Araştırma Makalesi
BibTex RIS Kaynak Göster

Evaluation of the impact of age-specific bile salt differences on the dissolution behavior of voriconazole using biorelevant media

Yıl 2023, Cilt: 27 Sayı: 6, 2535 - 2547, 28.06.2025

Öz

Voriconazole is a well-accepted and effective antifungal agent belonging to BCS class II. Voriconazole is a highly intriguing drug with considerably variable pharmacokinetics among adults and children primarily attributed to the drug-metabolizing enzymes. Additionally, bile salts enhance the absorption of lipophilic drugs in the GI fluids. Since voriconazole has limited solubility, age-related fluctuations in bile salts may affect the drug's pharmacokinetics. Therefore, the purpose of this study is to assess whether age-associated changes in the GI fluid composition and fluid volume may play a role in affecting the dissolution behavior of voriconazole. Based on that, the solubility and in-vitro dissolution studies of voriconazole were carried out in biorelevant media using 900 ml and 500 ml as GI volumes for adults and pediatrics respectively. Additionally, employing variations in the bile salt concentrations for the dissolution medium to act as a surrogate representing various age-specific cohorts. The results demonstrated that changes in GI volume had a negligible impact on the in-vitro dissolution profiles of voriconazole. However, as anticipated, there were some notable impacts of bile salt changes on the in-vitro dissolution profiles of voriconazole. Furthermore, it can be inferred that other factors, such as variations in the expression and maturation of enzymes, may have a comparatively profound impact on the disparate pharmacokinetics of voriconazole in adults and children besides bile salts alone. Since pharmacopoeial buffers are unable to mimic actual in-vivo conditions, leading to misinterpretation of the results. Therefore, in-vitro dissolution investigations carried out in biorelevant media are preferable.

Kaynakça

  • [1] Scott BL, Hornik CD, Zimmerman K. Pharmacokinetic, efficacy, and safety considerations for the use of antifungal drugs in the neonatal population. Expert Opin Drug Metab Toxicol. 2020; 16(7): 605-616. https://doi.org/10.1080/17425255.2020.1773793.
  • [2] Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol. 2016; 9(7): 961-979. https://doi.org/10.1586/17512433.2016.1172209.
  • [3] Kaur R, Kaur R, Singh C, Kaur S, Goyal AK, Singh KK, Singh B. Inhalational drug delivery in pulmonary Aspergillosis. Crit Rev Ther Drug Carrier Syst. 2019; 36(3): 183-217. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2018025781.
  • [4] Zhang Y, Zhao S, Wang C, Zhou P, Zhai S. Application of a physiologically based pharmacokinetic model to characterize time-dependent metabolism of voriconazole in children and support dose optimization. Front Pharmacol. 2021; 12: 636097. https://doi.org/10.3389/fphar.2021.636097.
  • [5] Zane NR, Thakker DR. A Physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet. 2014; 53(12): 1171-118. https://doi.org/10.1007/s40262-014-0181-y.
  • [6] Schulz J, Kluwe F, Mikus G, Michelet R, Kloft C. Novel insights into the complex pharmacokinetics of voriconazole: A review of its metabolism. Drug Metab Rev. 2019; 51(3): 247-265. https://doi.org/10.1080/03602532.2019.1632888.
  • [7] Kadam RS, Anker JVD. Pediatric clinical pharmacology of voriconazole: role of pharmacokinetic/pharmacodynamic modeling in pharmacotherapy. Clin Pharmacokinet. 2016; 55: 1031–1043. https://doi.org/10.1007/s40262-016-0379-2.
  • [8] Thakker AR, Thakker DR. Lower pediatric oral bioavailability of voriconazole is not due to lower intestinal bile salt concentration in children. AAPS Annual Meeting and Exposition, San Diego, CA, USA 2014.
  • [9] Gonçalves BP, Pett H, Tiono AB, Murry D, Sirima SB, Niemi M, Bousema T, Drakeley C, Heine RT. Age, weight, and CYP2D6 genotype are major determinants of primaquine pharmacokinetics in African children. Antimicrob Agents Chemother. 2017; 61(5): e02590-16. https://doi.org/10.1128/aac.02590-16.
  • [10] Anker JVD, Reed MD, Allegaert K, Kearns GL. Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2018; 58(10): S10-S25. https://doi.org/10.1002/jcph.1284.
  • [11] Zane NR, Chen Y, Wang MZ, Thakker DR. Cytochrome P450, and flavin-containing monooxygenase families: age-dependent differences in expression and functional activity. Pediatr Res. 2018: 83527–83535. https://doi.org/10.1038/pr.2017.226.
  • [12] Hohmann N, Kocheise F, Carls A, Burhenne J, Weiss J, Haefeli WE, Mikus G. Dose-dependent bioavailability and CYP3A inhibition contribute to non-linear pharmacokinetics of voriconazole. Clin Pharmacokinet. 2016; 55(12): 1535-1545. https://doi.org/10.1007/s40262-016-0416-1.
  • [13] Lin XB, Li ZW, Yan M, Zhang BK, Liang W, Wang F, Xu P, Xiang DX, Xie XB, Yu SJ, Lan GB, Peng FH. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br J Clin Pharmacol. 2018; 84(7): 1587-1597. https://doi.org/10.1111/bcp.13595.
  • [14] Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur J Pharm Biopharm. 2018; 129: 222-246. https://doi.org/10.1016/j.ejpb.2018.05.024.
  • [15] Faustino C, Serafim C, Rijo P, Reis CP. Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv. 2016; 13(8): 1133-1148. https://doi.org/10.1080/17425247.2016.1178233.
  • [16] Đanić M, Pavlović N, Stanimirov B, Vukmirović S, Nikolić K, Agbaba D, Mikov M. The influence of bile salts on the distribution of simvastatin in the octanol/buffer system. Drug Dev Ind Pharm. 2016; 42(4): 661-667. https://doi.org/10.3109/03639045.2015.1067626.
  • [17] Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes, and current tools for predictions. Biopharm Drug Dispos. 2017; 38(3): 209-230. https://doi.org/10.1002/bdd.2052.
  • [18] Dressman JB, Reppas C. Drugs, and The Pharmaceutical Sciences. In: Dressman JB. (Eds). Oral Drug Absorption: Prediction and Assessment, Second ed., Volume 193. CRC Press, Informa Health, New York, London, 2016.
  • [19] Reppas C. Rationale for using biorelevant media in dissolution testing. In: Advances and Applications in Dissolution Science. Disso-Europe, Bucharest, Romania, 2016.
  • [20] Mudie DM, Samiei N, Marshall DJ, Amidon GE, Bergström CAS. Selection of in vivo predictive dissolution media using drug substance and physiological properties. AAPS J. 2020; 22(2): 34. https://doi.org/10.1208/s12248-020-0417-8.
  • [21] Hastedt JE, Getz EB. Bioequivalence of Orally Inhaled Drug Products: Challenges and Opportunities. In: Pharmaceutical Inhalation Aerosol Technology, Hickey AJ, Rocha SRP. (Eds). CRC Press, third ed., Taylor & Francis, Boca Raton, 2019.
  • [22] Markopoulos C, Andreas CJ, Vertzoni M, Dressman J, Reppas C. In-vitro simulation of luminal conditions for evaluation of performance of oral drug products: Choosing the appropriate test media. Eur J Pharm Biopharm. 2015; 93: 173-182. https://doi.org/10.1016/j.ejpb.2015.03.009.
  • [23] Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption. Pharm Res. 1998; 15(1): 11-22. https://doi.org/10.1023/a:1011984216775.
  • [24] Zarmpia P, Flanagan T, Meehan E, Mann J, Fotaki N. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur J Pharm Biopharm. 2017; 111: 1-15. https://doi.org/10.1016/j.ejpb.2016.11.004.
  • [25] Grady H, Elder D, Webster GK, Mao Y, Lin Y, Flanagan T, Mann J, Blanchard A, Cohen MJ, Lin J, Kesisoglou F, Hermans A, Abend A, Zhang L, Curran D. Industry's view on using quality control, biorelevant, and clinically relevant dissolution tests for pharmaceutical development, registration, and commercialization. J Pharm Sci. 2018; 107(1): 34-41. https://doi.org/10.1016/j.xphs.2017.10.019.
  • [26] Jacob S, Nair AB. An updated overview with simple and practical approach for developing in vitro–in vivo correlation. Drug Dev Res. 2018; 79(3): 97-110. https://doi.org/10.1002/ddr.21427.
  • [27] Hate SS, Reutzel ESM, Taylor LS. Absorptive dissolution testing of supersaturating systems: Impact of absorptive sink conditions on solution phase behavior and mass transport. Mol Pharmaceutics. 2017; 14: 4052-4063. https://doi.org/10.1021/acs.molpharmaceut.7b00740.
  • [28] Rumondor ACF, Dhareshwar SS, Kesisoglou F. Amorphous solid dispersions or prodrugs: Complementary strategies to ıncrease drug absorption. J Pharm Sci. 2016; 105(9): 2498-2508. https://doi.org/10.1016/j.xphs.2015.11.004.
  • [29] Fagerberg JH, Bergstrom CAS. Intestinal solubility and absorption of poorly water soluble compounds: predictions, challenges and solutions. Ther Deliv. 2015; 6(8): 935–959. https://doi.org/10.4155/tde.15.45.
  • [30] Bermejo M, Sanchez-Dengra B, Gonzalez-Alvarez M, Gonzalez-Alvarez I. Oral controlled release dosage forms: dissolution versus diffusion. Expert Opin Drug Deliv. 2020; 17(6): 791-803. https://doi.org/10.1080/17425247.2020.1750593.
  • [31] Silva DA, Al-Gousous J, Davies NM, Chacra NB, Webster GK, Lipka E, Amidon G, Löbenberg R. Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: The hidden role of bicarbonate buffer. Eur J Pharm Biopharm. 2019; 142: 8-19. https://doi.org/10.1016/j.ejpb.2019.06.006.
  • [32] Maharaj AR, Edginton AN, Fotaki N. Assesment of age- related changes in pediatric gastrointestinal solubility. Pharm Res. 2016; 33: 52–71. https://doi.org/10.1007/s11095-015-1762-7.
  • [33] Zwart Ld, Snoeys J, Jong DJ, Sukbuntherng J, Mannaert E, Monshouwer M. Ibrutinib dosing strategies based on ınteraction potential of CYP3A4 perpetrators using physiologically based pharmacokinetic modeling. Clin Pharm Therap. 2016; 100(5): 548-557. https://doi.org/10.1002/cpt.419.
  • [34] Voriconazole tablets, Indian Pharmacopoeia, Vol-3, 2018, pp-3508-3509.
  • [35] Simon F, Gautier-Veyret E, Truffot A, Chenel M, Payen L, Stanke-Labesque F, Tod M. Modeling approach to predict the ımpact of ınflammation on the pharmacokinetics of CYP2C19 and CYP3A4 Substrates. Pharm Res. 2021; 38: 415-428. https://doi.org/10.1007/s11095-021-03019-7.
  • [36] Abeele JVD, Rayyan M, Hoffman I, Vijver EVd, Zhu W, Augustijns P. Gastric fluid composition in a paediatric population: Age-dependent changes relevant for gastrointestinal drug disposition. Eur J Pharm Sci. 2018; 123: 301-311. https://doi.org/10.1016/j.ejps.2018.07.022.
  • [37] Boyd BJ, Bergström CAS, Vinarov Z, Kuentz M, Brouwers J, Augustijns P, Brandl M, Schnürch AB, Shrestha N, Préat V, Müllertz A, Brandl AB, Jannin V. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019; 137: 104967. https://doi.org/10.1016/j.ejps.2019.104967.
  • [38] Stillhart C, Vučićević K, Augustijns P, Basit AW, Batchelor H, Flanagan TF, Gesquierec I, Greupink R, Keszthelyi D, Koskinen M, Madla CM, Matthys C, Miljuš G, Mooij MG, Parrott N, Ungell AL, de Wildt SN, Orlu M, Klein S, Müllertz A. Impact of gastrointestinal physiology on drug absorption in special populations––An UNGAP review. Eur J Pharm Sci. 2020; 147: 105280. https://doi.org/10.1016/j.ejps.2020.105280.
  • [39] Indian Pharmacopoeia (I.P), 2007, On behalf of the government of India ministry of health and family welfare, Indian Pharmacopoeia Commission Ghaziabad, ISBN 81-903436-0-3, pp-241-242.
  • [40] Rapalli VK, Kaul V, Gorantla S, Waghule T, Dubey SK, Pandey MM, Singhvi G. UV Spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in-vitro and ex-vivo applications in topical delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2020; 224: 117392. https://doi.org/10.1016/j.saa.2019.117392.
  • [41] Kambayashi A, Yasuji T, Dressman JB. Prediction of the precipitation profiles of weak base drugs in the small intestine using a simplified transfer (“dumping”) model coupled with in silico modeling and simulation approach. Eur J Pharm Biopharm. 2016; 103: 95-103. https://doi.org/10.1016/j.ejpb.2016.03.020.
  • [42] da Silva TV, de Barros NR, Costa-Orlandi CB, Tanaka JL, Moro LG, Pegorin GS, Oliveira KSM, Mendes-Gianinni MJS, Fusco-Almeida AM, Herculano RD. Voriconazole-natural latex dressings for treating infected Candida spp. skin ulcers. Future Microbiol. 2020; 15: 1439-1452. https://doi.org/10.2217/fmb-2020-0122.
  • [43] Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018; 30(29): 1705328. https://doi.org/10.1002/adma.201705328.
Yıl 2023, Cilt: 27 Sayı: 6, 2535 - 2547, 28.06.2025

Öz

Kaynakça

  • [1] Scott BL, Hornik CD, Zimmerman K. Pharmacokinetic, efficacy, and safety considerations for the use of antifungal drugs in the neonatal population. Expert Opin Drug Metab Toxicol. 2020; 16(7): 605-616. https://doi.org/10.1080/17425255.2020.1773793.
  • [2] Jager NGL, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol. 2016; 9(7): 961-979. https://doi.org/10.1586/17512433.2016.1172209.
  • [3] Kaur R, Kaur R, Singh C, Kaur S, Goyal AK, Singh KK, Singh B. Inhalational drug delivery in pulmonary Aspergillosis. Crit Rev Ther Drug Carrier Syst. 2019; 36(3): 183-217. https://doi.org/10.1615/CritRevTherDrugCarrierSyst.2018025781.
  • [4] Zhang Y, Zhao S, Wang C, Zhou P, Zhai S. Application of a physiologically based pharmacokinetic model to characterize time-dependent metabolism of voriconazole in children and support dose optimization. Front Pharmacol. 2021; 12: 636097. https://doi.org/10.3389/fphar.2021.636097.
  • [5] Zane NR, Thakker DR. A Physiologically based pharmacokinetic model for voriconazole disposition predicts intestinal first-pass metabolism in children. Clin Pharmacokinet. 2014; 53(12): 1171-118. https://doi.org/10.1007/s40262-014-0181-y.
  • [6] Schulz J, Kluwe F, Mikus G, Michelet R, Kloft C. Novel insights into the complex pharmacokinetics of voriconazole: A review of its metabolism. Drug Metab Rev. 2019; 51(3): 247-265. https://doi.org/10.1080/03602532.2019.1632888.
  • [7] Kadam RS, Anker JVD. Pediatric clinical pharmacology of voriconazole: role of pharmacokinetic/pharmacodynamic modeling in pharmacotherapy. Clin Pharmacokinet. 2016; 55: 1031–1043. https://doi.org/10.1007/s40262-016-0379-2.
  • [8] Thakker AR, Thakker DR. Lower pediatric oral bioavailability of voriconazole is not due to lower intestinal bile salt concentration in children. AAPS Annual Meeting and Exposition, San Diego, CA, USA 2014.
  • [9] Gonçalves BP, Pett H, Tiono AB, Murry D, Sirima SB, Niemi M, Bousema T, Drakeley C, Heine RT. Age, weight, and CYP2D6 genotype are major determinants of primaquine pharmacokinetics in African children. Antimicrob Agents Chemother. 2017; 61(5): e02590-16. https://doi.org/10.1128/aac.02590-16.
  • [10] Anker JVD, Reed MD, Allegaert K, Kearns GL. Developmental changes in pharmacokinetics and pharmacodynamics. J Clin Pharmacol. 2018; 58(10): S10-S25. https://doi.org/10.1002/jcph.1284.
  • [11] Zane NR, Chen Y, Wang MZ, Thakker DR. Cytochrome P450, and flavin-containing monooxygenase families: age-dependent differences in expression and functional activity. Pediatr Res. 2018: 83527–83535. https://doi.org/10.1038/pr.2017.226.
  • [12] Hohmann N, Kocheise F, Carls A, Burhenne J, Weiss J, Haefeli WE, Mikus G. Dose-dependent bioavailability and CYP3A inhibition contribute to non-linear pharmacokinetics of voriconazole. Clin Pharmacokinet. 2016; 55(12): 1535-1545. https://doi.org/10.1007/s40262-016-0416-1.
  • [13] Lin XB, Li ZW, Yan M, Zhang BK, Liang W, Wang F, Xu P, Xiang DX, Xie XB, Yu SJ, Lan GB, Peng FH. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br J Clin Pharmacol. 2018; 84(7): 1587-1597. https://doi.org/10.1111/bcp.13595.
  • [14] Kaur N, Narang A, Bansal AK. Use of biorelevant dissolution and PBPK modeling to predict oral drug absorption. Eur J Pharm Biopharm. 2018; 129: 222-246. https://doi.org/10.1016/j.ejpb.2018.05.024.
  • [15] Faustino C, Serafim C, Rijo P, Reis CP. Bile acids and bile acid derivatives: use in drug delivery systems and as therapeutic agents. Expert Opin Drug Deliv. 2016; 13(8): 1133-1148. https://doi.org/10.1080/17425247.2016.1178233.
  • [16] Đanić M, Pavlović N, Stanimirov B, Vukmirović S, Nikolić K, Agbaba D, Mikov M. The influence of bile salts on the distribution of simvastatin in the octanol/buffer system. Drug Dev Ind Pharm. 2016; 42(4): 661-667. https://doi.org/10.3109/03639045.2015.1067626.
  • [17] Nicolas JM, Bouzom F, Hugues C, Ungell AL. Oral drug absorption in pediatrics: the intestinal wall, its developmental changes, and current tools for predictions. Biopharm Drug Dispos. 2017; 38(3): 209-230. https://doi.org/10.1002/bdd.2052.
  • [18] Dressman JB, Reppas C. Drugs, and The Pharmaceutical Sciences. In: Dressman JB. (Eds). Oral Drug Absorption: Prediction and Assessment, Second ed., Volume 193. CRC Press, Informa Health, New York, London, 2016.
  • [19] Reppas C. Rationale for using biorelevant media in dissolution testing. In: Advances and Applications in Dissolution Science. Disso-Europe, Bucharest, Romania, 2016.
  • [20] Mudie DM, Samiei N, Marshall DJ, Amidon GE, Bergström CAS. Selection of in vivo predictive dissolution media using drug substance and physiological properties. AAPS J. 2020; 22(2): 34. https://doi.org/10.1208/s12248-020-0417-8.
  • [21] Hastedt JE, Getz EB. Bioequivalence of Orally Inhaled Drug Products: Challenges and Opportunities. In: Pharmaceutical Inhalation Aerosol Technology, Hickey AJ, Rocha SRP. (Eds). CRC Press, third ed., Taylor & Francis, Boca Raton, 2019.
  • [22] Markopoulos C, Andreas CJ, Vertzoni M, Dressman J, Reppas C. In-vitro simulation of luminal conditions for evaluation of performance of oral drug products: Choosing the appropriate test media. Eur J Pharm Biopharm. 2015; 93: 173-182. https://doi.org/10.1016/j.ejpb.2015.03.009.
  • [23] Dressman JB, Amidon GL, Reppas C, Shah VP. Dissolution testing as a prognostic tool for oral drug absorption. Pharm Res. 1998; 15(1): 11-22. https://doi.org/10.1023/a:1011984216775.
  • [24] Zarmpia P, Flanagan T, Meehan E, Mann J, Fotaki N. Biopharmaceutical aspects and implications of excipient variability in drug product performance. Eur J Pharm Biopharm. 2017; 111: 1-15. https://doi.org/10.1016/j.ejpb.2016.11.004.
  • [25] Grady H, Elder D, Webster GK, Mao Y, Lin Y, Flanagan T, Mann J, Blanchard A, Cohen MJ, Lin J, Kesisoglou F, Hermans A, Abend A, Zhang L, Curran D. Industry's view on using quality control, biorelevant, and clinically relevant dissolution tests for pharmaceutical development, registration, and commercialization. J Pharm Sci. 2018; 107(1): 34-41. https://doi.org/10.1016/j.xphs.2017.10.019.
  • [26] Jacob S, Nair AB. An updated overview with simple and practical approach for developing in vitro–in vivo correlation. Drug Dev Res. 2018; 79(3): 97-110. https://doi.org/10.1002/ddr.21427.
  • [27] Hate SS, Reutzel ESM, Taylor LS. Absorptive dissolution testing of supersaturating systems: Impact of absorptive sink conditions on solution phase behavior and mass transport. Mol Pharmaceutics. 2017; 14: 4052-4063. https://doi.org/10.1021/acs.molpharmaceut.7b00740.
  • [28] Rumondor ACF, Dhareshwar SS, Kesisoglou F. Amorphous solid dispersions or prodrugs: Complementary strategies to ıncrease drug absorption. J Pharm Sci. 2016; 105(9): 2498-2508. https://doi.org/10.1016/j.xphs.2015.11.004.
  • [29] Fagerberg JH, Bergstrom CAS. Intestinal solubility and absorption of poorly water soluble compounds: predictions, challenges and solutions. Ther Deliv. 2015; 6(8): 935–959. https://doi.org/10.4155/tde.15.45.
  • [30] Bermejo M, Sanchez-Dengra B, Gonzalez-Alvarez M, Gonzalez-Alvarez I. Oral controlled release dosage forms: dissolution versus diffusion. Expert Opin Drug Deliv. 2020; 17(6): 791-803. https://doi.org/10.1080/17425247.2020.1750593.
  • [31] Silva DA, Al-Gousous J, Davies NM, Chacra NB, Webster GK, Lipka E, Amidon G, Löbenberg R. Simulated, biorelevant, clinically relevant or physiologically relevant dissolution media: The hidden role of bicarbonate buffer. Eur J Pharm Biopharm. 2019; 142: 8-19. https://doi.org/10.1016/j.ejpb.2019.06.006.
  • [32] Maharaj AR, Edginton AN, Fotaki N. Assesment of age- related changes in pediatric gastrointestinal solubility. Pharm Res. 2016; 33: 52–71. https://doi.org/10.1007/s11095-015-1762-7.
  • [33] Zwart Ld, Snoeys J, Jong DJ, Sukbuntherng J, Mannaert E, Monshouwer M. Ibrutinib dosing strategies based on ınteraction potential of CYP3A4 perpetrators using physiologically based pharmacokinetic modeling. Clin Pharm Therap. 2016; 100(5): 548-557. https://doi.org/10.1002/cpt.419.
  • [34] Voriconazole tablets, Indian Pharmacopoeia, Vol-3, 2018, pp-3508-3509.
  • [35] Simon F, Gautier-Veyret E, Truffot A, Chenel M, Payen L, Stanke-Labesque F, Tod M. Modeling approach to predict the ımpact of ınflammation on the pharmacokinetics of CYP2C19 and CYP3A4 Substrates. Pharm Res. 2021; 38: 415-428. https://doi.org/10.1007/s11095-021-03019-7.
  • [36] Abeele JVD, Rayyan M, Hoffman I, Vijver EVd, Zhu W, Augustijns P. Gastric fluid composition in a paediatric population: Age-dependent changes relevant for gastrointestinal drug disposition. Eur J Pharm Sci. 2018; 123: 301-311. https://doi.org/10.1016/j.ejps.2018.07.022.
  • [37] Boyd BJ, Bergström CAS, Vinarov Z, Kuentz M, Brouwers J, Augustijns P, Brandl M, Schnürch AB, Shrestha N, Préat V, Müllertz A, Brandl AB, Jannin V. Successful oral delivery of poorly water-soluble drugs both depends on the intraluminal behavior of drugs and of appropriate advanced drug delivery systems. Eur J Pharm Sci. 2019; 137: 104967. https://doi.org/10.1016/j.ejps.2019.104967.
  • [38] Stillhart C, Vučićević K, Augustijns P, Basit AW, Batchelor H, Flanagan TF, Gesquierec I, Greupink R, Keszthelyi D, Koskinen M, Madla CM, Matthys C, Miljuš G, Mooij MG, Parrott N, Ungell AL, de Wildt SN, Orlu M, Klein S, Müllertz A. Impact of gastrointestinal physiology on drug absorption in special populations––An UNGAP review. Eur J Pharm Sci. 2020; 147: 105280. https://doi.org/10.1016/j.ejps.2020.105280.
  • [39] Indian Pharmacopoeia (I.P), 2007, On behalf of the government of India ministry of health and family welfare, Indian Pharmacopoeia Commission Ghaziabad, ISBN 81-903436-0-3, pp-241-242.
  • [40] Rapalli VK, Kaul V, Gorantla S, Waghule T, Dubey SK, Pandey MM, Singhvi G. UV Spectrophotometric method for characterization of curcumin loaded nanostructured lipid nanocarriers in simulated conditions: Method development, in-vitro and ex-vivo applications in topical delivery. Spectrochim Acta A Mol Biomol Spectrosc. 2020; 224: 117392. https://doi.org/10.1016/j.saa.2019.117392.
  • [41] Kambayashi A, Yasuji T, Dressman JB. Prediction of the precipitation profiles of weak base drugs in the small intestine using a simplified transfer (“dumping”) model coupled with in silico modeling and simulation approach. Eur J Pharm Biopharm. 2016; 103: 95-103. https://doi.org/10.1016/j.ejpb.2016.03.020.
  • [42] da Silva TV, de Barros NR, Costa-Orlandi CB, Tanaka JL, Moro LG, Pegorin GS, Oliveira KSM, Mendes-Gianinni MJS, Fusco-Almeida AM, Herculano RD. Voriconazole-natural latex dressings for treating infected Candida spp. skin ulcers. Future Microbiol. 2020; 15: 1439-1452. https://doi.org/10.2217/fmb-2020-0122.
  • [43] Fenton OS, Olafson KN, Pillai PS, Mitchell MJ, Langer R. Advances in biomaterials for drug delivery. Adv Mater. 2018; 30(29): 1705328. https://doi.org/10.1002/adma.201705328.
Toplam 43 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Priya Sharma 0000-0002-3548-9569

Ravneet Kaur Rana 0009-0000-8242-1164

Arti. R. Thakkar 0000-0001-5841-2233

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 6

Kaynak Göster

APA Sharma, P., Rana, R. K., & Thakkar, A. R. (2025). Evaluation of the impact of age-specific bile salt differences on the dissolution behavior of voriconazole using biorelevant media. Journal of Research in Pharmacy, 27(6), 2535-2547.
AMA Sharma P, Rana RK, Thakkar AR. Evaluation of the impact of age-specific bile salt differences on the dissolution behavior of voriconazole using biorelevant media. J. Res. Pharm. Temmuz 2025;27(6):2535-2547.
Chicago Sharma, Priya, Ravneet Kaur Rana, ve Arti. R. Thakkar. “Evaluation of the Impact of Age-Specific Bile Salt Differences on the Dissolution Behavior of Voriconazole Using Biorelevant Media”. Journal of Research in Pharmacy 27, sy. 6 (Temmuz 2025): 2535-47.
EndNote Sharma P, Rana RK, Thakkar AR (01 Temmuz 2025) Evaluation of the impact of age-specific bile salt differences on the dissolution behavior of voriconazole using biorelevant media. Journal of Research in Pharmacy 27 6 2535–2547.
IEEE P. Sharma, R. K. Rana, ve A. R. Thakkar, “Evaluation of the impact of age-specific bile salt differences on the dissolution behavior of voriconazole using biorelevant media”, J. Res. Pharm., c. 27, sy. 6, ss. 2535–2547, 2025.
ISNAD Sharma, Priya vd. “Evaluation of the Impact of Age-Specific Bile Salt Differences on the Dissolution Behavior of Voriconazole Using Biorelevant Media”. Journal of Research in Pharmacy 27/6 (Temmuz 2025), 2535-2547.
JAMA Sharma P, Rana RK, Thakkar AR. Evaluation of the impact of age-specific bile salt differences on the dissolution behavior of voriconazole using biorelevant media. J. Res. Pharm. 2025;27:2535–2547.
MLA Sharma, Priya vd. “Evaluation of the Impact of Age-Specific Bile Salt Differences on the Dissolution Behavior of Voriconazole Using Biorelevant Media”. Journal of Research in Pharmacy, c. 27, sy. 6, 2025, ss. 2535-47.
Vancouver Sharma P, Rana RK, Thakkar AR. Evaluation of the impact of age-specific bile salt differences on the dissolution behavior of voriconazole using biorelevant media. J. Res. Pharm. 2025;27(6):2535-47.