Derleme
BibTex RIS Kaynak Göster

COVID-19 vaccine-related pathologies: cardiac and neurological side effects and long-term COVID-19

Yıl 2023, Cilt: 27 Sayı: 6, 2559 - 2591, 28.06.2025

Öz

Soon after the commencement of the mass immunization programs, the safety of the COVID-19 vaccines became a top issue. An increase is noticed in the literature in complaints and complications among the public due to a variety of adverse reactions, ranging from the most minor ones like fever, local pain, and myalgias to several potentially serious cardiac and neurological complications like blood clotting, Bell's palsy, myocarditis, hypertensive crisis, pericarditis, and other serious cardiovascular events. Transverse myelitis, cerebral venous thrombosis, and acute inflammatory demyelinating polyneuropathy were only a few among many more conditions. Most of COVID-19 vaccines function through expressing spike protein. They accomplish this either by transfecting the cells with a spike mRNA or by infecting them with an adenovirus containing a spike gene. When spike is expressed, the immune system recognizes it as a foreign antigen and mounts an attack on the protein and consequently on SARS-CoV-2 in case of any contagion. However, the spike protein is the virus's primary mechanism for infection and is accountable for the majority of the complications that COVID 19 brought. When it exists or is produced in sufficient quantities in the body, it can mimic partially a COVID-19 pathological picture, including a cytokine storm, particularly following vaccinations of infected people. In order to know the long-term safety of any new COVID-19 vaccine as any new type of pharmaceutical product, clinical data should be continuously collected for long-term adverse reactions using the country's effective pharmacovigilance systems and questioning the vaccination effect during the diagnosis in hospitals.

Kaynakça

  • [1] Aileni M, Rohela GK, Jogam P, Soujanya S, Zhang B. Biotechnological perspectives to combat the COVID-19 pandemic: precise diagnostics and inevitable vaccine paradigms. Cells. 2022; 11: 1182. https://doi.org/10.3390/cells11071182
  • [2] Crommelynck S, Thill P. Pharmacovigilance for COVID-19 vaccines: A 1-year experience in France. Infect Dis Now. 2022; 52: 16–18. https://doi.org/10.1016/j.idnow.2022.09.018 [3] Bellavite P, Ferraresi A, Isidoro C. Immune response and molecular mechanisms of cardiovascular adverse effects of spike proteins from SARS-CoV-2 and mRNA vaccines. Biomed. 2023; 11: 451. https://doi.org/10.3390/biomedicines11020451
  • [4] Kircheis R. Coagulopathies after vaccination against SARS-CoV-2 may be derived from a combined effect of SARS-CoV-2 spike protein and adenovirus vector-triggered signaling pathways. Int J Mol Sci. 2021; 22: 10791. https://doi.org/10.3390/ijms221910791
  • [5] Lazebnik Y. Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget. 2021; 12: 2476–2488. https://doi.org/10.18632/oncotarget.28088
  • [6] Maruggi G,et al. A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models. Mol Ther 2022; 30: 1897–1912. https://doi.org/10.1016/j.ymthe.2022.01.001
  • [7] Brito-Dellan N, Tsoukalas N, Font C. Thrombosis, cancer, and COVID-19. Support Care Cancer. 2022; 30: 8491–8500. https://doi.org/10.1007/s00520-022-07098-z
  • [8] Bhargavan B, Kanmogne GD. SARS-CoV-2 spike proteins and cell–cell communication inhibits TFPI and induces thrombogenic factors in human lung microvascular endothelial cells and neutrophils: implications for COVID-19 coagulopathy pathogenesis. Int J Mol Sci 2022; 23: 10436. https://doi.org/10.3390/ijms231810436
  • [9] Bansal S, Perincheri S, Fleming T, Poulson C, Tiffany B, Bremner RM, Mohanakumar T. Cutting Edge: Circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer–BioNTech) vaccination prior to development of antibodies: a novel mechanism for immune activation by mRNA vaccines. J Immunol. 2021; 207: 2405–2410. https://doi.org/10.4049/jimmunol.2100637
  • [10] Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS‐CoV‐2 infection. J. Med. Virol. 2023; 95. https://doi.org/10.1002/jmv.28212
  • [11] Robles JP, Zamora M, Adan-Castro E, Siqueiros-Marquez L, Martinez de la Escalera G, Clapp C. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. J Biol Chem. 2022; 298: 101695. https://doi.org/10.1016/j.jbc.2022.101695
  • [12] Grobbelaar LM, Venter C, Vlok M, Ngoepe M, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep. 2021; 41. https://doi.org/10.1042/BSR20210611
  • [13] Ogata AF, Cheng CA, Desjardins M, Senussi Y, Sherman AC, Powell M, Novack L, Von S, Li X, Baden LR, Walt DR. Circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients. Clin Infect Dis. 2022; 74: 715–718. https://doi.org/10.1093/cid/ciab465
  • [14] Röltgen K, et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022; 185: 1025-1040.e14. https://doi.org/10.1016/j.cell.2022.01.018
  • [15] Fertig TE, Chitoiu L, Marta DS, Ionescu VS, Cismasiu VB, Radu E, Angheluta G, Dobre M, Serbanescu A, Hinescu ME, Gherghiceanu M. Vaccine mRNA can be detected in blood at 15 days post-vaccination. Biomedicines. 2022; 10: 1538. https://doi.org/10.3390/biomedicines10071538
  • [16] Castruita JAS, Schneider UV, Mollerup S, Leineweber TD, Weis N, Bukh J, Pedersen MS, Westh H. SARS-CoV-2 spike mRNA vaccine sequences circulate in blood up to 28 days after COVID-19 vaccination. APMIS. 2023; 131: 128–132. https://doi.org/10.1111/apm.13294
  • [17] Asandei A, Mereuta L, Schiopu, Park J, Seo CH, Park Y, Luchian T. Non-receptor-mediated lipid membrane permeabilization by the SARS-CoV-2 spike protein S1 subunit. ACS Appl Mater Interfaces. 2020; 12: 55649–55658. https://doi.org/10.1021/acsami.0c17044
  • [18] Yonker LM, Swank Z, Bartsch YC, Burns MD, Kane A, Boribong BP, Davis JP, Loiselle M, Novak T, Senussi Y, Cheng CA, Burgess E, Edlow AG, Chou J, Dionne A, Balaguru D, Lahoud-Rahme M, Arditi M, Julg B, Randolph AG, Alter G, Fasano A, Walt DR. Circulating spike protein detected in post–COVID-19 mRNA vaccine myocarditis. Circulation. 2023; 147: 867–876. https://doi.org/10.1161/CIRCULATIONAHA.122.061025
  • [19] Bayraktaroglu AV. Master Thesis. Comparison of exercise capacity, activity self-efficacy, cognitive function and fatigue levels in patients with COVID-19 infection followed in hospital and at home in the post-COVID period with non-infected individuals. Department of Cardiopulmonary Rehabilitation, Department of Heart and Respiratory Physiotherapy and Rehabilitation, Health Sciences Institute, Hacettepe University, Ankara 2023.
  • [20] Karlstad Ø, Hovi P, Husby A, Härkänen T, Selmer RM, Pihlström N, Hansen JV, Nohynek H, Gunnes N, Sundström A, Wohlfahrt J, Nieminen TA, Grünewald M, Gulseth HL, Hviid A, Ljung R. SARS-CoV-2 vaccination and myocarditis in a nordic cohort study of 23 million residents. JAMA Cardiol. 2022; 7: 600. https://doi.org/10.1001/jamacardio.2022.0583
  • [21] Aldén M, Olofsson Falla F, Yang D, Barghouth M, Luan C, Rasmussen M, De Marinis Y. Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr Issues Mol Biol. 2022; 44: 1115–1126. https://doi.org/10.3390/cimb44030073
  • [22] Kadali RAK, Janagama R, Peruru S, Malayala SV. Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. Int J Infect Dis. 2021; 106: 376–381. https://doi.org/10.1016/j.ijid.2021.04.047
  • [23] Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-based COVID-19 vaccines: An adaptable technology against the threat of new variants. Vaccines. 2021; 9: 1409. https://doi.org/10.3390/vaccines9121409
  • [24] Yang Y, Shi W, Abiona OM, Nazzari A, Olia AS, Ou L, Phung E, Stephens T, Tsybovsky Y, Verardi R, Wang S, Werner A, Yap C, Ambrozak D, Bylund T, Liu T, Nguyen R, Wang L, Zhang B, Zhou T, Chuang GY, Graham BS, Mascola JR, Corbett KS, Kwong PD. Newcastle disease virus-like particles displaying prefusion-stabilized SARS-CoV-2 spikes elicit potent neutralizing responses. Vaccines. 2021; 9: 73. https://doi.org/10.3390/vaccines9020073
  • [25] Kara A, Coskun A, Temel F, Özelci P, Topal S, Ates İ. Self-reported allergic adverse events following inactivated SARS-CoV-2 vaccine (TURKOVACTM) among general and high-risk population. Vaccines. 2023; 11: 437. https://doi.org/10.3390/vaccines11020437
  • [26] Ozdarendeli A, Sezer Z, Pavel STI, Inal A, Yetiskin H, Kaplan B, Uygut MA, Bayram A, Mazicioglu M, Unuvar GK, Yuce ZT, Aydin G, Aslan AF, Kaya RK, Koc RC, Ates I, Kara A. Safety and immunogenicity of an inactivated whole virion SARS-CoV-2 vaccine, TURKOVAC, in healthy adults: Interim results from randomised, double-blind, placebo-controlled phase 1 and 2 trials. Vaccine. 2023; 41: 380–390. https://doi.org/10.1016/j.vaccine.2022.10.093
  • [27] Khan MS, Shahid I, Anker SD, Solomon SD, Vardeny O, Michos ED, Fonarow GC, Butler J. Cardiovascular implications of COVID-19 versus influenza infection: A review. BMC Med. 2020; 8: 403. https://doi.org/10.1186/s12916-020-01816-2
  • [28] Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Türeci Ö, Tompkins KR, Lyke KE, Raabe V, Dormitzer PR, Jansen KU, Şahin U, Gruber WC. Safety and immunogenicity of two RNA-Based Covid-19 vaccine candidates. N. Engl. J. Med. 2020; 383. 2439–2450. https://doi.org/10.1056/NEJMoa2027906 [29] Omeish H, Najadat A, Al-Azzam S, Tarabin N, Abu Hameed A, Al-Gallab N, Abbas H, Rababah L, Rabadi M, Karasneh R, Aldeyab MA. Reported COVID-19 vaccines side effects among Jordanian population: A cross sectional study. Hum Vaccin Immunother. 2022; 18. https://doi.org/10.1080/21645515.2021.1981086
  • [30] Riad A, Pokorná A, Attia S, Klugarová J, Koščík M, Klugar M. Prevalence of COVID-19 vaccine side effects among healthcare workers in the Czech Republic. J Clin Med. 2021; 10: 1428. https://doi.org/10.3390/jcm10071428
  • [31] Yukselturk Simsek N, Acıksoz S, Yalcın Atar N. Determination of early side effects after covid-19 vaccinations. Acibadem Uni J Health Sci. 2023; 14. https://doi.org/10.31067/acusaglik.1109356 [32] Zare H, Rezapour H, Mahmoodzadeh S, Fereidouni M. Prevalence of COVID-19 vaccines (Sputnik V, AZD-1222, and Covaxin) side effects among healthcare workers in Birjand city, Iran. Int Immunopharmacol. 2021; 101: 108351. https://doi.org/10.1016/j.intimp.2021.108351
  • [33] Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC. Safety and efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020; 383: 2603–2615. https://doi.org/10.1056/NEJMoa2034577 [34] Oliver SE, Gargano JW, Marin M, Wallace M, Curran KG, Chamberland M, McClung N, Campos-Outcalt D, Morgan RL, Mbaeyi S, Romero JR, Talbot HK, Lee GM, Bell BP, Dooling K. The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 Vaccine - United States, December 2020. Morb Mortal Wkly Rep. 2020; 69: 1922–1924. https://doi.org/10.15585/mmwr.mm6950e2
  • [35] Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Wu SP, Wang BS, Wang Z, Wang L, Jia SY, Jiang HD, Wang L, Jiang T, Hu Y, Gou JB, Xu SB, Xu JJ, Wang XW, Wang W, Chen W. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; 395: 1845–1854. https://doi.org/10.1016/S0140-6736(20)31208-3
  • [36] Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020; 5: 1185–1191. https://doi.org/10.1038/s41564-020-00789-5
  • [37] Kounis N, Koniari I, Asimakopoulos S, Hung Hung MY, Saba L, Arumugham V, Darrell O R, Jiovannini M, Soufras G, Nugent K, Sestili P, Javed Javed S, Malone R. The passepartout of Covid-19, cytokine storm and kounis syndrome: pathophysiologic, clinical and therapeutic considerations. Authorea Prepr. 2020.
  • [38] Kömür FN. Covid-19’un işitme ve sağlık sağlığına etkisi, in: U. Gülaçtı (Ed.), Covid-19 ve Sağlık Araştırmaları – 6. Efe Akademi. 2022, pp. 31–40.
  • [39] Alzarea AI, Khan YH, Alatawi AD, Alanazi AS, Alzarea SI, Butt MH, Almalki ZS, Alahmari AK, Mallhi TH. Surveillance of post-vaccination side effects of COVID-19 vaccines among Saudi Population: A real-world estimation of safety profile. Vaccines. 2022; 10: 924. https://doi.org/10.3390/vaccines10060924
  • [40] Abu-Hammad O, Alduraidi H, Abu-Hammad S, Alnazzawi A, Babkair H, Abu-Hammad A, Nourwali I, Qasem F, Dar-Odeh N. Side effects reported by Jordanian healthcare workers who received COVID-19 vaccines. Vaccines. 2021; 9: 577. https://doi.org/10.3390/vaccines9060577
  • [41] Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Hatmal M, Alhaj-Qasem DM, Olaimat TM, Mohamud R. Side effects and perceptions following COVID-19 vaccination in Jordan: A randomized, cross-sectional study implementing machine learning for predicting severity of side effects. Vaccines. 2021; 9: 556. https://doi.org/10.3390/vaccines9060556 [42] Wolf ME, Luz B, Niehaus L, Bhogal P, Bäzner H, Henkes H. Thrombocytopenia and intracranial venous sinus thrombosis after “COVID-19 Vaccine AstraZeneca” exposure. J Clin Med. 2021; 10: 1599. https://doi.org/10.3390/jcm10081599
  • [43] Shrestha S, Khatri J, Shakya S, Danekhu K, Khatiwada AP, Sah R, Kc B, Paudyal V, Khanal S, Rodriguez-Morales AJ. Adverse events related to COVID-19 vaccines: the need to strengthen pharmacovigilance monitoring systems. Drugs Ther Perspect: For Rational Drug Selection and Use. 2021; 37: 376–382. https://doi.org/10.1007/s40267-021-00852-z [44] Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, Loran D, Hrncir D, Herring K, Platzer M, Adams N, Sanou A, Cooper LT. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the us military. JAMA Cardiol. 2021; 6: 1202. https://doi.org/10.1001/jamacardio.2021.2833
  • [45] Kornowski R, Witberg G. Acute myocarditis caused by COVID-19 disease and following COVID-19 vaccination. Open Heart. 2022; 9: e001957. https://doi.org/10.1136/openhrt-2021-001957
  • [46] Wallace M, Oliver S. COVID-19 mRNA vaccines in adolescents and young adults: Benefit-risk discussion, 2021. https://stacks.cdc.gov/view/cdc/108331 (accessed June 15, 2023).
  • [47] Centers for Disease Control and Prevention (U.S.), Interim pre-pandemic planning guidance : community strategy for pandemic influenza mitigation in the United States : early, targeted, layered use of nonpharmaceutical interventions, 2007. https://stacks.cdc.gov/view/cdc/11425 (accessed June 15, 2023).
  • [48] Nafilyan V, Bermingham C. Deaths following COVID-19 vaccination in young people during the coronavirus pandemic, England, Office for National Statistics, 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/articles/covid19vaccinationandmortalityinyoungpeopleduringthecoronaviruspandemic/latest (accessed June 17, 2023).
  • [49] Pillay J, Gaudet L, Wingert A, Bialy L, Mackie AS, Paterson DI, Hartling L. Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following covid-19 vaccination: living evidence syntheses and review. BMJ-Brit Med J. 2022: e069445. https://doi.org/10.1136/bmj-2021-069445
  • [50] Chatterjee A, Chakravarty A. Neurological Complications following COVID-19 vaccination. Curr Neurol Neurosci Rep. 2023; 23: 1–14. https://doi.org/10.1007/s11910-022-01247-x
  • [51] Swiss Policy Research, Vaccine, Wordpress, 2023. https://swprs.org/covid-vaccine-athlete-collapses-and-deaths/,wordpress.com (accessed March 21, 2023).
  • [52] Theuerkauf SA, Michels A, Riechert V, Maier TJ, Flory E, Cichutek K, Buchholz CJ. Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. IScience. 2021; 24: 102170. https://doi.org/10.1016/j.isci.2021.102170
  • [53] Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020; 11: 1620. https://doi.org/10.1038/s41467-020-15562-9
  • [54] Nguyen HT, Zhang S, Wang Q, Anang S, Wang J, Ding H, Kappes JC, Sodroski J. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J Virol. 2021; 95. https://doi.org/10.1128/JVI.02304-20
  • [55] Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais C, Porrot F, Guivel‐Benhassine F, Van der Werf S, Casartelli N, Mouquet H, Bruel T, Schwartz O. Syncytia formation by SARS‐CoV‐2‐infected cells. EMBO J. 2020; 39. https://doi.org/10.15252/embj.2020106267
  • [56] Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, Volpe MC, Colliva A, Zanconati F, Berlot G, Silvestri F, Zacchigna S, Giacca M. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine. 2020; 61: 103104. https://doi.org/10.1016/j.ebiom.2020.103104
  • [57] Bos R, Rutten L, van der Lubbe JEM, Bakkers MJG, Hardenberg G, Wegmann F, Zuijdgeest D, de Wilde AH, Koornneef A, Verwilligen A, van Manen D, Kwaks T, Vogels R, Dalebout TJ, Myeni SK, Kikkert M, Snijder EJ, Li Z, Barouch DH, Vellinga J, Langedijk JPM, Zahn RC, Custers J, Schuitemaker H. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. Npj Vaccines. 2020; 5: 91. https://doi.org/10.1038/s41541-020-00243-x
  • [58] Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, Al Nusair M, Hassany M, Jawad JS, Abdalla J, Hussein SE, Al Mazrouei SK, Al Karam M, Li X, Yang X, Wang W, Lai B, Chen W, Huang S, Wang Q, Yang T, Liu Y, Ma R, Hussain ZM, Khan T, Saifuddin Fasihuddin M, You W, Xie Z, Zhao Y, Jiang Z, Zhao G, Zhang Y, Mahmoud S, ElTantawy I, Xiao P, Koshy A, Zaher WA, Wang H, Duan K, Pan A, Yang X. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults. JAMA. 2021; 326: 35. https://doi.org/10.1001/jama.2021.8565
  • [59] Liu T, Dai J, Yang Z, Yu X, Xu Y, Shi X, Wei D, Tang Z, Xu G, Xu W, Liu Y, Shi C, Ni Q, Yang C, Zhang X, Wang X, Chen E, Qu J. Inactivated SARS-CoV-2 vaccine does not influence the profile of prothrombotic antibody nor increase the risk of thrombosis in a prospective Chinese cohort. Sci Bull. 2021; 66: 2312–2319. https://doi.org/10.1016/j.scib.2021.07.033
  • [60]Zhang J, Cao J, Ye Q. renal side effects of COVID-19 vaccination. Vaccines. 2022; 10: 1783. https://doi.org/10.3390/vaccines10111783
  • [61] Kelly JD, Leonard S, Hoggatt KJ, Boscardin WJ, Lum EN, Moss-Vazquez TA, Andino R, Wong JK, Byers A, Bravata DM, Tien PC, Keyhani S. Incidence of severe COVID-19 illness following vaccination and booster With BNT162b2, mRNA-1273, and Ad26.COV2.S vaccines. JAMA. 2022; 328: 1427. https://doi.org/10.1001/jama.2022.17985
  • [62]Kakovan M, Ghorbani Shirkouhi S, Zarei M, Andalib S. Stroke associated with COVID-19 vaccines., J Stroke Cerebrovasc Dis. 2022; 31: 106440. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106440
  • [63] De Michele M, Kahan J, Berto I, Schiavo OG, Iacobucci M, Toni D, Merkler AE. Cerebrovascular complications of COVID-19 and COVID-19 vaccination. Circ Res. 2022; 130: 1187–1203. https://doi.org/10.1161/CIRCRESAHA.122.319954
  • [64] Warkentin TE. High-dose intravenous immunoglobulin for the treatment and prevention of heparin-induced thrombocytopenia: a review. Expert Rev Hematol. 2019; 12: 685–698. https://doi.org/10.1080/17474086.2019.1636645 [65] Blauenfeldt RA, Kristensen SR, Ernstsen SL, Kristensen CCH, Simonsen CZ, Hvas A. Thrombocytopenia with acute ischemic stroke and bleeding in a patient newly vaccinated with an adenoviral vector‐based COVID‐19 vaccine. J Thromb Haemost. 2021; 19: 1771–1775. https://doi.org/10.1111/jth.15347
  • [66] Garnier M, Curado A, Billoir P, Barbay V, Demeyere M, Dacher JN. Imaging of Oxford/AstraZeneca® COVID-19 vaccine-induced immune thrombotic thrombocytopenia. Diagn Interv Imaging. 2021; 102: 649–650. https://doi.org/10.1016/j.diii.2021.04.005
  • [67] Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, Goldblatt D, Kotoucek P, Thomas W, Lester W. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021; 384: 2202–2211. https://doi.org/10.1056/NEJMoa2105385 [68] Almufty HB, Mohammed SA, Abdullah AM, Merza MA. Potential adverse effects of COVID19 vaccines among Iraqi population; a comparison between the three available vaccines in Iraq; a retrospective cross-sectional study. Diabetes Metab Syndr. 2021; 15: 102207. https://doi.org/10.1016/j.dsx.2021.102207
  • [69] Karron RA, Key NS, Sharfstein JM. Assessing a rare and serious adverse event following administration of the Ad26.COV2.S vaccine. JAMA. 2021; 325: 2445. https://doi.org/10.1001/jama.2021.7637
  • [70] Arnold C. Unraveling long COVID’s causes and impacts. Johns Hopkins University Bloomberg School of Public Health. 2023. https://medicalxpress.com/news/2023-03-unraveling-covid-impacts.html (accessed June 15, 2023).
  • [71] Mumtaz A, Sheikh AAE, Khan AM, Khalid SN, Khan J, Nasrullah A, Sagheer S, Sheikh AB. COVID-19 Vaccine and long COVID: A scoping review. Life. 2022; 12: 1066. https://doi.org/10.3390/life12071066 [72] Blumberg Y, Edelstein M, Abu Jabal K, Golan R, Tuvia N, Perets Y, Saad M, Levinas T, Saleem D, Israeli Z, Alaa AR, Elbaz Greener G, Amital A, Halabi M. Protective effects of BNT162b2 vaccination on aerobic capacity following mild to moderate SARS-CoV-2 infection: A cross-sectional study Israel. J Clin Med. 2022; 11: 4420. https://doi.org/10.3390/jcm11154420
  • [73] Arjun MC, Singh AK, D. Pal, K. Das, Alekhya G, Venkateshan M, Mishra B, Patro BK, Mohapatra PR, Subba SH. Characteristics and predictors of Long COVID among diagnosed cases of COVID-19. PLoS One. 2022; 17: e0278825. https://doi.org/10.1371/journal.pone.0278825
  • [74] Strain WD, Sherwood O, Banerjee A, Van der Togt V, Hishmeh L, Rossman J. The impact of COVID vaccination on symptoms of long COVID: An international survey of people with lived experience of long COVID. Vaccines. 2022; 10: 652. https://doi.org/10.3390/vaccines10050652
  • [75] Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med. 2022; 28:1461–1467. https://doi.org/10.1038/s41591-022-01840-0
  • [76] Allahyari F, Molaee H, Hosseini Nejad J. Covid-19 vaccines and neurological complications: A systematic review. Z Naturforsch C. 2023; 78: 1–8. https://doi.org/10.1515/znc-2022-0092
  • [77] Waheed S, Bayas A, Hindi F, Rizvi Z, Espinosa PS. Neurological complications of COVID-19: Guillain-Barre Syndrome following Pfizer COVID-19 vaccine. Cureus. 2021. https://doi.org/10.7759/cureus.13426
  • [78]Bonifacio GB, Patel D, Cook S, Purcaru E, Couzins M, Domjan J, Ryan S, Alareed A, Tuohy O, Slaght S, Furby J, Allen D, Katifi HA, Kinton L. Bilateral facial weakness with paraesthesia variant of Guillain-Barré syndrome following Vaxzevria COVID-19 vaccine. J Neurol Neurosurg Psychiatry. 2022; 93: 341–342. https://doi.org/10.1136/jnnp-2021-327027
  • [79] Peralta-Amaro AL, Tejada-Ruiz MI, Rivera-Alvarado KL, de J. Cobos-Quevedo O, Romero-Hernández P, Macías-Arroyo W, Avendaño-Ponce A, Hurtado-Díaz J, Vera-Lastra O, Lucas-Hernández A. Atypical kawasaki disease after COVID-19 vaccination: A new form of adverse event following immunization. Vaccines. 2022; 10: 126. https://doi.org/10.3390/vaccines10010126 [80] Román GC, Gracia F, Torres A, Palacios A, Gracia K, Harris D. Acute Transverse Myelitis (ATM):Clinical review of 43 patients with COVID-19-Associated ATM and 3 post-vaccination ATM serious adverse events with the ChAdOx1 nCoV-19 vaccine (AZD1222). Front Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.653786
  • [81] Zuhorn F, Graf T, Klingebiel R, Schäbitz W, Rogalewski A. Postvaccinal Encephalitis after ChAdOx1 nCov-19. Ann Neurol. 2021; 90: 506–511. https://doi.org/10.1002/ana.26182
  • [82] Prasad A, Hurlburt G, Podury S, Tandon M, Kingree S, Sriwastava S. A novel case of bifacial diplegia variant of Guillain-Barré Syndrome following Janssen COVID-19 vaccination. Neurol Int. 2021; 13: 404–409. https://doi.org/10.3390/neurolint13030040
  • [83] Mahajan S, Zhang F, Mahajan A, Zimnowodzki S. Parsonage Turner syndrome after COVID‐19 vaccination. Muscle & Nerve. 2021; 64. https://doi.org/10.1002/mus.27255 [84] Garg I, Shekhar R, Sheikh AB, Pal S. COVID-19 Vaccine in pregnant and lactating women: A review of existing evidence and practice guidelines. Infect Dis Rep. 2021; 13: 685–699. https://doi.org/10.3390/idr13030064
  • [85] Alfishawy M, Bitar Z, Elgazzar A, Elzoueiry M. Neuroleptic malignant syndrome following COVID-19 vaccination. Am J Emerg Med. 2021; 49: 408–409. https://doi.org/10.1016/j.ajem.2021.02.011
  • [86] Nagamine T. Neuroleptic malignant syndrome associated with COVID-19 vaccination. CJEM. 2022; 24: 349–350. https://doi.org/10.1007/s43678-021-00254-0
  • [87] Mirmosayyeb O, Ghaffary EM, Vaheb S, Pourkazemi R, Shaygannejad V. Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) following COVID-19 vaccines: A systematic review. Rev Neurol. 2023; 179: 265–281. https://doi.org/10.1016/j.neurol.2022.11.004
  • [88] Chen S, Fan XR, He S, Zhang JW, Li SJ. Watch out for neuromyelitis optica spectrum disorder after inactivated virus vaccination for COVID-19. Neurol Sci. 2021; 42: 3537–3539. https://doi.org/10.1007/s10072-021-05427-4
  • [89] Caliskan I, Bulus E, Afsar N, Altintas A. A case with new-onset neuromyelitis optica spectrum disorder following COVID-19 mRNA BNT162b2 vaccination. The Neurologist. 2022; 27: 147–150. https://doi.org/10.1097/NRL.0000000000000420
  • [90] Fujimori J, Miyazawa K, Nakashima I. Initial clinical manifestation of multiple sclerosis after immunization with the Pfizer-BioNTech COVID-19 vaccine. J Neuroimmunol. 2021; 361: 577755. https://doi.org/10.1016/j.jneuroim.2021.577755
  • [91] Nassar M, Chung H, Dhayaparan Y, Nyein A, Acevedo BJ, Chicos C, Zheng D, Barras M, Mohamed M, Alfishawy M, Nso N, Rizzo V, Kimball E. COVID-19 vaccine induced rhabdomyolysis: Case report with literature review. Diabetes Metab Syndr. 2021; 15: 102170. https://doi.org/10.1016/j.dsx.2021.06.007
  • [92] Kimura M, Niwa JI, Doyu M. Recurring weakness in rhabdomyolysis following Pfizer–BioNTech coronavirus disease 2019 mRNA vaccination. Vaccines. 2022; 10: 935. https://doi.org/10.3390/vaccines10060935
  • [93] Banamah TA, Bogari AA, Neyazi A, Kotbi E, Almaghraby H, Atwah F. Severe rhabdomyolysis complicated with acute kidney injury required renal replacement therapy after Pfizer COVID-19 vaccine. Cureus. 2022. https://doi.org/10.7759/cureus.25199
  • [94] Unger K, Ponte CD, Anderson D. A possible case of COVID-19 booster vaccine–associated rhabdomyolysis and acute kidney injury. J Pharm Techno.. 2022; 38: 247–250. https://doi.org/10.1177/87551225221093944
  • [95] Gelbenegger G, Cacioppo F, Firbas C, Jilma B. Rhabdomyolysis following Ad26.COV2.S COVID-19 vaccination. Vaccines. 2021; 9: 956. https://doi.org/10.3390/vaccines9090956
  • [96] Faissner S, Richter D, Ceylan U, Schneider-Gold C, Gold R. COVID-19 mRNA vaccine induced rhabdomyolysis and fasciitis. J Neurol. 2022; 269: 1774–1775. https://doi.org/10.1007/s00415-021-10768-3
  • [97] Tan A, Stepien KM, Narayana STK. Carnitine palmitoyltransferase II deficiency and post-COVID vaccination rhabdomyolysis. QJM. 2021; 114: 596–597. https://doi.org/10.1093/qjmed/hcab077
  • [98] Ajmera KM. Fatal case of rhabdomyolysis post-COVID-19 vaccine. Infect Drug Resist. 2021; 14: 3929–3935. https://doi.org/10.2147/IDR.S331362
  • [99] Klomjit N, Alexander MP, Fervenza FC, Zoghby Z, Garg A, Hogan MC, Nasr SH, Minshar MA, Zand L. COVID-19 vaccination and glomerulonephritis. Kidney Int Rep. 2021; 6: 2969–2978. https://doi.org/10.1016/j.ekir.2021.09.008
  • [100] Wu HHL, Kalra PA, Chinnadurai R. New-onset and relapsed kidney histopathology following COVID-19 vaccination: A systematic review. Vaccines. 2021; 9: 1252. https://doi.org/10.3390/vaccines9111252
  • [101] Schaubschlager T, Rajora N, Diep S, Kirtek T, Cai Q, Hendricks AR, Shastri S, Zhou XJ, Saxena R. De novo or recurrent glomerulonephritis and acute tubulointerstitial nephritis after COVID-19 vaccination: A report of six cases from a single center. Clin Nephrol. 2022; 97: 289–297. https://doi.org/10.5414/CN110794
  • [102] Cohen Tervaert JW, Martinez-Lavin M, Jara LJ, Halpert G, Watad A, Amital H, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) in 2023. Autoimmun Rev. 2023; 22: 103287. https://doi.org/10.1016/j.autrev.2023.103287
  • [103] Sprent J, King C. COVID-19 vaccine side effects: The positives about feeling bad. Sci Immunol. 2021; 6. https://doi.org/10.1126/sciimmunol.abj9256
  • [104] Almasri M, Bshesh K, Khan W, Mushannen M, Salameh MA, Shafiq A, Vattoth AL, Elkassas N, Zakaria D. Cancer patients and the COVID-19 vaccines: considerations and challenges. Cancers. 2022; 14: 5630. https://doi.org/10.3390/cancers14225630
  • [105] Polykretis P, Donzelli A, Lindsay JC, Wiseman D, Kyriakopoulos AM, Mörz M, Bellavite P, Fukushima M, Seneff S, McCullough PA. Autoimmune inflammatory reactions triggered by the covid-19 genetic vaccines in terminally differentiated tissues. Preprints Org. (2023). https://www.preprints.org/manuscript/202303.0140/v1 (accessed May 16, 2023).
  • [106] Zamfir MA, Moraru L, Dobrea C, Scheau AE, Iacob S, Moldovan C, Scheau C, Caruntu C, Caruntu A. Hematologic malignancies diagnosed in the context of the mRNA COVID-19 vaccination campaign: A report of two cases. Med. 2022; 58: 874. https://doi.org/10.3390/medicina58070874
  • [107] Sessa F, Salerno M, Esposito M, Di Nunno N, Zamboni P, Pomara C. Autopsy findings and causality relationship between death and COVID-19 vaccination: A systematic review. J Clin Med. 2021; 10: 5876. https://doi.org/10.3390/jcm10245876
  • [108] Chow KW, Pham NV, Ibrahim BM, Hong K, Saab S. Autoimmune hepatitis-like syndrome following COVID-19 vaccination: A systematic review of the literature. Dig Dis Sci. 2022; 67: 4574–4580. https://doi.org/10.1007/s10620-022-07504-w
  • [109] Boskabadi SJ, Ala S, Heydari F, Ebrahimi M, Jamnani AN. Acute pancreatitis following COVID-19 vaccine: A case report and brief literature review. Heliyon. 2023; 9: e12914. https://doi.org/10.1016/j.heliyon.2023.e12914
  • [110] Beatty AL, Peyser ND, Butcher XE, Cocohoba JM, Lin F, Olgin JE, Pletcher MJ, Marcus GM. Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA. 2021; 4: e2140364. https://doi.org/10.1001/jamanetworkopen.2021.40364
  • [111] Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E, Dimopoulos MA. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022; 28: 542–554. https://doi.org/10.1016/j.molmed.2022.04.007
  • [112] Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, Hernán MA, Lipsitch M, Kohane I, Netzer D, Reis BY, Balicer RD. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a nationwide setting. N. Engl J Med. 2021; 385: 1078–1090. https://doi.org/10.1056/NEJMoa2110475 [113] García-Grimshaw M, et al. Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: A nationwide descriptive study. Clin Immunol. 2021; 229: 108786. https://doi.org/10.1016/j.clim.2021.108786
  • [114] Klein NP, Lewis N, Goddard K, Fireman B, Zerbo O, Hanson KE, Donahue JG, Kharbanda EO, Naleway A, Nelson JC, Xu S, Yih WK, Glanz JM, Williams JTB, Hambidge SJ, Lewin BJ, Shimabukuro TT, DeStefano F, Weintraub ES. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA. 2021; 326: 1390. https://doi.org/10.1001/jama.2021.15072
  • [115] Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, Doshi P. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022; 40: 5798–5805. https://doi.org/10.1016/j.vaccine.2022.08.036
  • [116] Li X, Ostropolets A, Makadia R, Shaoibi A, Rao G, Sena AG, Martinez-Hernandez E, Delmestri A, Verhamme K, Rijnbeek PR, Duarte-Salles T, Suchard M, Ryan P, Hripcsak G, Prieto-Alhambra D. Characterizing the incidence of adverse events of special interest for COVID-19 vaccines across eight countries: a multinational network cohort study. MedRxiv : The Preprint Server for Health Sciences. 2021. https://doi.org/10.1101/2021.03.25.21254315
  • [117] Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, Edwards K, Soslow JH, Dendy JM, Schlaudecker E, Lang SM, Barnett ED, Ruberg FL, Smith MJ, Campbell MJ, Lopes RD, Sperling LS, Baumblatt JA, Thompson DL, Marquez PL, Strid P, Woo J, Pugsley R, Reagan-Steiner S, DeStefano F, Shimabukuro TT. Myocarditis cases reported after mRNA-Based COVID-19 vaccination in the us from december 2020 to August 2021. JAMA. 2022; 327: 331. https://doi.org/10.1001/jama.2021.24110
  • [118] Krug A, Stevenson J, Høeg TB. BNT162b2 vaccine‐associated myo/pericarditis in adolescents: A stratified risk‐benefit analysis. Eur J Clin Invest. 2022; 52. https://doi.org/10.1111/eci.13759
  • [119] Li X, Lai FTT, Chua GT, Kwan MYW, Lau YL, Ip P, Wong ICK. Myocarditis following COVID-19 BNT162b2 vaccination among adolescents in hong kong. JAMA Pediatr. 2022; 176: 612. https://doi.org/10.1001/jamapediatrics.2022.0101
  • [120] Hanna N, Heffes-Doon A, Lin X, Manzano De Mejia C, Botros B, Gurzenda E, Nayak A. Detection of messenger RNA COVID-19 vaccines in human breast milk. JAMA Pediat. 2022; 176: 1268. https://doi.org/10.1001/jamapediatrics.2022.3581
  • [121] Kostoff R, Briggs M, Porter A, Spandidos D, Tsatsakis A. COVID‑19 vaccine safety. Int J Mol Med. 2020. https://doi.org/10.3892/ijmm.2020.4733 [122] O’Brien EA, Ensbey KS, Day BW, Baldock PA, Barry G. Direct evidence for transport of RNA from the mouse brain to the germline and offspring. BMC Biol. 2020; 18: 45. https://doi.org/10.1186/s12915-020-00780-w
  • [123] Pittoggi C, Beraldi R, Sciamanna I, Barberi L, Giordano R, Magnano AR, Torosantucci L, Pescarmona E, Spadafora C. Generation of biologically active retro-genes upon interaction of mouse spermatozoa with exogenous DNA. Mol Reprod Dev. 2006; 73: 1239–1246. https://doi.org/10.1002/mrd.20550
  • [124] Parrington J, Coward K, Gadea J. Sperm and testis mediated DNA transfer as a means of gene therapy. Syst Biol Reprod Med. 2011; 57: 35–42. https://doi.org/10.3109/19396368.2010.514022
  • [125] Kyriakopoulos AM, Mccullough PA, Nigh G, Seneff S. Potential mechanisms for human genome integration of genetic code from SARS-CoV-2 mRNA vaccination. Authorea. 2022; 1–41.
  • [126] Chandramouly G, Zhao J, McDevitt S, Rusanov T, Hoang T, Borisonnik N, Treddinick T, Lopezcolorado FW, Kent T, Siddique LA, Mallon J, Huhn J, Shoda Z, Kashkina E, Brambati A, Stark JM, Chen XS, Pomerantz RT. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. Sci. Adv. 2021; 7. https://doi.org/10.1126/sciadv.abf1771
  • [127] Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020; 14: 12522–12537. https://doi.org/10.1021/acsnano.0c07197
  • [128] Hernández AF, Calina D, Poulas K, Docea AO, Tsatsakis AM. Safety of COVID-19 vaccines administered in the EU: Should we be concerned?. Toxicol Rep. 2021; 8: 871–879. https://doi.org/10.1016/j.toxrep.2021.04.003
  • [129] Polykretis P. Role of the antigen presentation process in the immunization mechanism of the genetic vaccines against COVID‐19 and the need for biodistribution evaluations. Scand J Immunol. 2022; 96. https://doi.org/10.1111/sji.13160
  • [130] Calina D, Sarkar C, Arsene AL, Salehi B, Docea AO, Mondal M, Islam MT, Zali A, Sharifi-Rad J. Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. Immunol Res. 2020; 68: 315–324. https://doi.org/10.1007/s12026-020-09154-4
  • [131] Mengesha B, Asenov AG, Hirsh-Raccah B, Amir O, Pappo O, Asleh R. Severe acute myocarditis after the third (Booster) dose of mRNA COVID-19 vaccination. Vaccines. 2022; 10: 575. https://doi.org/10.3390/vaccines10040575
  • [132] Guo Y, Meng J, Liu C, Chen G, Chi Y, Zheng S, Wang H. How to deal with vaccine breakthrough infection with SARS-CoV-2 variants. Front Public Health. 2022; 10. https://doi.org/10.3389/fpubh.2022.842303
  • [133] Seneff S, Kyriakopoulos AM, Nigh G, McCullough PA. A potential role of the spike protein in neurodegenerative diseases: A narrative review. Cureus. 2023. https://doi.org/10.7759/cureus.34872
  • [134] Mak W, Prempeh AA, Schmitt EM, Fong TG, Marcantonio ER, Inouye SK, Boockvar KS. Delirium after COVID‐19 vaccination in nursing home residents: A case series. J Am Geriatr Soc. 2022; 70: 1648–1651. https://doi.org/10.1111/jgs.17814
  • [135] Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral glycolysis in neurodegenerative diseases. Int J Mol Sci. 2020; 21: 8924. https://doi.org/10.3390/ijms21238924
  • [136] Dzobo KE, Hanford KML, Kroon J. Vascular metabolism as driver of atherosclerosis: Linking endothelial metabolism to inflammation. Immunometabolism. 2021; 3. https://doi.org/10.20900/immunometab20210020
  • [137] Shiratori R, Furuichi K, Yamaguchi M, Miyazaki N, Aoki H, Chibana H, Ito K, Aoki S. Glycolytic suppression dramatically changes the intracellular metabolic profile of multiple cancer cell lines in a mitochondrial metabolism-dependent manner. Sci Rep. 2019; 9: 18699. https://doi.org/10.1038/s41598-019-55296-3
  • [138] Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today. 2019; 28: 100766. https://doi.org/10.1016/j.nantod.2019.100766
  • [139] McCullough PA, Wynn C, Procter BC. Clinical rationale for SARS-CoV-2 base spike protein detoxification in post COVID-19 and vaccine injury syndromes. J. Am. Physicians Surg. 2023; 28: 90–94. https://doi.org/10.5281/zenodo.8286460
  • [140] Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol. Res. 2019; 147: 104353. https://doi.org/10.1016/j.phrs.2019.104353
  • [141] Tanikawa T, Kiba Y, Yu J, Hsu K, Chen S, Ishii A, Yokogawa T, Suzuki R, Inoue Y, Kitamura M. Degradative effect of nattokinase on spike protein of SARS-CoV-2. Molecules (Basel, Switzerland).2022; 27. https://doi.org/10.3390/molecules27175405
  • [142] Suzuki Y, Kondo K, Matsumoto Y, Zhao B-Q, Otsuguro K, Maeda T, Tsukamoto Y, Urano T, Umemura K. Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Life Sci. 2003; 73: 1289–1298. https://doi.org/10.1016/S0024-3205(03)00426-0
  • [143] Hsia C-H, Shen M-C, Lin J-S, Wen Y-K, Hwang K-L, Cham T-M, Yang N-C. Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects. Nutr Res. 2009; 29: 190–196. https://doi.org/10.1016/j.nutres.2009.01.009
  • [144] du Preez HN, Aldous C, Kruger HG, Johnson L. N-acetylcysteine and other sulfur-donors as a preventative and adjunct therapy for COVID-19. Adv. Pharmacol. Pharm. Sci. 2022; 1–21. https://doi.org/10.1155/2022/4555490
  • [145] Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 2020; 55: 2000607. https://doi.org/10.1183/13993003.00607-2020
  • [146] Milani GP, Dioni L, Favero C, Cantone L, Macchi C, Delbue S, Bonzini M, Montomoli E, Bollati V, Albetti B, Bandi C, Bellini T, Buscaglia M, Cantarella C, Carugno M, Casartelli S, D’Alessandro S, De Chiara F, Eberini I, Ferrari L, Ferraroni M, Galastri L, Galli C, Hoxha M, Iodice S, La Vecchia C, Manenti A, Manini I, Marchi S, Mariani J, Pariani E, Pesatori AC, Rota F, Ruscica M, Schioppo T, Tarantini L, Trombetta CM, Vicenzi M, Zanchetta G. Serological follow-up of SARS-CoV-2 asymptomatic subjects. Sci. Rep. 2020; 10: 20048. https://doi.org/10.1038/s41598-020-77125-8
  • [147] Bourgonje AR, Offringa AK, van Eijk LE, Abdulle AE, Hillebrands J-L, van der Voort PHJ, van Goor H, van Hezik EJ. N-acetylcysteine and hydrogen sulfide in coronavirus disease 2019. Antioxid. Redox Signal. 2021; 35: 207–1225. https://doi.org/10.1089/ars.2020.8247
  • [148] Paterson RW,et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020; 143: 3104–3120. https://doi.org/10.1093/brain/awaa240
  • [149] du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID‐19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. The FASEB J. 2022; 36. https://doi.org/10.1096/fj.202101100RR
  • [150] Targosz-Korecka M, Kubisiak A, Kloska D, Kopacz A, Grochot-Przeczek A, Szymonski M. Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors. Sci. Rep. 2021; 11: 12157. https://doi.org/10.1038/s41598-021-91231-1
  • [151] Buijsers B, Yanginlar C, Maciej-Hulme ML, de Mast Q, van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine. 2020; 59: 102969. https://doi.org/10.1016/j.ebiom.2020.102969 [152] Renieris G, Katrini K, Damoulari C, Akinosoglou K, Psarrakis C, Kyriakopoulou M, Dimopoulos G, Lada M, Koufargyris P, Giamarellos-Bourboulis EJ. Serum hydrogen sulfide and outcome association in pneumonia by the SARS-CoV-2 coronavirus. Shock. 2020; 54: 633–637. https://doi.org/10.1097/SHK.0000000000001562
  • [153] Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A redox disease—What a stress pandemic can teach us about resilience and what we may learn from the reactive species interactome about its treatment. Antioxid Redox Signal. 2021; 35: 1226–1268. https://doi.org/10.1089/ars.2021.0017
  • [154] Citi V, Martelli A, Brancaleone V, Brogi S, Gojon G, Montanaro R, Morales G, Testai L, Calderone V. Anti‐inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H2S donors in COVID‐19 therapy. Br. J. Pharmacol. 2020; 177: 4931–4941. https://doi.org/10.1111/bph.15230
  • [155] Lin Y, Zeng H, Gao L, Gu T, Wang C, Zhang H. Hydrogen Sulfide attenuates atherosclerosis in a partially ligated carotid artery mouse model via regulating angiotensin converting enzyme 2 expression. Front. Physiol. 2017; 8. https://doi.org/10.3389/fphys.2017.00782
  • [156] Kimura H, Shibuya N, Kimura Y. Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal. 2012; 17: 45–57. https://doi.org/10.1089/ars.2011.4345
  • [157] Rumbeiha W, Whitley E, Anantharam P, Kim D-S, Kanthasamy A. Acute hydrogen sulfide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research. Ann. N. Y. Acad. Sci. 2016; 1378: 5–16. https://doi.org/10.1111/nyas.13148
  • [158] Amirshahrokhi K, Bohlooli S. Effect of Methylsulfonylmethane on paraquat-induced acute lung and liver injury in mice. Inflammation. 2013; 36: 1111–1121. https://doi.org/10.1007/s10753-013-9645-8 [159] Petousis-Harris H. Assessing the safety of COVID-19 vaccines: A primer. Drug Safety. 2020; 43: 1205–1210. https://doi.org/10.1007/s40264-020-01002-6
  • [160] Aras ÖS, Kuscu F. Efficacy of COVID-19 vaccines and vaccination applications in children and adolescents, pregnant and postpartum women, and older adults. Çukurova Med Student J. 2022; 1: 33–42.
  • [161] Morales AC, Rice AM, Ho AT, Mordstein C, Mühlhausen S, Watson S, Cano L, Young B, Kudla G, Hurst LD. Causes and consequences of purifying selection on SARS-CoV-2. Genome Biol Evol. 2021; 13. https://doi.org/10.1093/gbe/evab196
  • [162] Schwab C, Domke LM, Hartmann L, Stenzinger A, Longerich T, Schirmacher P. Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol. 2023; 112: 431–440. https://doi.org/10.1007/s00392-022-02129-5
  • [163] Spitzer A, et al. Association of a third dose of BNT162b2 vaccine with incidence of SARS-CoV-2 infection among health care workers in Israel. JAMA. 2022; 327: 341. https://doi.org/10.1001/jama.2021.23641
Yıl 2023, Cilt: 27 Sayı: 6, 2559 - 2591, 28.06.2025

Öz

Kaynakça

  • [1] Aileni M, Rohela GK, Jogam P, Soujanya S, Zhang B. Biotechnological perspectives to combat the COVID-19 pandemic: precise diagnostics and inevitable vaccine paradigms. Cells. 2022; 11: 1182. https://doi.org/10.3390/cells11071182
  • [2] Crommelynck S, Thill P. Pharmacovigilance for COVID-19 vaccines: A 1-year experience in France. Infect Dis Now. 2022; 52: 16–18. https://doi.org/10.1016/j.idnow.2022.09.018 [3] Bellavite P, Ferraresi A, Isidoro C. Immune response and molecular mechanisms of cardiovascular adverse effects of spike proteins from SARS-CoV-2 and mRNA vaccines. Biomed. 2023; 11: 451. https://doi.org/10.3390/biomedicines11020451
  • [4] Kircheis R. Coagulopathies after vaccination against SARS-CoV-2 may be derived from a combined effect of SARS-CoV-2 spike protein and adenovirus vector-triggered signaling pathways. Int J Mol Sci. 2021; 22: 10791. https://doi.org/10.3390/ijms221910791
  • [5] Lazebnik Y. Cell fusion as a link between the SARS-CoV-2 spike protein, COVID-19 complications, and vaccine side effects. Oncotarget. 2021; 12: 2476–2488. https://doi.org/10.18632/oncotarget.28088
  • [6] Maruggi G,et al. A self-amplifying mRNA SARS-CoV-2 vaccine candidate induces safe and robust protective immunity in preclinical models. Mol Ther 2022; 30: 1897–1912. https://doi.org/10.1016/j.ymthe.2022.01.001
  • [7] Brito-Dellan N, Tsoukalas N, Font C. Thrombosis, cancer, and COVID-19. Support Care Cancer. 2022; 30: 8491–8500. https://doi.org/10.1007/s00520-022-07098-z
  • [8] Bhargavan B, Kanmogne GD. SARS-CoV-2 spike proteins and cell–cell communication inhibits TFPI and induces thrombogenic factors in human lung microvascular endothelial cells and neutrophils: implications for COVID-19 coagulopathy pathogenesis. Int J Mol Sci 2022; 23: 10436. https://doi.org/10.3390/ijms231810436
  • [9] Bansal S, Perincheri S, Fleming T, Poulson C, Tiffany B, Bremner RM, Mohanakumar T. Cutting Edge: Circulating exosomes with COVID spike protein are induced by BNT162b2 (Pfizer–BioNTech) vaccination prior to development of antibodies: a novel mechanism for immune activation by mRNA vaccines. J Immunol. 2021; 207: 2405–2410. https://doi.org/10.4049/jimmunol.2100637
  • [10] Li X, Yuan H, Li X, Wang H. Spike protein mediated membrane fusion during SARS‐CoV‐2 infection. J. Med. Virol. 2023; 95. https://doi.org/10.1002/jmv.28212
  • [11] Robles JP, Zamora M, Adan-Castro E, Siqueiros-Marquez L, Martinez de la Escalera G, Clapp C. The spike protein of SARS-CoV-2 induces endothelial inflammation through integrin α5β1 and NF-κB signaling. J Biol Chem. 2022; 298: 101695. https://doi.org/10.1016/j.jbc.2022.101695
  • [12] Grobbelaar LM, Venter C, Vlok M, Ngoepe M, Laubscher GJ, Lourens PJ, Steenkamp J, Kell DB, Pretorius E. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep. 2021; 41. https://doi.org/10.1042/BSR20210611
  • [13] Ogata AF, Cheng CA, Desjardins M, Senussi Y, Sherman AC, Powell M, Novack L, Von S, Li X, Baden LR, Walt DR. Circulating severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine antigen detected in the plasma of mRNA-1273 vaccine recipients. Clin Infect Dis. 2022; 74: 715–718. https://doi.org/10.1093/cid/ciab465
  • [14] Röltgen K, et al. Immune imprinting, breadth of variant recognition, and germinal center response in human SARS-CoV-2 infection and vaccination. Cell. 2022; 185: 1025-1040.e14. https://doi.org/10.1016/j.cell.2022.01.018
  • [15] Fertig TE, Chitoiu L, Marta DS, Ionescu VS, Cismasiu VB, Radu E, Angheluta G, Dobre M, Serbanescu A, Hinescu ME, Gherghiceanu M. Vaccine mRNA can be detected in blood at 15 days post-vaccination. Biomedicines. 2022; 10: 1538. https://doi.org/10.3390/biomedicines10071538
  • [16] Castruita JAS, Schneider UV, Mollerup S, Leineweber TD, Weis N, Bukh J, Pedersen MS, Westh H. SARS-CoV-2 spike mRNA vaccine sequences circulate in blood up to 28 days after COVID-19 vaccination. APMIS. 2023; 131: 128–132. https://doi.org/10.1111/apm.13294
  • [17] Asandei A, Mereuta L, Schiopu, Park J, Seo CH, Park Y, Luchian T. Non-receptor-mediated lipid membrane permeabilization by the SARS-CoV-2 spike protein S1 subunit. ACS Appl Mater Interfaces. 2020; 12: 55649–55658. https://doi.org/10.1021/acsami.0c17044
  • [18] Yonker LM, Swank Z, Bartsch YC, Burns MD, Kane A, Boribong BP, Davis JP, Loiselle M, Novak T, Senussi Y, Cheng CA, Burgess E, Edlow AG, Chou J, Dionne A, Balaguru D, Lahoud-Rahme M, Arditi M, Julg B, Randolph AG, Alter G, Fasano A, Walt DR. Circulating spike protein detected in post–COVID-19 mRNA vaccine myocarditis. Circulation. 2023; 147: 867–876. https://doi.org/10.1161/CIRCULATIONAHA.122.061025
  • [19] Bayraktaroglu AV. Master Thesis. Comparison of exercise capacity, activity self-efficacy, cognitive function and fatigue levels in patients with COVID-19 infection followed in hospital and at home in the post-COVID period with non-infected individuals. Department of Cardiopulmonary Rehabilitation, Department of Heart and Respiratory Physiotherapy and Rehabilitation, Health Sciences Institute, Hacettepe University, Ankara 2023.
  • [20] Karlstad Ø, Hovi P, Husby A, Härkänen T, Selmer RM, Pihlström N, Hansen JV, Nohynek H, Gunnes N, Sundström A, Wohlfahrt J, Nieminen TA, Grünewald M, Gulseth HL, Hviid A, Ljung R. SARS-CoV-2 vaccination and myocarditis in a nordic cohort study of 23 million residents. JAMA Cardiol. 2022; 7: 600. https://doi.org/10.1001/jamacardio.2022.0583
  • [21] Aldén M, Olofsson Falla F, Yang D, Barghouth M, Luan C, Rasmussen M, De Marinis Y. Intracellular reverse transcription of Pfizer BioNTech COVID-19 mRNA vaccine BNT162b2 in vitro in human liver cell line. Curr Issues Mol Biol. 2022; 44: 1115–1126. https://doi.org/10.3390/cimb44030073
  • [22] Kadali RAK, Janagama R, Peruru S, Malayala SV. Side effects of BNT162b2 mRNA COVID-19 vaccine: A randomized, cross-sectional study with detailed self-reported symptoms from healthcare workers. Int J Infect Dis. 2021; 106: 376–381. https://doi.org/10.1016/j.ijid.2021.04.047
  • [23] Prates-Syed WA, Chaves LCS, Crema KP, Vuitika L, Lira A, Côrtes N, Kersten V, Guimarães FEG, Sadraeian M, Barroso da Silva FL, Cabral-Marques O, Barbuto JAM, Russo M, Câmara NOS, Cabral-Miranda G. VLP-based COVID-19 vaccines: An adaptable technology against the threat of new variants. Vaccines. 2021; 9: 1409. https://doi.org/10.3390/vaccines9121409
  • [24] Yang Y, Shi W, Abiona OM, Nazzari A, Olia AS, Ou L, Phung E, Stephens T, Tsybovsky Y, Verardi R, Wang S, Werner A, Yap C, Ambrozak D, Bylund T, Liu T, Nguyen R, Wang L, Zhang B, Zhou T, Chuang GY, Graham BS, Mascola JR, Corbett KS, Kwong PD. Newcastle disease virus-like particles displaying prefusion-stabilized SARS-CoV-2 spikes elicit potent neutralizing responses. Vaccines. 2021; 9: 73. https://doi.org/10.3390/vaccines9020073
  • [25] Kara A, Coskun A, Temel F, Özelci P, Topal S, Ates İ. Self-reported allergic adverse events following inactivated SARS-CoV-2 vaccine (TURKOVACTM) among general and high-risk population. Vaccines. 2023; 11: 437. https://doi.org/10.3390/vaccines11020437
  • [26] Ozdarendeli A, Sezer Z, Pavel STI, Inal A, Yetiskin H, Kaplan B, Uygut MA, Bayram A, Mazicioglu M, Unuvar GK, Yuce ZT, Aydin G, Aslan AF, Kaya RK, Koc RC, Ates I, Kara A. Safety and immunogenicity of an inactivated whole virion SARS-CoV-2 vaccine, TURKOVAC, in healthy adults: Interim results from randomised, double-blind, placebo-controlled phase 1 and 2 trials. Vaccine. 2023; 41: 380–390. https://doi.org/10.1016/j.vaccine.2022.10.093
  • [27] Khan MS, Shahid I, Anker SD, Solomon SD, Vardeny O, Michos ED, Fonarow GC, Butler J. Cardiovascular implications of COVID-19 versus influenza infection: A review. BMC Med. 2020; 8: 403. https://doi.org/10.1186/s12916-020-01816-2
  • [28] Walsh EE, Frenck RW, Falsey AR, Kitchin N, Absalon J, Gurtman A, Lockhart S, Neuzil K, Mulligan MJ, Bailey R, Swanson KA, Li P, Koury K, Kalina W, Cooper D, Fontes-Garfias C, Shi PY, Türeci Ö, Tompkins KR, Lyke KE, Raabe V, Dormitzer PR, Jansen KU, Şahin U, Gruber WC. Safety and immunogenicity of two RNA-Based Covid-19 vaccine candidates. N. Engl. J. Med. 2020; 383. 2439–2450. https://doi.org/10.1056/NEJMoa2027906 [29] Omeish H, Najadat A, Al-Azzam S, Tarabin N, Abu Hameed A, Al-Gallab N, Abbas H, Rababah L, Rabadi M, Karasneh R, Aldeyab MA. Reported COVID-19 vaccines side effects among Jordanian population: A cross sectional study. Hum Vaccin Immunother. 2022; 18. https://doi.org/10.1080/21645515.2021.1981086
  • [30] Riad A, Pokorná A, Attia S, Klugarová J, Koščík M, Klugar M. Prevalence of COVID-19 vaccine side effects among healthcare workers in the Czech Republic. J Clin Med. 2021; 10: 1428. https://doi.org/10.3390/jcm10071428
  • [31] Yukselturk Simsek N, Acıksoz S, Yalcın Atar N. Determination of early side effects after covid-19 vaccinations. Acibadem Uni J Health Sci. 2023; 14. https://doi.org/10.31067/acusaglik.1109356 [32] Zare H, Rezapour H, Mahmoodzadeh S, Fereidouni M. Prevalence of COVID-19 vaccines (Sputnik V, AZD-1222, and Covaxin) side effects among healthcare workers in Birjand city, Iran. Int Immunopharmacol. 2021; 101: 108351. https://doi.org/10.1016/j.intimp.2021.108351
  • [33] Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Pérez Marc G, Moreira ED, Zerbini C, Bailey R, Swanson KA, Roychoudhury S, Koury K, Li P, Kalina WV, Cooper D, Frenck RW, Hammitt LL, Türeci Ö, Nell H, Schaefer A, Ünal S, Tresnan DB, Mather S, Dormitzer PR, Şahin U, Jansen KU, Gruber WC. Safety and efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med. 2020; 383: 2603–2615. https://doi.org/10.1056/NEJMoa2034577 [34] Oliver SE, Gargano JW, Marin M, Wallace M, Curran KG, Chamberland M, McClung N, Campos-Outcalt D, Morgan RL, Mbaeyi S, Romero JR, Talbot HK, Lee GM, Bell BP, Dooling K. The advisory committee on immunization practices’ interim recommendation for use of Pfizer-BioNTech COVID-19 Vaccine - United States, December 2020. Morb Mortal Wkly Rep. 2020; 69: 1922–1924. https://doi.org/10.15585/mmwr.mm6950e2
  • [35] Zhu FC, Li YH, Guan XH, Hou LH, Wang WJ, Li JX, Wu SP, Wang BS, Wang Z, Wang L, Jia SY, Jiang HD, Wang L, Jiang T, Hu Y, Gou JB, Xu SB, Xu JJ, Wang XW, Wang W, Chen W. Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial. Lancet. 2020; 395: 1845–1854. https://doi.org/10.1016/S0140-6736(20)31208-3
  • [36] Lee WS, Wheatley AK, Kent SJ, DeKosky BJ. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nat Microbiol. 2020; 5: 1185–1191. https://doi.org/10.1038/s41564-020-00789-5
  • [37] Kounis N, Koniari I, Asimakopoulos S, Hung Hung MY, Saba L, Arumugham V, Darrell O R, Jiovannini M, Soufras G, Nugent K, Sestili P, Javed Javed S, Malone R. The passepartout of Covid-19, cytokine storm and kounis syndrome: pathophysiologic, clinical and therapeutic considerations. Authorea Prepr. 2020.
  • [38] Kömür FN. Covid-19’un işitme ve sağlık sağlığına etkisi, in: U. Gülaçtı (Ed.), Covid-19 ve Sağlık Araştırmaları – 6. Efe Akademi. 2022, pp. 31–40.
  • [39] Alzarea AI, Khan YH, Alatawi AD, Alanazi AS, Alzarea SI, Butt MH, Almalki ZS, Alahmari AK, Mallhi TH. Surveillance of post-vaccination side effects of COVID-19 vaccines among Saudi Population: A real-world estimation of safety profile. Vaccines. 2022; 10: 924. https://doi.org/10.3390/vaccines10060924
  • [40] Abu-Hammad O, Alduraidi H, Abu-Hammad S, Alnazzawi A, Babkair H, Abu-Hammad A, Nourwali I, Qasem F, Dar-Odeh N. Side effects reported by Jordanian healthcare workers who received COVID-19 vaccines. Vaccines. 2021; 9: 577. https://doi.org/10.3390/vaccines9060577
  • [41] Hatmal MM, Al-Hatamleh MAI, Olaimat AN, Hatmal M, Alhaj-Qasem DM, Olaimat TM, Mohamud R. Side effects and perceptions following COVID-19 vaccination in Jordan: A randomized, cross-sectional study implementing machine learning for predicting severity of side effects. Vaccines. 2021; 9: 556. https://doi.org/10.3390/vaccines9060556 [42] Wolf ME, Luz B, Niehaus L, Bhogal P, Bäzner H, Henkes H. Thrombocytopenia and intracranial venous sinus thrombosis after “COVID-19 Vaccine AstraZeneca” exposure. J Clin Med. 2021; 10: 1599. https://doi.org/10.3390/jcm10081599
  • [43] Shrestha S, Khatri J, Shakya S, Danekhu K, Khatiwada AP, Sah R, Kc B, Paudyal V, Khanal S, Rodriguez-Morales AJ. Adverse events related to COVID-19 vaccines: the need to strengthen pharmacovigilance monitoring systems. Drugs Ther Perspect: For Rational Drug Selection and Use. 2021; 37: 376–382. https://doi.org/10.1007/s40267-021-00852-z [44] Montgomery J, Ryan M, Engler R, Hoffman D, McClenathan B, Collins L, Loran D, Hrncir D, Herring K, Platzer M, Adams N, Sanou A, Cooper LT. Myocarditis following immunization with mRNA COVID-19 vaccines in members of the us military. JAMA Cardiol. 2021; 6: 1202. https://doi.org/10.1001/jamacardio.2021.2833
  • [45] Kornowski R, Witberg G. Acute myocarditis caused by COVID-19 disease and following COVID-19 vaccination. Open Heart. 2022; 9: e001957. https://doi.org/10.1136/openhrt-2021-001957
  • [46] Wallace M, Oliver S. COVID-19 mRNA vaccines in adolescents and young adults: Benefit-risk discussion, 2021. https://stacks.cdc.gov/view/cdc/108331 (accessed June 15, 2023).
  • [47] Centers for Disease Control and Prevention (U.S.), Interim pre-pandemic planning guidance : community strategy for pandemic influenza mitigation in the United States : early, targeted, layered use of nonpharmaceutical interventions, 2007. https://stacks.cdc.gov/view/cdc/11425 (accessed June 15, 2023).
  • [48] Nafilyan V, Bermingham C. Deaths following COVID-19 vaccination in young people during the coronavirus pandemic, England, Office for National Statistics, 2022. https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/causesofdeath/articles/covid19vaccinationandmortalityinyoungpeopleduringthecoronaviruspandemic/latest (accessed June 17, 2023).
  • [49] Pillay J, Gaudet L, Wingert A, Bialy L, Mackie AS, Paterson DI, Hartling L. Incidence, risk factors, natural history, and hypothesised mechanisms of myocarditis and pericarditis following covid-19 vaccination: living evidence syntheses and review. BMJ-Brit Med J. 2022: e069445. https://doi.org/10.1136/bmj-2021-069445
  • [50] Chatterjee A, Chakravarty A. Neurological Complications following COVID-19 vaccination. Curr Neurol Neurosci Rep. 2023; 23: 1–14. https://doi.org/10.1007/s11910-022-01247-x
  • [51] Swiss Policy Research, Vaccine, Wordpress, 2023. https://swprs.org/covid-vaccine-athlete-collapses-and-deaths/,wordpress.com (accessed March 21, 2023).
  • [52] Theuerkauf SA, Michels A, Riechert V, Maier TJ, Flory E, Cichutek K, Buchholz CJ. Quantitative assays reveal cell fusion at minimal levels of SARS-CoV-2 spike protein and fusion from without. IScience. 2021; 24: 102170. https://doi.org/10.1016/j.isci.2021.102170
  • [53] Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, Guo L, Guo R, Chen T, Hu J, Xiang Z, Mu Z, Chen X, Chen J, Hu K, Jin Q, Wang J, Qian Z. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat. Commun. 2020; 11: 1620. https://doi.org/10.1038/s41467-020-15562-9
  • [54] Nguyen HT, Zhang S, Wang Q, Anang S, Wang J, Ding H, Kappes JC, Sodroski J. Spike glycoprotein and host cell determinants of SARS-CoV-2 entry and cytopathic effects. J Virol. 2021; 95. https://doi.org/10.1128/JVI.02304-20
  • [55] Buchrieser J, Dufloo J, Hubert M, Monel B, Planas D, Rajah MM, Planchais C, Porrot F, Guivel‐Benhassine F, Van der Werf S, Casartelli N, Mouquet H, Bruel T, Schwartz O. Syncytia formation by SARS‐CoV‐2‐infected cells. EMBO J. 2020; 39. https://doi.org/10.15252/embj.2020106267
  • [56] Bussani R, Schneider E, Zentilin L, Collesi C, Ali H, Braga L, Volpe MC, Colliva A, Zanconati F, Berlot G, Silvestri F, Zacchigna S, Giacca M. Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology. EBioMedicine. 2020; 61: 103104. https://doi.org/10.1016/j.ebiom.2020.103104
  • [57] Bos R, Rutten L, van der Lubbe JEM, Bakkers MJG, Hardenberg G, Wegmann F, Zuijdgeest D, de Wilde AH, Koornneef A, Verwilligen A, van Manen D, Kwaks T, Vogels R, Dalebout TJ, Myeni SK, Kikkert M, Snijder EJ, Li Z, Barouch DH, Vellinga J, Langedijk JPM, Zahn RC, Custers J, Schuitemaker H. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. Npj Vaccines. 2020; 5: 91. https://doi.org/10.1038/s41541-020-00243-x
  • [58] Al Kaabi N, Zhang Y, Xia S, Yang Y, Al Qahtani MM, Abdulrazzaq N, Al Nusair M, Hassany M, Jawad JS, Abdalla J, Hussein SE, Al Mazrouei SK, Al Karam M, Li X, Yang X, Wang W, Lai B, Chen W, Huang S, Wang Q, Yang T, Liu Y, Ma R, Hussain ZM, Khan T, Saifuddin Fasihuddin M, You W, Xie Z, Zhao Y, Jiang Z, Zhao G, Zhang Y, Mahmoud S, ElTantawy I, Xiao P, Koshy A, Zaher WA, Wang H, Duan K, Pan A, Yang X. Effect of 2 inactivated SARS-CoV-2 vaccines on symptomatic COVID-19 infection in adults. JAMA. 2021; 326: 35. https://doi.org/10.1001/jama.2021.8565
  • [59] Liu T, Dai J, Yang Z, Yu X, Xu Y, Shi X, Wei D, Tang Z, Xu G, Xu W, Liu Y, Shi C, Ni Q, Yang C, Zhang X, Wang X, Chen E, Qu J. Inactivated SARS-CoV-2 vaccine does not influence the profile of prothrombotic antibody nor increase the risk of thrombosis in a prospective Chinese cohort. Sci Bull. 2021; 66: 2312–2319. https://doi.org/10.1016/j.scib.2021.07.033
  • [60]Zhang J, Cao J, Ye Q. renal side effects of COVID-19 vaccination. Vaccines. 2022; 10: 1783. https://doi.org/10.3390/vaccines10111783
  • [61] Kelly JD, Leonard S, Hoggatt KJ, Boscardin WJ, Lum EN, Moss-Vazquez TA, Andino R, Wong JK, Byers A, Bravata DM, Tien PC, Keyhani S. Incidence of severe COVID-19 illness following vaccination and booster With BNT162b2, mRNA-1273, and Ad26.COV2.S vaccines. JAMA. 2022; 328: 1427. https://doi.org/10.1001/jama.2022.17985
  • [62]Kakovan M, Ghorbani Shirkouhi S, Zarei M, Andalib S. Stroke associated with COVID-19 vaccines., J Stroke Cerebrovasc Dis. 2022; 31: 106440. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106440
  • [63] De Michele M, Kahan J, Berto I, Schiavo OG, Iacobucci M, Toni D, Merkler AE. Cerebrovascular complications of COVID-19 and COVID-19 vaccination. Circ Res. 2022; 130: 1187–1203. https://doi.org/10.1161/CIRCRESAHA.122.319954
  • [64] Warkentin TE. High-dose intravenous immunoglobulin for the treatment and prevention of heparin-induced thrombocytopenia: a review. Expert Rev Hematol. 2019; 12: 685–698. https://doi.org/10.1080/17474086.2019.1636645 [65] Blauenfeldt RA, Kristensen SR, Ernstsen SL, Kristensen CCH, Simonsen CZ, Hvas A. Thrombocytopenia with acute ischemic stroke and bleeding in a patient newly vaccinated with an adenoviral vector‐based COVID‐19 vaccine. J Thromb Haemost. 2021; 19: 1771–1775. https://doi.org/10.1111/jth.15347
  • [66] Garnier M, Curado A, Billoir P, Barbay V, Demeyere M, Dacher JN. Imaging of Oxford/AstraZeneca® COVID-19 vaccine-induced immune thrombotic thrombocytopenia. Diagn Interv Imaging. 2021; 102: 649–650. https://doi.org/10.1016/j.diii.2021.04.005
  • [67] Scully M, Singh D, Lown R, Poles A, Solomon T, Levi M, Goldblatt D, Kotoucek P, Thomas W, Lester W. Pathologic antibodies to platelet factor 4 after ChAdOx1 nCoV-19 vaccination. N Engl J Med 2021; 384: 2202–2211. https://doi.org/10.1056/NEJMoa2105385 [68] Almufty HB, Mohammed SA, Abdullah AM, Merza MA. Potential adverse effects of COVID19 vaccines among Iraqi population; a comparison between the three available vaccines in Iraq; a retrospective cross-sectional study. Diabetes Metab Syndr. 2021; 15: 102207. https://doi.org/10.1016/j.dsx.2021.102207
  • [69] Karron RA, Key NS, Sharfstein JM. Assessing a rare and serious adverse event following administration of the Ad26.COV2.S vaccine. JAMA. 2021; 325: 2445. https://doi.org/10.1001/jama.2021.7637
  • [70] Arnold C. Unraveling long COVID’s causes and impacts. Johns Hopkins University Bloomberg School of Public Health. 2023. https://medicalxpress.com/news/2023-03-unraveling-covid-impacts.html (accessed June 15, 2023).
  • [71] Mumtaz A, Sheikh AAE, Khan AM, Khalid SN, Khan J, Nasrullah A, Sagheer S, Sheikh AB. COVID-19 Vaccine and long COVID: A scoping review. Life. 2022; 12: 1066. https://doi.org/10.3390/life12071066 [72] Blumberg Y, Edelstein M, Abu Jabal K, Golan R, Tuvia N, Perets Y, Saad M, Levinas T, Saleem D, Israeli Z, Alaa AR, Elbaz Greener G, Amital A, Halabi M. Protective effects of BNT162b2 vaccination on aerobic capacity following mild to moderate SARS-CoV-2 infection: A cross-sectional study Israel. J Clin Med. 2022; 11: 4420. https://doi.org/10.3390/jcm11154420
  • [73] Arjun MC, Singh AK, D. Pal, K. Das, Alekhya G, Venkateshan M, Mishra B, Patro BK, Mohapatra PR, Subba SH. Characteristics and predictors of Long COVID among diagnosed cases of COVID-19. PLoS One. 2022; 17: e0278825. https://doi.org/10.1371/journal.pone.0278825
  • [74] Strain WD, Sherwood O, Banerjee A, Van der Togt V, Hishmeh L, Rossman J. The impact of COVID vaccination on symptoms of long COVID: An international survey of people with lived experience of long COVID. Vaccines. 2022; 10: 652. https://doi.org/10.3390/vaccines10050652
  • [75] Al-Aly Z, Bowe B, Xie Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat Med. 2022; 28:1461–1467. https://doi.org/10.1038/s41591-022-01840-0
  • [76] Allahyari F, Molaee H, Hosseini Nejad J. Covid-19 vaccines and neurological complications: A systematic review. Z Naturforsch C. 2023; 78: 1–8. https://doi.org/10.1515/znc-2022-0092
  • [77] Waheed S, Bayas A, Hindi F, Rizvi Z, Espinosa PS. Neurological complications of COVID-19: Guillain-Barre Syndrome following Pfizer COVID-19 vaccine. Cureus. 2021. https://doi.org/10.7759/cureus.13426
  • [78]Bonifacio GB, Patel D, Cook S, Purcaru E, Couzins M, Domjan J, Ryan S, Alareed A, Tuohy O, Slaght S, Furby J, Allen D, Katifi HA, Kinton L. Bilateral facial weakness with paraesthesia variant of Guillain-Barré syndrome following Vaxzevria COVID-19 vaccine. J Neurol Neurosurg Psychiatry. 2022; 93: 341–342. https://doi.org/10.1136/jnnp-2021-327027
  • [79] Peralta-Amaro AL, Tejada-Ruiz MI, Rivera-Alvarado KL, de J. Cobos-Quevedo O, Romero-Hernández P, Macías-Arroyo W, Avendaño-Ponce A, Hurtado-Díaz J, Vera-Lastra O, Lucas-Hernández A. Atypical kawasaki disease after COVID-19 vaccination: A new form of adverse event following immunization. Vaccines. 2022; 10: 126. https://doi.org/10.3390/vaccines10010126 [80] Román GC, Gracia F, Torres A, Palacios A, Gracia K, Harris D. Acute Transverse Myelitis (ATM):Clinical review of 43 patients with COVID-19-Associated ATM and 3 post-vaccination ATM serious adverse events with the ChAdOx1 nCoV-19 vaccine (AZD1222). Front Immunol. 2021; 12. https://doi.org/10.3389/fimmu.2021.653786
  • [81] Zuhorn F, Graf T, Klingebiel R, Schäbitz W, Rogalewski A. Postvaccinal Encephalitis after ChAdOx1 nCov-19. Ann Neurol. 2021; 90: 506–511. https://doi.org/10.1002/ana.26182
  • [82] Prasad A, Hurlburt G, Podury S, Tandon M, Kingree S, Sriwastava S. A novel case of bifacial diplegia variant of Guillain-Barré Syndrome following Janssen COVID-19 vaccination. Neurol Int. 2021; 13: 404–409. https://doi.org/10.3390/neurolint13030040
  • [83] Mahajan S, Zhang F, Mahajan A, Zimnowodzki S. Parsonage Turner syndrome after COVID‐19 vaccination. Muscle & Nerve. 2021; 64. https://doi.org/10.1002/mus.27255 [84] Garg I, Shekhar R, Sheikh AB, Pal S. COVID-19 Vaccine in pregnant and lactating women: A review of existing evidence and practice guidelines. Infect Dis Rep. 2021; 13: 685–699. https://doi.org/10.3390/idr13030064
  • [85] Alfishawy M, Bitar Z, Elgazzar A, Elzoueiry M. Neuroleptic malignant syndrome following COVID-19 vaccination. Am J Emerg Med. 2021; 49: 408–409. https://doi.org/10.1016/j.ajem.2021.02.011
  • [86] Nagamine T. Neuroleptic malignant syndrome associated with COVID-19 vaccination. CJEM. 2022; 24: 349–350. https://doi.org/10.1007/s43678-021-00254-0
  • [87] Mirmosayyeb O, Ghaffary EM, Vaheb S, Pourkazemi R, Shaygannejad V. Multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD) following COVID-19 vaccines: A systematic review. Rev Neurol. 2023; 179: 265–281. https://doi.org/10.1016/j.neurol.2022.11.004
  • [88] Chen S, Fan XR, He S, Zhang JW, Li SJ. Watch out for neuromyelitis optica spectrum disorder after inactivated virus vaccination for COVID-19. Neurol Sci. 2021; 42: 3537–3539. https://doi.org/10.1007/s10072-021-05427-4
  • [89] Caliskan I, Bulus E, Afsar N, Altintas A. A case with new-onset neuromyelitis optica spectrum disorder following COVID-19 mRNA BNT162b2 vaccination. The Neurologist. 2022; 27: 147–150. https://doi.org/10.1097/NRL.0000000000000420
  • [90] Fujimori J, Miyazawa K, Nakashima I. Initial clinical manifestation of multiple sclerosis after immunization with the Pfizer-BioNTech COVID-19 vaccine. J Neuroimmunol. 2021; 361: 577755. https://doi.org/10.1016/j.jneuroim.2021.577755
  • [91] Nassar M, Chung H, Dhayaparan Y, Nyein A, Acevedo BJ, Chicos C, Zheng D, Barras M, Mohamed M, Alfishawy M, Nso N, Rizzo V, Kimball E. COVID-19 vaccine induced rhabdomyolysis: Case report with literature review. Diabetes Metab Syndr. 2021; 15: 102170. https://doi.org/10.1016/j.dsx.2021.06.007
  • [92] Kimura M, Niwa JI, Doyu M. Recurring weakness in rhabdomyolysis following Pfizer–BioNTech coronavirus disease 2019 mRNA vaccination. Vaccines. 2022; 10: 935. https://doi.org/10.3390/vaccines10060935
  • [93] Banamah TA, Bogari AA, Neyazi A, Kotbi E, Almaghraby H, Atwah F. Severe rhabdomyolysis complicated with acute kidney injury required renal replacement therapy after Pfizer COVID-19 vaccine. Cureus. 2022. https://doi.org/10.7759/cureus.25199
  • [94] Unger K, Ponte CD, Anderson D. A possible case of COVID-19 booster vaccine–associated rhabdomyolysis and acute kidney injury. J Pharm Techno.. 2022; 38: 247–250. https://doi.org/10.1177/87551225221093944
  • [95] Gelbenegger G, Cacioppo F, Firbas C, Jilma B. Rhabdomyolysis following Ad26.COV2.S COVID-19 vaccination. Vaccines. 2021; 9: 956. https://doi.org/10.3390/vaccines9090956
  • [96] Faissner S, Richter D, Ceylan U, Schneider-Gold C, Gold R. COVID-19 mRNA vaccine induced rhabdomyolysis and fasciitis. J Neurol. 2022; 269: 1774–1775. https://doi.org/10.1007/s00415-021-10768-3
  • [97] Tan A, Stepien KM, Narayana STK. Carnitine palmitoyltransferase II deficiency and post-COVID vaccination rhabdomyolysis. QJM. 2021; 114: 596–597. https://doi.org/10.1093/qjmed/hcab077
  • [98] Ajmera KM. Fatal case of rhabdomyolysis post-COVID-19 vaccine. Infect Drug Resist. 2021; 14: 3929–3935. https://doi.org/10.2147/IDR.S331362
  • [99] Klomjit N, Alexander MP, Fervenza FC, Zoghby Z, Garg A, Hogan MC, Nasr SH, Minshar MA, Zand L. COVID-19 vaccination and glomerulonephritis. Kidney Int Rep. 2021; 6: 2969–2978. https://doi.org/10.1016/j.ekir.2021.09.008
  • [100] Wu HHL, Kalra PA, Chinnadurai R. New-onset and relapsed kidney histopathology following COVID-19 vaccination: A systematic review. Vaccines. 2021; 9: 1252. https://doi.org/10.3390/vaccines9111252
  • [101] Schaubschlager T, Rajora N, Diep S, Kirtek T, Cai Q, Hendricks AR, Shastri S, Zhou XJ, Saxena R. De novo or recurrent glomerulonephritis and acute tubulointerstitial nephritis after COVID-19 vaccination: A report of six cases from a single center. Clin Nephrol. 2022; 97: 289–297. https://doi.org/10.5414/CN110794
  • [102] Cohen Tervaert JW, Martinez-Lavin M, Jara LJ, Halpert G, Watad A, Amital H, Shoenfeld Y. Autoimmune/inflammatory syndrome induced by adjuvants (ASIA) in 2023. Autoimmun Rev. 2023; 22: 103287. https://doi.org/10.1016/j.autrev.2023.103287
  • [103] Sprent J, King C. COVID-19 vaccine side effects: The positives about feeling bad. Sci Immunol. 2021; 6. https://doi.org/10.1126/sciimmunol.abj9256
  • [104] Almasri M, Bshesh K, Khan W, Mushannen M, Salameh MA, Shafiq A, Vattoth AL, Elkassas N, Zakaria D. Cancer patients and the COVID-19 vaccines: considerations and challenges. Cancers. 2022; 14: 5630. https://doi.org/10.3390/cancers14225630
  • [105] Polykretis P, Donzelli A, Lindsay JC, Wiseman D, Kyriakopoulos AM, Mörz M, Bellavite P, Fukushima M, Seneff S, McCullough PA. Autoimmune inflammatory reactions triggered by the covid-19 genetic vaccines in terminally differentiated tissues. Preprints Org. (2023). https://www.preprints.org/manuscript/202303.0140/v1 (accessed May 16, 2023).
  • [106] Zamfir MA, Moraru L, Dobrea C, Scheau AE, Iacob S, Moldovan C, Scheau C, Caruntu C, Caruntu A. Hematologic malignancies diagnosed in the context of the mRNA COVID-19 vaccination campaign: A report of two cases. Med. 2022; 58: 874. https://doi.org/10.3390/medicina58070874
  • [107] Sessa F, Salerno M, Esposito M, Di Nunno N, Zamboni P, Pomara C. Autopsy findings and causality relationship between death and COVID-19 vaccination: A systematic review. J Clin Med. 2021; 10: 5876. https://doi.org/10.3390/jcm10245876
  • [108] Chow KW, Pham NV, Ibrahim BM, Hong K, Saab S. Autoimmune hepatitis-like syndrome following COVID-19 vaccination: A systematic review of the literature. Dig Dis Sci. 2022; 67: 4574–4580. https://doi.org/10.1007/s10620-022-07504-w
  • [109] Boskabadi SJ, Ala S, Heydari F, Ebrahimi M, Jamnani AN. Acute pancreatitis following COVID-19 vaccine: A case report and brief literature review. Heliyon. 2023; 9: e12914. https://doi.org/10.1016/j.heliyon.2023.e12914
  • [110] Beatty AL, Peyser ND, Butcher XE, Cocohoba JM, Lin F, Olgin JE, Pletcher MJ, Marcus GM. Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA. 2021; 4: e2140364. https://doi.org/10.1001/jamanetworkopen.2021.40364
  • [111] Trougakos IP, Terpos E, Alexopoulos H, Politou M, Paraskevis D, Scorilas A, Kastritis E, Andreakos E, Dimopoulos MA. Adverse effects of COVID-19 mRNA vaccines: the spike hypothesis. Trends Mol Med. 2022; 28: 542–554. https://doi.org/10.1016/j.molmed.2022.04.007
  • [112] Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, Hernán MA, Lipsitch M, Kohane I, Netzer D, Reis BY, Balicer RD. Safety of the BNT162b2 mRNA Covid-19 Vaccine in a nationwide setting. N. Engl J Med. 2021; 385: 1078–1090. https://doi.org/10.1056/NEJMoa2110475 [113] García-Grimshaw M, et al. Neurologic adverse events among 704,003 first-dose recipients of the BNT162b2 mRNA COVID-19 vaccine in Mexico: A nationwide descriptive study. Clin Immunol. 2021; 229: 108786. https://doi.org/10.1016/j.clim.2021.108786
  • [114] Klein NP, Lewis N, Goddard K, Fireman B, Zerbo O, Hanson KE, Donahue JG, Kharbanda EO, Naleway A, Nelson JC, Xu S, Yih WK, Glanz JM, Williams JTB, Hambidge SJ, Lewin BJ, Shimabukuro TT, DeStefano F, Weintraub ES. Surveillance for adverse events after COVID-19 mRNA vaccination. JAMA. 2021; 326: 1390. https://doi.org/10.1001/jama.2021.15072
  • [115] Fraiman J, Erviti J, Jones M, Greenland S, Whelan P, Kaplan RM, Doshi P. Serious adverse events of special interest following mRNA COVID-19 vaccination in randomized trials in adults. Vaccine. 2022; 40: 5798–5805. https://doi.org/10.1016/j.vaccine.2022.08.036
  • [116] Li X, Ostropolets A, Makadia R, Shaoibi A, Rao G, Sena AG, Martinez-Hernandez E, Delmestri A, Verhamme K, Rijnbeek PR, Duarte-Salles T, Suchard M, Ryan P, Hripcsak G, Prieto-Alhambra D. Characterizing the incidence of adverse events of special interest for COVID-19 vaccines across eight countries: a multinational network cohort study. MedRxiv : The Preprint Server for Health Sciences. 2021. https://doi.org/10.1101/2021.03.25.21254315
  • [117] Oster ME, Shay DK, Su JR, Gee J, Creech CB, Broder KR, Edwards K, Soslow JH, Dendy JM, Schlaudecker E, Lang SM, Barnett ED, Ruberg FL, Smith MJ, Campbell MJ, Lopes RD, Sperling LS, Baumblatt JA, Thompson DL, Marquez PL, Strid P, Woo J, Pugsley R, Reagan-Steiner S, DeStefano F, Shimabukuro TT. Myocarditis cases reported after mRNA-Based COVID-19 vaccination in the us from december 2020 to August 2021. JAMA. 2022; 327: 331. https://doi.org/10.1001/jama.2021.24110
  • [118] Krug A, Stevenson J, Høeg TB. BNT162b2 vaccine‐associated myo/pericarditis in adolescents: A stratified risk‐benefit analysis. Eur J Clin Invest. 2022; 52. https://doi.org/10.1111/eci.13759
  • [119] Li X, Lai FTT, Chua GT, Kwan MYW, Lau YL, Ip P, Wong ICK. Myocarditis following COVID-19 BNT162b2 vaccination among adolescents in hong kong. JAMA Pediatr. 2022; 176: 612. https://doi.org/10.1001/jamapediatrics.2022.0101
  • [120] Hanna N, Heffes-Doon A, Lin X, Manzano De Mejia C, Botros B, Gurzenda E, Nayak A. Detection of messenger RNA COVID-19 vaccines in human breast milk. JAMA Pediat. 2022; 176: 1268. https://doi.org/10.1001/jamapediatrics.2022.3581
  • [121] Kostoff R, Briggs M, Porter A, Spandidos D, Tsatsakis A. COVID‑19 vaccine safety. Int J Mol Med. 2020. https://doi.org/10.3892/ijmm.2020.4733 [122] O’Brien EA, Ensbey KS, Day BW, Baldock PA, Barry G. Direct evidence for transport of RNA from the mouse brain to the germline and offspring. BMC Biol. 2020; 18: 45. https://doi.org/10.1186/s12915-020-00780-w
  • [123] Pittoggi C, Beraldi R, Sciamanna I, Barberi L, Giordano R, Magnano AR, Torosantucci L, Pescarmona E, Spadafora C. Generation of biologically active retro-genes upon interaction of mouse spermatozoa with exogenous DNA. Mol Reprod Dev. 2006; 73: 1239–1246. https://doi.org/10.1002/mrd.20550
  • [124] Parrington J, Coward K, Gadea J. Sperm and testis mediated DNA transfer as a means of gene therapy. Syst Biol Reprod Med. 2011; 57: 35–42. https://doi.org/10.3109/19396368.2010.514022
  • [125] Kyriakopoulos AM, Mccullough PA, Nigh G, Seneff S. Potential mechanisms for human genome integration of genetic code from SARS-CoV-2 mRNA vaccination. Authorea. 2022; 1–41.
  • [126] Chandramouly G, Zhao J, McDevitt S, Rusanov T, Hoang T, Borisonnik N, Treddinick T, Lopezcolorado FW, Kent T, Siddique LA, Mallon J, Huhn J, Shoda Z, Kashkina E, Brambati A, Stark JM, Chen XS, Pomerantz RT. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. Sci. Adv. 2021; 7. https://doi.org/10.1126/sciadv.abf1771
  • [127] Chung YH, Beiss V, Fiering SN, Steinmetz NF. COVID-19 vaccine frontrunners and their nanotechnology design. ACS Nano. 2020; 14: 12522–12537. https://doi.org/10.1021/acsnano.0c07197
  • [128] Hernández AF, Calina D, Poulas K, Docea AO, Tsatsakis AM. Safety of COVID-19 vaccines administered in the EU: Should we be concerned?. Toxicol Rep. 2021; 8: 871–879. https://doi.org/10.1016/j.toxrep.2021.04.003
  • [129] Polykretis P. Role of the antigen presentation process in the immunization mechanism of the genetic vaccines against COVID‐19 and the need for biodistribution evaluations. Scand J Immunol. 2022; 96. https://doi.org/10.1111/sji.13160
  • [130] Calina D, Sarkar C, Arsene AL, Salehi B, Docea AO, Mondal M, Islam MT, Zali A, Sharifi-Rad J. Recent advances, approaches and challenges in targeting pathways for potential COVID-19 vaccines development. Immunol Res. 2020; 68: 315–324. https://doi.org/10.1007/s12026-020-09154-4
  • [131] Mengesha B, Asenov AG, Hirsh-Raccah B, Amir O, Pappo O, Asleh R. Severe acute myocarditis after the third (Booster) dose of mRNA COVID-19 vaccination. Vaccines. 2022; 10: 575. https://doi.org/10.3390/vaccines10040575
  • [132] Guo Y, Meng J, Liu C, Chen G, Chi Y, Zheng S, Wang H. How to deal with vaccine breakthrough infection with SARS-CoV-2 variants. Front Public Health. 2022; 10. https://doi.org/10.3389/fpubh.2022.842303
  • [133] Seneff S, Kyriakopoulos AM, Nigh G, McCullough PA. A potential role of the spike protein in neurodegenerative diseases: A narrative review. Cureus. 2023. https://doi.org/10.7759/cureus.34872
  • [134] Mak W, Prempeh AA, Schmitt EM, Fong TG, Marcantonio ER, Inouye SK, Boockvar KS. Delirium after COVID‐19 vaccination in nursing home residents: A case series. J Am Geriatr Soc. 2022; 70: 1648–1651. https://doi.org/10.1111/jgs.17814
  • [135] Bell SM, Burgess T, Lee J, Blackburn DJ, Allen SP, Mortiboys H. Peripheral glycolysis in neurodegenerative diseases. Int J Mol Sci. 2020; 21: 8924. https://doi.org/10.3390/ijms21238924
  • [136] Dzobo KE, Hanford KML, Kroon J. Vascular metabolism as driver of atherosclerosis: Linking endothelial metabolism to inflammation. Immunometabolism. 2021; 3. https://doi.org/10.20900/immunometab20210020
  • [137] Shiratori R, Furuichi K, Yamaguchi M, Miyazaki N, Aoki H, Chibana H, Ito K, Aoki S. Glycolytic suppression dramatically changes the intracellular metabolic profile of multiple cancer cell lines in a mitochondrial metabolism-dependent manner. Sci Rep. 2019; 9: 18699. https://doi.org/10.1038/s41598-019-55296-3
  • [138] Verbeke R, Lentacker I, De Smedt SC, Dewitte H. Three decades of messenger RNA vaccine development. Nano Today. 2019; 28: 100766. https://doi.org/10.1016/j.nantod.2019.100766
  • [139] McCullough PA, Wynn C, Procter BC. Clinical rationale for SARS-CoV-2 base spike protein detoxification in post COVID-19 and vaccine injury syndromes. J. Am. Physicians Surg. 2023; 28: 90–94. https://doi.org/10.5281/zenodo.8286460
  • [140] Shafabakhsh R, Pourhanifeh MH, Mirzaei HR, Sahebkar A, Asemi Z, Mirzaei H. Targeting regulatory T cells by curcumin: A potential for cancer immunotherapy. Pharmacol. Res. 2019; 147: 104353. https://doi.org/10.1016/j.phrs.2019.104353
  • [141] Tanikawa T, Kiba Y, Yu J, Hsu K, Chen S, Ishii A, Yokogawa T, Suzuki R, Inoue Y, Kitamura M. Degradative effect of nattokinase on spike protein of SARS-CoV-2. Molecules (Basel, Switzerland).2022; 27. https://doi.org/10.3390/molecules27175405
  • [142] Suzuki Y, Kondo K, Matsumoto Y, Zhao B-Q, Otsuguro K, Maeda T, Tsukamoto Y, Urano T, Umemura K. Dietary supplementation of fermented soybean, natto, suppresses intimal thickening and modulates the lysis of mural thrombi after endothelial injury in rat femoral artery. Life Sci. 2003; 73: 1289–1298. https://doi.org/10.1016/S0024-3205(03)00426-0
  • [143] Hsia C-H, Shen M-C, Lin J-S, Wen Y-K, Hwang K-L, Cham T-M, Yang N-C. Nattokinase decreases plasma levels of fibrinogen, factor VII, and factor VIII in human subjects. Nutr Res. 2009; 29: 190–196. https://doi.org/10.1016/j.nutres.2009.01.009
  • [144] du Preez HN, Aldous C, Kruger HG, Johnson L. N-acetylcysteine and other sulfur-donors as a preventative and adjunct therapy for COVID-19. Adv. Pharmacol. Pharm. Sci. 2022; 1–21. https://doi.org/10.1155/2022/4555490
  • [145] Mason RJ. Pathogenesis of COVID-19 from a cell biology perspective. Eur. Respir. J. 2020; 55: 2000607. https://doi.org/10.1183/13993003.00607-2020
  • [146] Milani GP, Dioni L, Favero C, Cantone L, Macchi C, Delbue S, Bonzini M, Montomoli E, Bollati V, Albetti B, Bandi C, Bellini T, Buscaglia M, Cantarella C, Carugno M, Casartelli S, D’Alessandro S, De Chiara F, Eberini I, Ferrari L, Ferraroni M, Galastri L, Galli C, Hoxha M, Iodice S, La Vecchia C, Manenti A, Manini I, Marchi S, Mariani J, Pariani E, Pesatori AC, Rota F, Ruscica M, Schioppo T, Tarantini L, Trombetta CM, Vicenzi M, Zanchetta G. Serological follow-up of SARS-CoV-2 asymptomatic subjects. Sci. Rep. 2020; 10: 20048. https://doi.org/10.1038/s41598-020-77125-8
  • [147] Bourgonje AR, Offringa AK, van Eijk LE, Abdulle AE, Hillebrands J-L, van der Voort PHJ, van Goor H, van Hezik EJ. N-acetylcysteine and hydrogen sulfide in coronavirus disease 2019. Antioxid. Redox Signal. 2021; 35: 207–1225. https://doi.org/10.1089/ars.2020.8247
  • [148] Paterson RW,et al. The emerging spectrum of COVID-19 neurology: clinical, radiological and laboratory findings. Brain. 2020; 143: 3104–3120. https://doi.org/10.1093/brain/awaa240
  • [149] du Preez HN, Aldous C, Hayden MR, Kruger HG, Lin J. Pathogenesis of COVID‐19 described through the lens of an undersulfated and degraded epithelial and endothelial glycocalyx. The FASEB J. 2022; 36. https://doi.org/10.1096/fj.202101100RR
  • [150] Targosz-Korecka M, Kubisiak A, Kloska D, Kopacz A, Grochot-Przeczek A, Szymonski M. Endothelial glycocalyx shields the interaction of SARS-CoV-2 spike protein with ACE2 receptors. Sci. Rep. 2021; 11: 12157. https://doi.org/10.1038/s41598-021-91231-1
  • [151] Buijsers B, Yanginlar C, Maciej-Hulme ML, de Mast Q, van der Vlag J. Beneficial non-anticoagulant mechanisms underlying heparin treatment of COVID-19 patients. EBioMedicine. 2020; 59: 102969. https://doi.org/10.1016/j.ebiom.2020.102969 [152] Renieris G, Katrini K, Damoulari C, Akinosoglou K, Psarrakis C, Kyriakopoulou M, Dimopoulos G, Lada M, Koufargyris P, Giamarellos-Bourboulis EJ. Serum hydrogen sulfide and outcome association in pneumonia by the SARS-CoV-2 coronavirus. Shock. 2020; 54: 633–637. https://doi.org/10.1097/SHK.0000000000001562
  • [153] Cumpstey AF, Clark AD, Santolini J, Jackson AA, Feelisch M. COVID-19: A redox disease—What a stress pandemic can teach us about resilience and what we may learn from the reactive species interactome about its treatment. Antioxid Redox Signal. 2021; 35: 1226–1268. https://doi.org/10.1089/ars.2021.0017
  • [154] Citi V, Martelli A, Brancaleone V, Brogi S, Gojon G, Montanaro R, Morales G, Testai L, Calderone V. Anti‐inflammatory and antiviral roles of hydrogen sulfide: Rationale for considering H2S donors in COVID‐19 therapy. Br. J. Pharmacol. 2020; 177: 4931–4941. https://doi.org/10.1111/bph.15230
  • [155] Lin Y, Zeng H, Gao L, Gu T, Wang C, Zhang H. Hydrogen Sulfide attenuates atherosclerosis in a partially ligated carotid artery mouse model via regulating angiotensin converting enzyme 2 expression. Front. Physiol. 2017; 8. https://doi.org/10.3389/fphys.2017.00782
  • [156] Kimura H, Shibuya N, Kimura Y. Hydrogen sulfide is a signaling molecule and a cytoprotectant. Antioxid Redox Signal. 2012; 17: 45–57. https://doi.org/10.1089/ars.2011.4345
  • [157] Rumbeiha W, Whitley E, Anantharam P, Kim D-S, Kanthasamy A. Acute hydrogen sulfide-induced neuropathology and neurological sequelae: challenges for translational neuroprotective research. Ann. N. Y. Acad. Sci. 2016; 1378: 5–16. https://doi.org/10.1111/nyas.13148
  • [158] Amirshahrokhi K, Bohlooli S. Effect of Methylsulfonylmethane on paraquat-induced acute lung and liver injury in mice. Inflammation. 2013; 36: 1111–1121. https://doi.org/10.1007/s10753-013-9645-8 [159] Petousis-Harris H. Assessing the safety of COVID-19 vaccines: A primer. Drug Safety. 2020; 43: 1205–1210. https://doi.org/10.1007/s40264-020-01002-6
  • [160] Aras ÖS, Kuscu F. Efficacy of COVID-19 vaccines and vaccination applications in children and adolescents, pregnant and postpartum women, and older adults. Çukurova Med Student J. 2022; 1: 33–42.
  • [161] Morales AC, Rice AM, Ho AT, Mordstein C, Mühlhausen S, Watson S, Cano L, Young B, Kudla G, Hurst LD. Causes and consequences of purifying selection on SARS-CoV-2. Genome Biol Evol. 2021; 13. https://doi.org/10.1093/gbe/evab196
  • [162] Schwab C, Domke LM, Hartmann L, Stenzinger A, Longerich T, Schirmacher P. Autopsy-based histopathological characterization of myocarditis after anti-SARS-CoV-2-vaccination. Clin Res Cardiol. 2023; 112: 431–440. https://doi.org/10.1007/s00392-022-02129-5
  • [163] Spitzer A, et al. Association of a third dose of BNT162b2 vaccine with incidence of SARS-CoV-2 infection among health care workers in Israel. JAMA. 2022; 327: 341. https://doi.org/10.1001/jama.2021.23641
Toplam 148 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Reviews
Yazarlar

Beril Anilanmert 0000-0002-5886-2530

Fatma Cavus Yonar

Gulten Rayimoglu 0000-0002-7572-1019

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 6

Kaynak Göster

APA Anilanmert, B., Cavus Yonar, F., & Rayimoglu, G. (2025). COVID-19 vaccine-related pathologies: cardiac and neurological side effects and long-term COVID-19. Journal of Research in Pharmacy, 27(6), 2559-2591.
AMA Anilanmert B, Cavus Yonar F, Rayimoglu G. COVID-19 vaccine-related pathologies: cardiac and neurological side effects and long-term COVID-19. J. Res. Pharm. Temmuz 2025;27(6):2559-2591.
Chicago Anilanmert, Beril, Fatma Cavus Yonar, ve Gulten Rayimoglu. “COVID-19 Vaccine-Related Pathologies: Cardiac and Neurological Side Effects and Long-Term COVID-19”. Journal of Research in Pharmacy 27, sy. 6 (Temmuz 2025): 2559-91.
EndNote Anilanmert B, Cavus Yonar F, Rayimoglu G (01 Temmuz 2025) COVID-19 vaccine-related pathologies: cardiac and neurological side effects and long-term COVID-19. Journal of Research in Pharmacy 27 6 2559–2591.
IEEE B. Anilanmert, F. Cavus Yonar, ve G. Rayimoglu, “COVID-19 vaccine-related pathologies: cardiac and neurological side effects and long-term COVID-19”, J. Res. Pharm., c. 27, sy. 6, ss. 2559–2591, 2025.
ISNAD Anilanmert, Beril vd. “COVID-19 Vaccine-Related Pathologies: Cardiac and Neurological Side Effects and Long-Term COVID-19”. Journal of Research in Pharmacy 27/6 (Temmuz 2025), 2559-2591.
JAMA Anilanmert B, Cavus Yonar F, Rayimoglu G. COVID-19 vaccine-related pathologies: cardiac and neurological side effects and long-term COVID-19. J. Res. Pharm. 2025;27:2559–2591.
MLA Anilanmert, Beril vd. “COVID-19 Vaccine-Related Pathologies: Cardiac and Neurological Side Effects and Long-Term COVID-19”. Journal of Research in Pharmacy, c. 27, sy. 6, 2025, ss. 2559-91.
Vancouver Anilanmert B, Cavus Yonar F, Rayimoglu G. COVID-19 vaccine-related pathologies: cardiac and neurological side effects and long-term COVID-19. J. Res. Pharm. 2025;27(6):2559-91.