosz P. Verification of the conditions for determination of antioxidant activity by ABTS and DPPH assays—a practical approach. Molecules. 2022;27(1):50. https://doi.org/10.3390/molecules27010050
  • [38] Rini AF, Yuhana M, Wahyudi AT. Potency of sponge-associated bacteria producing bioactive compounds as biological control of vibriosis on shrimp. J Akuakult Ind. 2017;16(1):41–50. https://doi.org/10.19027/jai.16.1.41-50
  • [39] Diale MO, Aswa EU, Serepa-Dlamini MH. The antibacterial activity of bacterial endophytes isolated from Combretum mole. Afr J Biotech. 2018;17(8):255-262. https://doi.org/10.5897/AJB2017.16349
  • [40] NCCLS (National Committee for Clinical Laboratory Standard). Performance Standard for Antimicrobial Susceptibility Testing. Ninth informational supplement. 30th ed. NCCLS, Malvern 2020.
  • [41] Harbourne JB. Phytochemical Methods: A Guide to Modern Techniques of Plants Analysis. Chapman and Hall, London 1983.
  • [42] Prastya ME, Astuti RI, Batubara I, Wahyudi AT. Antioxidant, antiglycation and in vivo antiaging effects of metabolite extracts from marine sponge-associated bacteria. Indian J Pharm Sci. 2019;81(2):344-353. https://doi.org/10.36468/pharmaceutical-sciences.516
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Jepri Agung Priyanto 0000-0003-2227-5040

Muhammad Eka Prastya 0000-0003-2500-1264

Rika Indri Astuti 0000-0003-1561-6943

Minart Minart 0000-0002-0430-1906

Tjandrawati Mozef 0000-0002-3280-9918

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 6

Kaynak Göster

APA Priyanto, J. A., Prastya, M. E., Astuti, R. I., Minart, M., vd. (2025). Endophytic Bacillus spp. isolated from Archidendron pauciflorum: Pharmacological property and their phytochemical constituents. Journal of Research in Pharmacy, 27(6), 2511-2521.
AMA Priyanto JA, Prastya ME, Astuti RI, Minart M, Mozef T. Endophytic Bacillus spp. isolated from Archidendron pauciflorum: Pharmacological property and their phytochemical constituents. J. Res. Pharm. Temmuz 2025;27(6):2511-2521.
Chicago Priyanto, Jepri Agung, Muhammad Eka Prastya, Rika Indri Astuti, Minart Minart, ve Tjandrawati Mozef. “Endophytic Bacillus Spp. Isolated from Archidendron Pauciflorum: Pharmacological Property and Their Phytochemical Constituents”. Journal of Research in Pharmacy 27, sy. 6 (Temmuz 2025): 2511-21.
EndNote Priyanto JA, Prastya ME, Astuti RI, Minart M, Mozef T (01 Temmuz 2025) Endophytic Bacillus spp. isolated from Archidendron pauciflorum: Pharmacological property and their phytochemical constituents. Journal of Research in Pharmacy 27 6 2511–2521.
IEEE J. A. Priyanto, M. E. Prastya, R. I. Astuti, M. Minart, ve T. Mozef, “Endophytic Bacillus spp. isolated from Archidendron pauciflorum: Pharmacological property and their phytochemical constituents”, J. Res. Pharm., c. 27, sy. 6, ss. 2511–2521, 2025.
ISNAD Priyanto, Jepri Agung vd. “Endophytic Bacillus Spp. Isolated from Archidendron Pauciflorum: Pharmacological Property and Their Phytochemical Constituents”. Journal of Research in Pharmacy 27/6 (Temmuz 2025), 2511-2521.
JAMA Priyanto JA, Prastya ME, Astuti RI, Minart M, Mozef T. Endophytic Bacillus spp. isolated from Archidendron pauciflorum: Pharmacological property and their phytochemical constituents. J. Res. Pharm. 2025;27:2511–2521.
MLA Priyanto, Jepri Agung vd. “Endophytic Bacillus Spp. Isolated from Archidendron Pauciflorum: Pharmacological Property and Their Phytochemical Constituents”. Journal of Research in Pharmacy, c. 27, sy. 6, 2025, ss. 2511-2.
Vancouver Priyanto JA, Prastya ME, Astuti RI, Minart M, Mozef T. Endophytic Bacillus spp. isolated from Archidendron pauciflorum: Pharmacological property and their phytochemical constituents. J. Res. Pharm. 2025;27(6):2511-2.