Araştırma Makalesi
BibTex RIS Kaynak Göster

A recent review of the utilization of 3D printing in the development and manufacturing of pharmaceutical dosage forms

Yıl 2024, Cilt: 28 Sayı: 3, 828 - 843, 28.06.2025

Öz

Three-dimensional (3D) printing has paved the way in pharmaceutical applications. This innovative methodology presents novel and inventive remedies for patients and the pharmaceutical sector. Moreover, the benefits of this approach encompass the mitigation of adverse effects, customization of formulations for patients with rare medical conditions, and enhancement of therapeutic effectiveness. The objective of our review was to offer a comprehensive survey of the advancements observed in the drug delivery systems that were produced. A thorough inspection has assessed the diverse dosage forms developed using the three-dimensional printing technique (3DP), especially in the last five years. The pharmaceutical industry places significant emphasis on the benefits of developing dosage forms with intricate designs and geometries, incorporating multiple active ingredients, and tailored release profiles due to their versatility and related advantages. Drug delivery systems can be classified into different modalities, tablets, capsules, suppositories, transdermal delivery systems, microneedles, vaginal delivery systems, and nanoscale dosage forms. The utilization of our classification system facilitates researchers' task of evaluating publications and effectively pinpointing further opportunities for research exploration.

Kaynakça

  • [1] Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501. https://doi.org/10.1016/j.ijpharm.2021.120501
  • [2] Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547-1555. https://doi.org/10.1016/j.drudis.2018.05.025
  • [3] Kassem T, Sarkar T, Nguyen T, Saha D, Ahsan F. 3D Printing in Solid Dosage Forms and Organ-on-Chip Applications. Biosensors (Basel). 2022;12(4). https://doi.org/10.3390/bios12040186
  • [4] Healy AV, Fuenmayor E, Doran P, Geever LM, Higginbotham CL, Lyons JG. Additive Manufacturing of Personalized Pharmaceutical Dosage Forms via Stereolithography. Pharmaceutics. 2019;11(12). https://doi.org/10.3390/pharmaceutics11120645
  • [5] Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol. 2017;40:164-171. https://doi.org/10.1016/j.jddst.2017.06.008
  • [6] Gillispie G, Prim P, Copus J, Fisher J, Mikos AG, Yoo JJ, Atala A, Lee SJ. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):022003. https://doi.org/10.1088/1758-5090/ab6f0d
  • [7] Bhatt PM, Kabir AM, Peralta M, Bruck HA, Gupta SK. A robotic cell for performing sheet lamination-based additive manufacturing. Addit Manuf. 2019;27:278-289. https://doi.org/10.1016/j.addma.2019.02.002
  • [8] Sen K, Mehta T, Sansare S, Sharifi L, Ma AWK, Chaudhuri B. Pharmaceutical applications of powder-based binder jet 3D printing process - A review. Adv Drug Deliv Rev. 2021;177:113943. https://doi.org/10.1016/j.addr.2021.113943
  • [9] Zhang J, Chen B, Chen X, Hou X. Liquid-Based Adaptive Structural Materials. Adv Mater. 2021;33(50):e2005664. https://doi.org/10.1002/adma.202005664
  • [10] Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-575. https://doi.org/10.1016/j.addr.2021.05.003
  • [11] Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. https://doi.org/10.1016/j.bioactmat.2019.12.003
  • [12] Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Gaisford S, Basit AW. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019;16(10):1081-1094. https://doi.org/10.1080/17425247.2019.1660318
  • [13] Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J, Kotta S. 3D Printing in medicine: Technology overview and drug delivery applications. J 3D print med. 2021;4:100037. https://doi.org/10.1016/j.stlm.2021.100037
  • [14] Grof Z, Štěpánek F. Artificial intelligence based design of 3D-printed tablets for personalised medicine. Comput Chem Eng. 2021;154:107492. https://doi.org/10.1016/j.compchemeng.2021.107492
  • [15] Tiboni M, Tiboni M, Pierro A, Del Papa M, Sparaventi S, Cespi M, Casettari L. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Int J Pharm. 2021;599:120464. https://doi.org/10.1016/j.ijpharm.2021.120464
  • [16] Liang Y, Liu Q, Liu S, Li X, Li Y, Zhang M. One-step 3D printed flow cells using single transparent material for flow injection spectrophotometry. Talanta. 2019;201:460-464. https://doi.org/10.1016/j.talanta.2019.04.009
  • [17] Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: An appealing route for customized drug delivery systems. Int J Pharm. 2020;588:119732. https://doi.org/10.1016/j.ijpharm.2020.119732
  • [18 ] Beg S, Almalki WH, Malik A, Farhan M, Aatif M, Rahman Z, Alruwaili NK, Alrobaian M, Tarique M, Rahman M. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020;25(9):1668-1681. https://doi.org/10.1016/j.drudis.2020.07.007
  • [19] Afsana, Jain V, Haider N, Jain K. 3D Printing in Personalized Drug Delivery. Curr Pharm Des. 2018;24(42):5062-5071. https://doi.org/10.2174/1381612825666190215122208
  • [20] Vaz VM, Kumar L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech. 2021;22(1):49. https://doi.org/10.1208/s12249-020-01905-8
  • [21] Öblom H, Zhang J, Pimparade M, Speer I, Preis M, Repka M, Sandler N. 3D-Printed Isoniazid Tablets for the Treatment and Prevention of Tuberculosis-Personalized Dosing and Drug Release. AAPS PharmSciTech. 2019;20(2):52. https://doi.org/10.1208/s12249-018-1233-7
  • [22] Lu A, Williams RO, 3rd, Maniruzzaman M. 3D printing of biologics-what has been accomplished to date? Drug Discov Today. 2024;29(1):103823. https://doi.org/10.1016/j.drudis.2023.103823
  • [23] Preis M, Öblom H. 3D-Printed Drugs for Children-Are We Ready Yet? AAPS PharmSciTech. 2017;18(2):303-308. https://doi.org/10.1208/s12249-016-0704-y
  • [24] Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. 3D printed medicine for the management of chronic diseases: The road less travelled. J 3D print med. 2022;5:100043. https://doi.org/10.1016/j.stlm.2021.100043
  • [25] Jain K, Shukla R, Yadav A, Ujjwal RR, Flora SJS. 3D Printing in Development of Nanomedicines. Nanomaterials (Basel). 2021;11(2). https://doi.org/10.3390/nano11020420
  • [26] Lakkala P, Munnangi SR, Bandari S, Repka M. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int J Pharm X. 2023;5:100159. https://doi.org/10.1016/j.ijpx.2023.100159
  • [27] Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J Control Release. 2021;330:821-841. https://doi.org/10.1016/j.jconrel.2020.10.056
  • [28] Yan TT, Lv ZF, Tian P, Lin MM, Lin W, Huang SY, Chen YZ. Semi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacy. Drug Dev Ind Pharm. 2020;46(4):531-538. https://doi.org/10.1080/03639045.2020.1734018
  • [29] Zheng Y, Deng F, Wang B, Wu Y, Luo Q, Zuo X, Liu X, Cao L, Li M, Lu H, Cheng S, Li X. Melt extrusion deposition (MED™) 3D printing technology - A paradigm shift in design and development of modified release drug products. Int J Pharm. 2021;602:120639. https://doi.org/10.1016/j.ijpharm.2021.120639
  • [30] Wang S, Chen X, Han X, Hong X, Li X, Zhang H, Li M, Wang Z, Zheng A. A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics. 2023;15(2). https://doi.org/10.3390/pharmaceutics15020416
  • [31] Alahnoori A, Badrossamay M, Foroozmehr E. Characterization of hydroxyapatite powders and selective laser sintering of its composite with polyamide. Mater Chem Phys. 2023;296:127316. https://doi.org/10.1016/j.matchemphys.2023.127316
  • [32] Bagheri Saed A, Behravesh AH, Hasannia S, Alavinasab Ardebili SA, Akhoundi B, Pourghayoumi M. Functionalized poly l-lactic acid synthesis and optimization of process parameters for 3D printing of porous scaffolds via digital light processing (DLP) method. J Manuf Process. 2020;56:550-561. https://doi.org/10.1016/j.jmapro.2020.04.076
  • [33] Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313-317. https://doi.org/10.1016/j.ijpharm.2017.09.003
  • [34] Lu A, Zhang J, Jiang J, Zhang Y, Giri BR, Kulkarni VR, Aghda NH, Wang J, Maniruzzaman M. Novel 3D Printed Modular Tablets Containing Multiple Anti-Viral Drugs: a Case of High Precision Drop-on-Demand Drug Deposition. Pharm Res. 2022;39(11):2905-2918. https://doi.org/10.1007/s11095-022-03378-9
  • [35] Hangge P, Pershad Y, Witting AA, Albadawi H, Oklu R. Three-dimensional (3D) printing and its applications for aortic diseases. Cardiovasc Diagn Ther. 2018;8(Suppl 1):S19-s25. https://doi.org/10.21037/cdt.2017.10.02
  • [36] Shaqour B, Samaro A, Verleije B, Beyers K, Vervaet C, Cos P. Production of Drug Delivery Systems Using Fused Filament Fabrication: A Systematic Review. Pharmaceutics. 2020;12(6). https://doi.org/10.3390/pharmaceutics12060517
  • [37] Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39-50. https://doi.org/10.1016/j.addr.2016.03.001
  • [38] Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355-363. https://doi.org/10.1016/j.jconrel.2017.11.022
  • [39] Verstraete G, Samaro A, Grymonpré W, Vanhoorne V, Van Snick B, Boone MN, Hellemans T, Van Hoorebeke L, Remon JP, Vervaet C. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm. 2018;536(1):318-325. https://doi.org/10.1016/j.ijpharm.2017.12.002
  • [40] Goyanes A, Madla CM, Umerji A, Duran Piñeiro G, Giraldez Montero JM, Lamas Diaz MJ, Gonzalez Barcia M, Taherali F, Sánchez-Pintos P, Couce ML, Gaisford S, Basit AW. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. Int J Pharm. 2019;567:118497. https://doi.org/10.1016/j.ijpharm.2019.118497
  • [41] Barakh Ali SF, Mohamed EM, Ozkan T, Kuttolamadom MA, Khan MA, Asadi A, Rahman Z. Understanding the effects of formulation and process variables on the printlets quality manufactured by selective laser sintering 3D printing. Int J Pharm. 2019;570:118651. https://doi.org/10.1016/j.ijpharm.2019.118651
  • [42] Xu X, Seijo-Rabina A, Awad A, Rial C, Gaisford S, Basit AW, Goyanes A. Smartphone-enabled 3D printing of medicines. Int J Pharm. 2021;609:121199. https://doi.org/10.1016/j.ijpharm.2021.121199
  • [43] Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol. 2015;30:360-367. https://doi.org/10.1016/j.jddst.2015.07.016
  • [44] Goyanes A, Fernández-Ferreiro A, Majeed A, Gomez-Lado N, Awad A, Luaces-Rodríguez A, Gaisford S, Aguiar P, Basit AW. PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int J Pharm. 2018;536(1):158-164. https://doi.org/10.1016/j.ijpharm.2017.11.055
  • [45] Gaurkhede SG, Osipitan OO, Dromgoole G, Spencer SA, Pasqua AJD, Deng J. 3D Printing and Dissolution Testing of Novel Capsule Shells for Use in Delivering Acetaminophen. J Pharm Sci. 2021;110(12):3829-3837. https://doi.org/10.1016/j.xphs.2021.08.030
  • [46] Russi L, Del Gaudio C. 3D printed multicompartmental capsules for a progressive drug release. J 3D print med. 2021;3:100026. https://doi.org/10.1016/j.stlm.2021.100026
  • [47] Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A, Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev. 2021;174:294-316. https://doi.org/10.1016/j.addr.2021.04.019
  • [48] Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539(1-2):75-82. https://doi.org/10.1016/j.ijpharm.2018.01.036
  • [49] Tiboni M, Campana R, Frangipani E, Casettari L. 3D printed clotrimazole intravaginal ring for the treatment of recurrent vaginal candidiasis. Int J Pharm. 2021;596:120290. https://doi.org/10.1016/j.ijpharm.2021.120290
  • [50] Arany P, Papp I, Zichar M, Regdon G, Jr., Béres M, Szalóki M, Kovács R, Fehér P, Ujhelyi Z, Vecsernyés M, Bácskay I. Manufacturing and Examination of Vaginal Drug Delivery System by FDM 3D Printing. Pharmaceutics. 2021;13(10). https://doi.org/10.3390/pharmaceutics13101714
  • [51] Coudray MS, Madhivanan P. Bacterial vaginosis-A brief synopsis of the literature. Eur J Obstet Gynecol Reprod Biol. 2020;245:143-148. https://doi.org/10.1016/j.ejogrb.2019.12.035
  • [52] Ugwumadu AH, Hay P. Bacterial vaginosis: sequelae and management. Curr Opin Infect Dis. 1999;12(1):53-59. https://doi.org/10.1097/00001432-199902000-00010
  • [53] Utomo E, Domínguez-Robles J, Anjani QK, Picco CJ, Korelidou A, Magee E, Donnelly RF, Larrañeta E. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X. 2023;5:100142. https://doi.org/10.1016/j.ijpx.2022.100142
  • [54] Teo AL, Shearwood C, Ng KC, Lu J, Moochhala S. Transdermal microneedles for drug delivery applications. J mater sci eng, B. 2006;132(1):151-154. https://doi.org/10.1016/j.mseb.2006.02.008
  • [55] Yadav PR, Dobson LJ, Pattanayek SK, Das DB. Swellable microneedles based transdermal drug delivery: Mathematical model development and numerical experiments. Chem Eng Sci. 2022;247:117005. https://doi.org/10.1016/j.ces.2021.117005
  • [56] Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249-1258. https://doi.org/10.1016/j.biopha.2018.10.078
  • [57] Chen Z, Wu H, Zhao S, Chen X, Wei T, Peng H, Chen Z. 3D-Printed Integrated Ultrasonic Microneedle Array for Rapid Transdermal Drug Delivery. Mol Pharm. 2022;19(9):3314-3322. https://doi.org/10.1021/acs.molpharmaceut.2c00466
  • [58] Elbadawi M, McCoubrey LE, Gavins FKH, Ong JJ, Goyanes A, Gaisford S, Basit AW. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev. 2021;175:113805. https://doi.org/10.1016/j.addr.2021.05.015
  • [59] Bagde A, Dev S, Madhavi KSL, Spencer SD, Kalvala A, Nathani A, Salau O, Mosley-Kellum K, Dalvaigari H, Rajaraman S, Kundu A, Singh M. Biphasic burst and sustained transdermal delivery in vivo using an AI-optimized 3D-printed MN patch. Int J Pharm. 2023;636:122647. https://doi.org/10.1016/j.ijpharm.2023.122647
  • [60] Meng F, Hasan A, Mahdi Nejadi Babadaei M, Hashemi Kani P, Jouya Talaei A, Sharifi M, Cai T, Falahati M, Cai Y. Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems. J Adv Res. 2020;26:137-147. https://doi.org/10.1016/j.jare.2020.07.017
  • [61] Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208. https://doi.org/10.1007/s13346-021-01006-4
  • [62] Ha J-H, Kim JY, Kim D, Ahn J, Jeong Y, Ko J, Hwang S, Jeon S, Jung Y, Gu J, Han H, Choi J, Lee G, Bok M, Park SA, Cho YS, Jeong J-H, Park I. Multifunctional Micro/Nanofiber Based-Dressing Patch with Healing, Protection, and Monitoring Capabilities for Advanced Wound Care. Adv Mater Technol. 2023;8(7):2201765. https://doi.org/10.1002/admt.202201765
  • [63] Al-Kubaisi MW, Al-Ghurabi BH, Alkubaisy W, Abdullah NN. Anti-inflammatory effects of manuka honey on salivary cytokines (clinical study). JBCD. 2023;35(1):10-19. https://doi.org/10.26477/jbcd.v35i1.3310
  • [64] Brites A, Ferreira M, Bom S, Grenho L, Claudio R, Gomes PS, Fernandes MH, Marto J, Santos C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int J Pharm. 2023;632:122541. https://doi.org/10.1016/j.ijpharm.2022.122541
  • [65] Tagami T, Hayashi N, Sakai N, Ozeki T. 3D printing of unique water-soluble polymer-based suppository shell for controlled drug release. Int J Pharm. 2019;568:118494. https://doi.org/10.1016/j.ijpharm.2019.118494
  • [66] Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J Control Release. 2021;332:367-389. https://doi.org/10.1016/j.jconrel.2021.02.027
  • [67] Chatzitaki A-T, Tsongas K, Tzimtzimis EK, Tzetzis D, Bouropoulos N, Barmpalexis P, Eleftheriadis GK, Fatouros DG. 3D printing of patient-tailored SNEDDS-based suppositories of lidocaine. J Drug Deliv Sci Technol. 2021;61:102292. https://doi.org/10.1016/j.jddst.2020.102292
  • [68] Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, Ziade N, Hashash JG. A comprehensive review and update on ulcerative colitis(). Dis Mon. 2019;65(12):100851. https://doi.org/10.1016/j.disamonth.2019.02.004
  • [69] Lawrance IC, Baird A, Lightower D, Radford-Smith G, Andrews JM, Connor S. Efficacy of Rectal Tacrolimus for Induction Therapy in Patients With Resistant Ulcerative Proctitis. Clin Gastroenterol Hepatol. 2017;15(8):1248-1255. https://doi.org/10.1016/j.cgh.2017.02.027
  • [70] Seoane-Viaño I, Gómez-Lado N, Lázare-Iglesias H, García-Otero X, Antúnez-López JR, Ruibal Á, Varela-Correa JJ, Aguiar P, Basit AW, Otero-Espinar FJ, González-Barcia M, Goyanes A, Luzardo-Álvarez A, Fernández-Ferreiro A. 3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease. Biomedicines. 2020;8(12). https://doi.org/10.3390/biomedicines8120563
  • [71] Seoane-Viaño I, Ong JJ, Luzardo-Álvarez A, González-Barcia M, Basit AW, Otero-Espinar FJ, Goyanes A. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110-119. https://doi.org/10.1016/j.ajps.2020.06.003
  • [72] Holvoet T, Lobaton T, Hindryckx P. Optimal Management of Acute Severe Ulcerative Colitis (ASUC): Challenges and Solutions. Clin Exp Gastroenterol. 2021;14:71-81. https://doi.org/10.2147/ceg.S197719
  • [73] Awad A, Fina F, Trenfield SJ, Patel P, Goyanes A, Gaisford S, Basit AW. 3D Printed Pellets (Miniprintlets): A Novel, Multi-Drug, Controlled Release Platform Technology. Pharmaceutics. 2019;11(4). https://doi.org/10.3390/pharmaceutics11040148
  • [74] Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X. 2023;5:100165. https://doi.org/10.1016/j.ijpx.2023.100165
  • [75] Sartor RB. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390-407. https://doi.org/10.1038/ncpgasthep0528
  • [76] Jakubczyk D, Leszczyńska K, Górska S. The Effectiveness of Probiotics in the Treatment of Inflammatory Bowel Disease (IBD)-A Critical Review. Nutrients. 2020;12(7). https://doi.org/10.3390/nu12071973
  • [77] Melsheimer R, Geldhof A, Apaolaza I, Schaible T. Remicade(®) (infliximab): 20 years of contributions to science and medicine. Biologics. 2019;13:139-178. https://doi.org/10.2147/btt.S207246
  • [78] Awad A, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed infliximab suppositories for rectal biologic delivery. Int J Pharm X. 2023;5:100176. https://doi.org/10.1016/j.ijpx.2023.100176
  • [79] Fadeel B, Alexiou C. Brave new world revisited: Focus on nanomedicine. Biochem Biophys Res Commun. 2020;533(1):36-49. https://doi.org/10.1016/j.bbrc.2020.08.046
  • [80] Okafor-Muo OL, Hassanin H, Kayyali R, ElShaer A. 3D Printing of Solid Oral Dosage Forms: Numerous Challenges With Unique Opportunities. J Pharm Sci. 2020;109(12):3535-3550. https://doi.org/10.1016/j.xphs.2020.08.029
  • [81] Paramasivam G, Palem VV, Sundaram T, Sundaram V, Kishore SC, Bellucci S. Nanomaterials: Synthesis and Applications in Theranostics. Nanomaterials (Basel). 2021;11(12). https://doi.org/10.3390/nano11123228
  • [82] Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Rajkumar N, El-Hamshary H, El-Newehy M. Electrospun nanofibers for drug delivery applications: Methods and mechanism. Polym Adv Technol. 2023;34(1):6-23. https://doi.org/10.1002/pat.5884
  • [83] Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504-534. https://doi.org/10.1016/j.addr.2021.05.007
  • [84] Bandyopadhyay A, Mitra I, Bose S. 3D Printing for Bone Regeneration. Curr Osteoporos Rep. 2020;18(5):505-514. https://doi.org/10.1007/s11914-020-00606-2
  • [85] Olmos-Juste R, Alonso-Lerma B, Pérez-Jiménez R, Gabilondo N, Eceiza A. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Carbohydr Polym. 2021;264:118026. https://doi.org/10.1016/j.carbpol.2021.118026
  • [86] Dibazar ZE, Nie L, Azizi M, Nekounam H, Hamidi M, Shavandi A, Izadi Z, Delattre C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. Materials (Basel). 2023;16(7). https://doi.org/10.3390/ma16072799
  • [87] Geng M, Zhang Q, Gu J, Yang J, Du H, Jia Y, Zhou X, He C. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Biomater Sci. 2021;9(7):2631-2646. https://doi.org/10.1039/d0bm02058c
  • [88] Mazeeva A, Masaylo D, Razumov N, Konov G, Popovich A. 3D Printing Technologies for Fabrication of Magnetic Materials Based on Metal-Polymer Composites: A Review. Materials (Basel). 2023;16(21). https://doi.org/10.3390/ma16216928
  • [89] Xu W, Jambhulkar S, Ravichandran D, Zhu Y, Kakarla M, Nian Q, Azeredo B, Chen X, Jin K, Vernon B, Lott DG, Cornella JL, Shefi O, Miquelard-Garnier G, Yang Y, Song K. 3D Printing-Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. Small. 2021;17(45):e2100817. https://doi.org/10.1002/smll.202100817
  • [90] Ninan N, Joseph B, Visalakshan RM, Bright R, Denoual C, Zilm P, Dalvi YB, Priya PV, Mathew A, Grohens Y, Kalarikkal N, Vasilev K, Thomas S. Plasma assisted design of biocompatible 3D printed PCL/silver nanoparticle scaffolds: in vitro and in vivo analyses. Mater. 2021;2(20):6620-6630. 10.1039/D1MA00444A.
  • [91] Qu X, Wang M, Wang M, Tang H, Zhang S, Yang H, Yuan W, Wang Y, Yang J, Yue B. Multi-Mode Antibacterial Strategies Enabled by Gene-Transfection and Immunomodulatory Nanoparticles in 3D-Printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections. Adv Mater. 2022;34(18):e2200096. https://doi.org/10.1002/adma.202200096
  • [92] Zhang B, Li S, Zhang Z, Meng Z, He J, Ramakrishna S, Zhang C. Intelligent biomaterials for micro and nanoscale 3D printing. Curr Opin Biomed. 2023;26:100454. https://doi.org/10.1016/j.cobme.2023.100454
  • [93] Sánchez-Salcedo S, García A, González-Jiménez A, Vallet-Regí M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater. 2023;155:654-666. https://doi.org/10.1016/j.actbio.2022.10.045
  • [94] Kotta S, Nair A, Alsabeelah N. 3D Printing Technology in Drug Delivery: Recent Progress and Application. Curr Pharm Des. 2018;24(42):5039-5048. https://doi.org/10.2174/1381612825666181206123828
  • [95] Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope. Pharmaceutics. 2023;15(5). https://doi.org/10.3390/pharmaceutics15051448
  • [96] Sanders SN, Schloemer TH, Gangishetty MK, Anderson D, Seitz M, Gallegos AO, Stokes RC, Congreve DN. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature. 2022;604(7906):474-478. https://doi.org/10.1038/s41586-022-04485-8
  • [97] Rupp H, Binder WH. 3D Printing of Core–Shell Capsule Composites for Post-Reactive and Damage Sensing Applications. Adv Mater Technol. 2020;5(11):2000509. https://doi.org/10.1002/admt.202000509
  • [98] de Oliveira TV, de Oliveira RS, Dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: An original application of the semisolid extrusion technique. Int J Pharm. 2022;624:122029. https://doi.org/10.1016/j.ijpharm.2022.122029
  • [99] Li H, Tan C, Li L. Review of 3D printable hydrogels and constructs. Mater Des. 2018;159:20-38. https://doi.org/10.1016/j.matdes.2018.08.023
  • [100] Kuo C-C, Qin H, Cheng Y, Jiang X, Shi X. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying. Food Hydrocolloids. 2021;111:106262. https://doi.org/10.1016/j.foodhyd.2020.106262
  • [101] Rajabi M, McConnell M, Cabral J, Ali MA. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym. 2021;260:117768. https://doi.org/10.1016/j.carbpol.2021.117768
  • [102] Wei Q, Zhou J, An Y, Li M, Zhang J, Yang S. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol. 2023;232:123450. https://doi.org/10.1016/j.ijbiomac.2023.123450
  • [103] Merino-Gómez M, Gil J, Perez RA, Godoy-Gallardo M. Polydopamine Incorporation Enhances Cell Differentiation and Antibacterial Properties of 3D-Printed Guanosine-Borate Hydrogels for Functional Tissue Regeneration. Int J Mol Sci. 2023;24(4). https://doi.org/10.3390/ijms24044224
  • [104] Bauman L, Zhao B. Multi-thermo responsive double network composite hydrogel for 3D printing medical hydrogel mask. J Colloid Interface Sci. 2023;638:882-892. https://doi.org/10.1016/j.jcis.2023.02.021
Yıl 2024, Cilt: 28 Sayı: 3, 828 - 843, 28.06.2025

Öz

Kaynakça

  • [1] Dumpa N, Butreddy A, Wang H, Komanduri N, Bandari S, Repka MA. 3D printing in personalized drug delivery: An overview of hot-melt extrusion-based fused deposition modeling. Int J Pharm. 2021;600:120501. https://doi.org/10.1016/j.ijpharm.2021.120501
  • [2] Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547-1555. https://doi.org/10.1016/j.drudis.2018.05.025
  • [3] Kassem T, Sarkar T, Nguyen T, Saha D, Ahsan F. 3D Printing in Solid Dosage Forms and Organ-on-Chip Applications. Biosensors (Basel). 2022;12(4). https://doi.org/10.3390/bios12040186
  • [4] Healy AV, Fuenmayor E, Doran P, Geever LM, Higginbotham CL, Lyons JG. Additive Manufacturing of Personalized Pharmaceutical Dosage Forms via Stereolithography. Pharmaceutics. 2019;11(12). https://doi.org/10.3390/pharmaceutics11120645
  • [5] Gioumouxouzis CI, Katsamenis OL, Bouropoulos N, Fatouros DG. 3D printed oral solid dosage forms containing hydrochlorothiazide for controlled drug delivery. J Drug Deliv Sci Technol. 2017;40:164-171. https://doi.org/10.1016/j.jddst.2017.06.008
  • [6] Gillispie G, Prim P, Copus J, Fisher J, Mikos AG, Yoo JJ, Atala A, Lee SJ. Assessment methodologies for extrusion-based bioink printability. Biofabrication. 2020;12(2):022003. https://doi.org/10.1088/1758-5090/ab6f0d
  • [7] Bhatt PM, Kabir AM, Peralta M, Bruck HA, Gupta SK. A robotic cell for performing sheet lamination-based additive manufacturing. Addit Manuf. 2019;27:278-289. https://doi.org/10.1016/j.addma.2019.02.002
  • [8] Sen K, Mehta T, Sansare S, Sharifi L, Ma AWK, Chaudhuri B. Pharmaceutical applications of powder-based binder jet 3D printing process - A review. Adv Drug Deliv Rev. 2021;177:113943. https://doi.org/10.1016/j.addr.2021.113943
  • [9] Zhang J, Chen B, Chen X, Hou X. Liquid-Based Adaptive Structural Materials. Adv Mater. 2021;33(50):e2005664. https://doi.org/10.1002/adma.202005664
  • [10] Seoane-Viaño I, Trenfield SJ, Basit AW, Goyanes A. Translating 3D printed pharmaceuticals: From hype to real-world clinical applications. Adv Drug Deliv Rev. 2021;174:553-575. https://doi.org/10.1016/j.addr.2021.05.003
  • [11] Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110-115. https://doi.org/10.1016/j.bioactmat.2019.12.003
  • [12] Trenfield SJ, Awad A, Madla CM, Hatton GB, Firth J, Goyanes A, Gaisford S, Basit AW. Shaping the future: recent advances of 3D printing in drug delivery and healthcare. Expert Opin Drug Deliv. 2019;16(10):1081-1094. https://doi.org/10.1080/17425247.2019.1660318
  • [13] Mohammed AA, Algahtani MS, Ahmad MZ, Ahmad J, Kotta S. 3D Printing in medicine: Technology overview and drug delivery applications. J 3D print med. 2021;4:100037. https://doi.org/10.1016/j.stlm.2021.100037
  • [14] Grof Z, Štěpánek F. Artificial intelligence based design of 3D-printed tablets for personalised medicine. Comput Chem Eng. 2021;154:107492. https://doi.org/10.1016/j.compchemeng.2021.107492
  • [15] Tiboni M, Tiboni M, Pierro A, Del Papa M, Sparaventi S, Cespi M, Casettari L. Microfluidics for nanomedicines manufacturing: An affordable and low-cost 3D printing approach. Int J Pharm. 2021;599:120464. https://doi.org/10.1016/j.ijpharm.2021.120464
  • [16] Liang Y, Liu Q, Liu S, Li X, Li Y, Zhang M. One-step 3D printed flow cells using single transparent material for flow injection spectrophotometry. Talanta. 2019;201:460-464. https://doi.org/10.1016/j.talanta.2019.04.009
  • [17] Elkasabgy NA, Mahmoud AA, Maged A. 3D printing: An appealing route for customized drug delivery systems. Int J Pharm. 2020;588:119732. https://doi.org/10.1016/j.ijpharm.2020.119732
  • [18 ] Beg S, Almalki WH, Malik A, Farhan M, Aatif M, Rahman Z, Alruwaili NK, Alrobaian M, Tarique M, Rahman M. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020;25(9):1668-1681. https://doi.org/10.1016/j.drudis.2020.07.007
  • [19] Afsana, Jain V, Haider N, Jain K. 3D Printing in Personalized Drug Delivery. Curr Pharm Des. 2018;24(42):5062-5071. https://doi.org/10.2174/1381612825666190215122208
  • [20] Vaz VM, Kumar L. 3D Printing as a Promising Tool in Personalized Medicine. AAPS PharmSciTech. 2021;22(1):49. https://doi.org/10.1208/s12249-020-01905-8
  • [21] Öblom H, Zhang J, Pimparade M, Speer I, Preis M, Repka M, Sandler N. 3D-Printed Isoniazid Tablets for the Treatment and Prevention of Tuberculosis-Personalized Dosing and Drug Release. AAPS PharmSciTech. 2019;20(2):52. https://doi.org/10.1208/s12249-018-1233-7
  • [22] Lu A, Williams RO, 3rd, Maniruzzaman M. 3D printing of biologics-what has been accomplished to date? Drug Discov Today. 2024;29(1):103823. https://doi.org/10.1016/j.drudis.2023.103823
  • [23] Preis M, Öblom H. 3D-Printed Drugs for Children-Are We Ready Yet? AAPS PharmSciTech. 2017;18(2):303-308. https://doi.org/10.1208/s12249-016-0704-y
  • [24] Varghese R, Salvi S, Sood P, Karsiya J, Kumar D. 3D printed medicine for the management of chronic diseases: The road less travelled. J 3D print med. 2022;5:100043. https://doi.org/10.1016/j.stlm.2021.100043
  • [25] Jain K, Shukla R, Yadav A, Ujjwal RR, Flora SJS. 3D Printing in Development of Nanomedicines. Nanomaterials (Basel). 2021;11(2). https://doi.org/10.3390/nano11020420
  • [26] Lakkala P, Munnangi SR, Bandari S, Repka M. Additive manufacturing technologies with emphasis on stereolithography 3D printing in pharmaceutical and medical applications: A review. Int J Pharm X. 2023;5:100159. https://doi.org/10.1016/j.ijpx.2023.100159
  • [27] Cailleaux S, Sanchez-Ballester NM, Gueche YA, Bataille B, Soulairol I. Fused Deposition Modeling (FDM), the new asset for the production of tailored medicines. J Control Release. 2021;330:821-841. https://doi.org/10.1016/j.jconrel.2020.10.056
  • [28] Yan TT, Lv ZF, Tian P, Lin MM, Lin W, Huang SY, Chen YZ. Semi-solid extrusion 3D printing ODFs: an individual drug delivery system for small scale pharmacy. Drug Dev Ind Pharm. 2020;46(4):531-538. https://doi.org/10.1080/03639045.2020.1734018
  • [29] Zheng Y, Deng F, Wang B, Wu Y, Luo Q, Zuo X, Liu X, Cao L, Li M, Lu H, Cheng S, Li X. Melt extrusion deposition (MED™) 3D printing technology - A paradigm shift in design and development of modified release drug products. Int J Pharm. 2021;602:120639. https://doi.org/10.1016/j.ijpharm.2021.120639
  • [30] Wang S, Chen X, Han X, Hong X, Li X, Zhang H, Li M, Wang Z, Zheng A. A Review of 3D Printing Technology in Pharmaceutics: Technology and Applications, Now and Future. Pharmaceutics. 2023;15(2). https://doi.org/10.3390/pharmaceutics15020416
  • [31] Alahnoori A, Badrossamay M, Foroozmehr E. Characterization of hydroxyapatite powders and selective laser sintering of its composite with polyamide. Mater Chem Phys. 2023;296:127316. https://doi.org/10.1016/j.matchemphys.2023.127316
  • [32] Bagheri Saed A, Behravesh AH, Hasannia S, Alavinasab Ardebili SA, Akhoundi B, Pourghayoumi M. Functionalized poly l-lactic acid synthesis and optimization of process parameters for 3D printing of porous scaffolds via digital light processing (DLP) method. J Manuf Process. 2020;56:550-561. https://doi.org/10.1016/j.jmapro.2020.04.076
  • [33] Martinez PR, Goyanes A, Basit AW, Gaisford S. Fabrication of drug-loaded hydrogels with stereolithographic 3D printing. Int J Pharm. 2017;532(1):313-317. https://doi.org/10.1016/j.ijpharm.2017.09.003
  • [34] Lu A, Zhang J, Jiang J, Zhang Y, Giri BR, Kulkarni VR, Aghda NH, Wang J, Maniruzzaman M. Novel 3D Printed Modular Tablets Containing Multiple Anti-Viral Drugs: a Case of High Precision Drop-on-Demand Drug Deposition. Pharm Res. 2022;39(11):2905-2918. https://doi.org/10.1007/s11095-022-03378-9
  • [35] Hangge P, Pershad Y, Witting AA, Albadawi H, Oklu R. Three-dimensional (3D) printing and its applications for aortic diseases. Cardiovasc Diagn Ther. 2018;8(Suppl 1):S19-s25. https://doi.org/10.21037/cdt.2017.10.02
  • [36] Shaqour B, Samaro A, Verleije B, Beyers K, Vervaet C, Cos P. Production of Drug Delivery Systems Using Fused Filament Fabrication: A Systematic Review. Pharmaceutics. 2020;12(6). https://doi.org/10.3390/pharmaceutics12060517
  • [37] Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39-50. https://doi.org/10.1016/j.addr.2016.03.001
  • [38] Sadia M, Arafat B, Ahmed W, Forbes RT, Alhnan MA. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets. J Control Release. 2018;269:355-363. https://doi.org/10.1016/j.jconrel.2017.11.022
  • [39] Verstraete G, Samaro A, Grymonpré W, Vanhoorne V, Van Snick B, Boone MN, Hellemans T, Van Hoorebeke L, Remon JP, Vervaet C. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm. 2018;536(1):318-325. https://doi.org/10.1016/j.ijpharm.2017.12.002
  • [40] Goyanes A, Madla CM, Umerji A, Duran Piñeiro G, Giraldez Montero JM, Lamas Diaz MJ, Gonzalez Barcia M, Taherali F, Sánchez-Pintos P, Couce ML, Gaisford S, Basit AW. Automated therapy preparation of isoleucine formulations using 3D printing for the treatment of MSUD: First single-centre, prospective, crossover study in patients. Int J Pharm. 2019;567:118497. https://doi.org/10.1016/j.ijpharm.2019.118497
  • [41] Barakh Ali SF, Mohamed EM, Ozkan T, Kuttolamadom MA, Khan MA, Asadi A, Rahman Z. Understanding the effects of formulation and process variables on the printlets quality manufactured by selective laser sintering 3D printing. Int J Pharm. 2019;570:118651. https://doi.org/10.1016/j.ijpharm.2019.118651
  • [42] Xu X, Seijo-Rabina A, Awad A, Rial C, Gaisford S, Basit AW, Goyanes A. Smartphone-enabled 3D printing of medicines. Int J Pharm. 2021;609:121199. https://doi.org/10.1016/j.ijpharm.2021.121199
  • [43] Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol. 2015;30:360-367. https://doi.org/10.1016/j.jddst.2015.07.016
  • [44] Goyanes A, Fernández-Ferreiro A, Majeed A, Gomez-Lado N, Awad A, Luaces-Rodríguez A, Gaisford S, Aguiar P, Basit AW. PET/CT imaging of 3D printed devices in the gastrointestinal tract of rodents. Int J Pharm. 2018;536(1):158-164. https://doi.org/10.1016/j.ijpharm.2017.11.055
  • [45] Gaurkhede SG, Osipitan OO, Dromgoole G, Spencer SA, Pasqua AJD, Deng J. 3D Printing and Dissolution Testing of Novel Capsule Shells for Use in Delivering Acetaminophen. J Pharm Sci. 2021;110(12):3829-3837. https://doi.org/10.1016/j.xphs.2021.08.030
  • [46] Russi L, Del Gaudio C. 3D printed multicompartmental capsules for a progressive drug release. J 3D print med. 2021;3:100026. https://doi.org/10.1016/j.stlm.2021.100026
  • [47] Wang J, Zhang Y, Aghda NH, Pillai AR, Thakkar R, Nokhodchi A, Maniruzzaman M. Emerging 3D printing technologies for drug delivery devices: Current status and future perspective. Adv Drug Deliv Rev. 2021;174:294-316. https://doi.org/10.1016/j.addr.2021.04.019
  • [48] Fu J, Yu X, Jin Y. 3D printing of vaginal rings with personalized shapes for controlled release of progesterone. Int J Pharm. 2018;539(1-2):75-82. https://doi.org/10.1016/j.ijpharm.2018.01.036
  • [49] Tiboni M, Campana R, Frangipani E, Casettari L. 3D printed clotrimazole intravaginal ring for the treatment of recurrent vaginal candidiasis. Int J Pharm. 2021;596:120290. https://doi.org/10.1016/j.ijpharm.2021.120290
  • [50] Arany P, Papp I, Zichar M, Regdon G, Jr., Béres M, Szalóki M, Kovács R, Fehér P, Ujhelyi Z, Vecsernyés M, Bácskay I. Manufacturing and Examination of Vaginal Drug Delivery System by FDM 3D Printing. Pharmaceutics. 2021;13(10). https://doi.org/10.3390/pharmaceutics13101714
  • [51] Coudray MS, Madhivanan P. Bacterial vaginosis-A brief synopsis of the literature. Eur J Obstet Gynecol Reprod Biol. 2020;245:143-148. https://doi.org/10.1016/j.ejogrb.2019.12.035
  • [52] Ugwumadu AH, Hay P. Bacterial vaginosis: sequelae and management. Curr Opin Infect Dis. 1999;12(1):53-59. https://doi.org/10.1097/00001432-199902000-00010
  • [53] Utomo E, Domínguez-Robles J, Anjani QK, Picco CJ, Korelidou A, Magee E, Donnelly RF, Larrañeta E. Development of 3D-printed vaginal devices containing metronidazole for alternative bacterial vaginosis treatment. Int J Pharm X. 2023;5:100142. https://doi.org/10.1016/j.ijpx.2022.100142
  • [54] Teo AL, Shearwood C, Ng KC, Lu J, Moochhala S. Transdermal microneedles for drug delivery applications. J mater sci eng, B. 2006;132(1):151-154. https://doi.org/10.1016/j.mseb.2006.02.008
  • [55] Yadav PR, Dobson LJ, Pattanayek SK, Das DB. Swellable microneedles based transdermal drug delivery: Mathematical model development and numerical experiments. Chem Eng Sci. 2022;247:117005. https://doi.org/10.1016/j.ces.2021.117005
  • [56] Waghule T, Singhvi G, Dubey SK, Pandey MM, Gupta G, Singh M, Dua K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed Pharmacother. 2019;109:1249-1258. https://doi.org/10.1016/j.biopha.2018.10.078
  • [57] Chen Z, Wu H, Zhao S, Chen X, Wei T, Peng H, Chen Z. 3D-Printed Integrated Ultrasonic Microneedle Array for Rapid Transdermal Drug Delivery. Mol Pharm. 2022;19(9):3314-3322. https://doi.org/10.1021/acs.molpharmaceut.2c00466
  • [58] Elbadawi M, McCoubrey LE, Gavins FKH, Ong JJ, Goyanes A, Gaisford S, Basit AW. Harnessing artificial intelligence for the next generation of 3D printed medicines. Adv Drug Deliv Rev. 2021;175:113805. https://doi.org/10.1016/j.addr.2021.05.015
  • [59] Bagde A, Dev S, Madhavi KSL, Spencer SD, Kalvala A, Nathani A, Salau O, Mosley-Kellum K, Dalvaigari H, Rajaraman S, Kundu A, Singh M. Biphasic burst and sustained transdermal delivery in vivo using an AI-optimized 3D-printed MN patch. Int J Pharm. 2023;636:122647. https://doi.org/10.1016/j.ijpharm.2023.122647
  • [60] Meng F, Hasan A, Mahdi Nejadi Babadaei M, Hashemi Kani P, Jouya Talaei A, Sharifi M, Cai T, Falahati M, Cai Y. Polymeric-based microneedle arrays as potential platforms in the development of drugs delivery systems. J Adv Res. 2020;26:137-147. https://doi.org/10.1016/j.jare.2020.07.017
  • [61] Khosraviboroujeni A, Mirdamadian SZ, Minaiyan M, Taheri A. Preparation and characterization of 3D printed PLA microneedle arrays for prolonged transdermal drug delivery of estradiol valerate. Drug Deliv Transl Res. 2022;12(5):1195-1208. https://doi.org/10.1007/s13346-021-01006-4
  • [62] Ha J-H, Kim JY, Kim D, Ahn J, Jeong Y, Ko J, Hwang S, Jeon S, Jung Y, Gu J, Han H, Choi J, Lee G, Bok M, Park SA, Cho YS, Jeong J-H, Park I. Multifunctional Micro/Nanofiber Based-Dressing Patch with Healing, Protection, and Monitoring Capabilities for Advanced Wound Care. Adv Mater Technol. 2023;8(7):2201765. https://doi.org/10.1002/admt.202201765
  • [63] Al-Kubaisi MW, Al-Ghurabi BH, Alkubaisy W, Abdullah NN. Anti-inflammatory effects of manuka honey on salivary cytokines (clinical study). JBCD. 2023;35(1):10-19. https://doi.org/10.26477/jbcd.v35i1.3310
  • [64] Brites A, Ferreira M, Bom S, Grenho L, Claudio R, Gomes PS, Fernandes MH, Marto J, Santos C. Fabrication of antibacterial and biocompatible 3D printed Manuka-Gelatin based patch for wound healing applications. Int J Pharm. 2023;632:122541. https://doi.org/10.1016/j.ijpharm.2022.122541
  • [65] Tagami T, Hayashi N, Sakai N, Ozeki T. 3D printing of unique water-soluble polymer-based suppository shell for controlled drug release. Int J Pharm. 2019;568:118494. https://doi.org/10.1016/j.ijpharm.2019.118494
  • [66] Seoane-Viaño I, Januskaite P, Alvarez-Lorenzo C, Basit AW, Goyanes A. Semi-solid extrusion 3D printing in drug delivery and biomedicine: Personalised solutions for healthcare challenges. J Control Release. 2021;332:367-389. https://doi.org/10.1016/j.jconrel.2021.02.027
  • [67] Chatzitaki A-T, Tsongas K, Tzimtzimis EK, Tzetzis D, Bouropoulos N, Barmpalexis P, Eleftheriadis GK, Fatouros DG. 3D printing of patient-tailored SNEDDS-based suppositories of lidocaine. J Drug Deliv Sci Technol. 2021;61:102292. https://doi.org/10.1016/j.jddst.2020.102292
  • [68] Gajendran M, Loganathan P, Jimenez G, Catinella AP, Ng N, Umapathy C, Ziade N, Hashash JG. A comprehensive review and update on ulcerative colitis(). Dis Mon. 2019;65(12):100851. https://doi.org/10.1016/j.disamonth.2019.02.004
  • [69] Lawrance IC, Baird A, Lightower D, Radford-Smith G, Andrews JM, Connor S. Efficacy of Rectal Tacrolimus for Induction Therapy in Patients With Resistant Ulcerative Proctitis. Clin Gastroenterol Hepatol. 2017;15(8):1248-1255. https://doi.org/10.1016/j.cgh.2017.02.027
  • [70] Seoane-Viaño I, Gómez-Lado N, Lázare-Iglesias H, García-Otero X, Antúnez-López JR, Ruibal Á, Varela-Correa JJ, Aguiar P, Basit AW, Otero-Espinar FJ, González-Barcia M, Goyanes A, Luzardo-Álvarez A, Fernández-Ferreiro A. 3D Printed Tacrolimus Rectal Formulations Ameliorate Colitis in an Experimental Animal Model of Inflammatory Bowel Disease. Biomedicines. 2020;8(12). https://doi.org/10.3390/biomedicines8120563
  • [71] Seoane-Viaño I, Ong JJ, Luzardo-Álvarez A, González-Barcia M, Basit AW, Otero-Espinar FJ, Goyanes A. 3D printed tacrolimus suppositories for the treatment of ulcerative colitis. Asian J Pharm Sci. 2021;16(1):110-119. https://doi.org/10.1016/j.ajps.2020.06.003
  • [72] Holvoet T, Lobaton T, Hindryckx P. Optimal Management of Acute Severe Ulcerative Colitis (ASUC): Challenges and Solutions. Clin Exp Gastroenterol. 2021;14:71-81. https://doi.org/10.2147/ceg.S197719
  • [73] Awad A, Fina F, Trenfield SJ, Patel P, Goyanes A, Gaisford S, Basit AW. 3D Printed Pellets (Miniprintlets): A Novel, Multi-Drug, Controlled Release Platform Technology. Pharmaceutics. 2019;11(4). https://doi.org/10.3390/pharmaceutics11040148
  • [74] Awad A, Hollis E, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed multi-drug-loaded suppositories for acute severe ulcerative colitis. Int J Pharm X. 2023;5:100165. https://doi.org/10.1016/j.ijpx.2023.100165
  • [75] Sartor RB. Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol. 2006;3(7):390-407. https://doi.org/10.1038/ncpgasthep0528
  • [76] Jakubczyk D, Leszczyńska K, Górska S. The Effectiveness of Probiotics in the Treatment of Inflammatory Bowel Disease (IBD)-A Critical Review. Nutrients. 2020;12(7). https://doi.org/10.3390/nu12071973
  • [77] Melsheimer R, Geldhof A, Apaolaza I, Schaible T. Remicade(®) (infliximab): 20 years of contributions to science and medicine. Biologics. 2019;13:139-178. https://doi.org/10.2147/btt.S207246
  • [78] Awad A, Goyanes A, Orlu M, Gaisford S, Basit AW. 3D printed infliximab suppositories for rectal biologic delivery. Int J Pharm X. 2023;5:100176. https://doi.org/10.1016/j.ijpx.2023.100176
  • [79] Fadeel B, Alexiou C. Brave new world revisited: Focus on nanomedicine. Biochem Biophys Res Commun. 2020;533(1):36-49. https://doi.org/10.1016/j.bbrc.2020.08.046
  • [80] Okafor-Muo OL, Hassanin H, Kayyali R, ElShaer A. 3D Printing of Solid Oral Dosage Forms: Numerous Challenges With Unique Opportunities. J Pharm Sci. 2020;109(12):3535-3550. https://doi.org/10.1016/j.xphs.2020.08.029
  • [81] Paramasivam G, Palem VV, Sundaram T, Sundaram V, Kishore SC, Bellucci S. Nanomaterials: Synthesis and Applications in Theranostics. Nanomaterials (Basel). 2021;11(12). https://doi.org/10.3390/nano11123228
  • [82] Abdul Hameed MM, Mohamed Khan SAP, Thamer BM, Rajkumar N, El-Hamshary H, El-Newehy M. Electrospun nanofibers for drug delivery applications: Methods and mechanism. Polym Adv Technol. 2023;34(1):6-23. https://doi.org/10.1002/pat.5884
  • [83] Wang Z, Wang Y, Yan J, Zhang K, Lin F, Xiang L, Deng L, Guan Z, Cui W, Zhang H. Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration. Adv Drug Deliv Rev. 2021;174:504-534. https://doi.org/10.1016/j.addr.2021.05.007
  • [84] Bandyopadhyay A, Mitra I, Bose S. 3D Printing for Bone Regeneration. Curr Osteoporos Rep. 2020;18(5):505-514. https://doi.org/10.1007/s11914-020-00606-2
  • [85] Olmos-Juste R, Alonso-Lerma B, Pérez-Jiménez R, Gabilondo N, Eceiza A. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Carbohydr Polym. 2021;264:118026. https://doi.org/10.1016/j.carbpol.2021.118026
  • [86] Dibazar ZE, Nie L, Azizi M, Nekounam H, Hamidi M, Shavandi A, Izadi Z, Delattre C. Bioceramics/Electrospun Polymeric Nanofibrous and Carbon Nanofibrous Scaffolds for Bone Tissue Engineering Applications. Materials (Basel). 2023;16(7). https://doi.org/10.3390/ma16072799
  • [87] Geng M, Zhang Q, Gu J, Yang J, Du H, Jia Y, Zhou X, He C. Construction of a nanofiber network within 3D printed scaffolds for vascularized bone regeneration. Biomater Sci. 2021;9(7):2631-2646. https://doi.org/10.1039/d0bm02058c
  • [88] Mazeeva A, Masaylo D, Razumov N, Konov G, Popovich A. 3D Printing Technologies for Fabrication of Magnetic Materials Based on Metal-Polymer Composites: A Review. Materials (Basel). 2023;16(21). https://doi.org/10.3390/ma16216928
  • [89] Xu W, Jambhulkar S, Ravichandran D, Zhu Y, Kakarla M, Nian Q, Azeredo B, Chen X, Jin K, Vernon B, Lott DG, Cornella JL, Shefi O, Miquelard-Garnier G, Yang Y, Song K. 3D Printing-Enabled Nanoparticle Alignment: A Review of Mechanisms and Applications. Small. 2021;17(45):e2100817. https://doi.org/10.1002/smll.202100817
  • [90] Ninan N, Joseph B, Visalakshan RM, Bright R, Denoual C, Zilm P, Dalvi YB, Priya PV, Mathew A, Grohens Y, Kalarikkal N, Vasilev K, Thomas S. Plasma assisted design of biocompatible 3D printed PCL/silver nanoparticle scaffolds: in vitro and in vivo analyses. Mater. 2021;2(20):6620-6630. 10.1039/D1MA00444A.
  • [91] Qu X, Wang M, Wang M, Tang H, Zhang S, Yang H, Yuan W, Wang Y, Yang J, Yue B. Multi-Mode Antibacterial Strategies Enabled by Gene-Transfection and Immunomodulatory Nanoparticles in 3D-Printed Scaffolds for Synergistic Exogenous and Endogenous Treatment of Infections. Adv Mater. 2022;34(18):e2200096. https://doi.org/10.1002/adma.202200096
  • [92] Zhang B, Li S, Zhang Z, Meng Z, He J, Ramakrishna S, Zhang C. Intelligent biomaterials for micro and nanoscale 3D printing. Curr Opin Biomed. 2023;26:100454. https://doi.org/10.1016/j.cobme.2023.100454
  • [93] Sánchez-Salcedo S, García A, González-Jiménez A, Vallet-Regí M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater. 2023;155:654-666. https://doi.org/10.1016/j.actbio.2022.10.045
  • [94] Kotta S, Nair A, Alsabeelah N. 3D Printing Technology in Drug Delivery: Recent Progress and Application. Curr Pharm Des. 2018;24(42):5039-5048. https://doi.org/10.2174/1381612825666181206123828
  • [95] Ahmad J, Garg A, Mustafa G, Mohammed AA, Ahmad MZ. 3D Printing Technology as a Promising Tool to Design Nanomedicine-Based Solid Dosage Forms: Contemporary Research and Future Scope. Pharmaceutics. 2023;15(5). https://doi.org/10.3390/pharmaceutics15051448
  • [96] Sanders SN, Schloemer TH, Gangishetty MK, Anderson D, Seitz M, Gallegos AO, Stokes RC, Congreve DN. Triplet fusion upconversion nanocapsules for volumetric 3D printing. Nature. 2022;604(7906):474-478. https://doi.org/10.1038/s41586-022-04485-8
  • [97] Rupp H, Binder WH. 3D Printing of Core–Shell Capsule Composites for Post-Reactive and Damage Sensing Applications. Adv Mater Technol. 2020;5(11):2000509. https://doi.org/10.1002/admt.202000509
  • [98] de Oliveira TV, de Oliveira RS, Dos Santos J, Funk NL, Petzhold CL, Beck RCR. Redispersible 3D printed nanomedicines: An original application of the semisolid extrusion technique. Int J Pharm. 2022;624:122029. https://doi.org/10.1016/j.ijpharm.2022.122029
  • [99] Li H, Tan C, Li L. Review of 3D printable hydrogels and constructs. Mater Des. 2018;159:20-38. https://doi.org/10.1016/j.matdes.2018.08.023
  • [100] Kuo C-C, Qin H, Cheng Y, Jiang X, Shi X. An integrated manufacturing strategy to fabricate delivery system using gelatin/alginate hybrid hydrogels: 3D printing and freeze-drying. Food Hydrocolloids. 2021;111:106262. https://doi.org/10.1016/j.foodhyd.2020.106262
  • [101] Rajabi M, McConnell M, Cabral J, Ali MA. Chitosan hydrogels in 3D printing for biomedical applications. Carbohydr Polym. 2021;260:117768. https://doi.org/10.1016/j.carbpol.2021.117768
  • [102] Wei Q, Zhou J, An Y, Li M, Zhang J, Yang S. Modification, 3D printing process and application of sodium alginate based hydrogels in soft tissue engineering: A review. Int J Biol Macromol. 2023;232:123450. https://doi.org/10.1016/j.ijbiomac.2023.123450
  • [103] Merino-Gómez M, Gil J, Perez RA, Godoy-Gallardo M. Polydopamine Incorporation Enhances Cell Differentiation and Antibacterial Properties of 3D-Printed Guanosine-Borate Hydrogels for Functional Tissue Regeneration. Int J Mol Sci. 2023;24(4). https://doi.org/10.3390/ijms24044224
  • [104] Bauman L, Zhao B. Multi-thermo responsive double network composite hydrogel for 3D printing medical hydrogel mask. J Colloid Interface Sci. 2023;638:882-892. https://doi.org/10.1016/j.jcis.2023.02.021
Toplam 104 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular İlaç Dağıtım Teknolojileri
Bölüm Articles
Yazarlar

Enfal Eser Alenezi 0009-0005-5993-1656

Oya Kerimoğlu 0000-0003-2619-0490

Timuçin Uğurlu 0000-0002-8874-5941

Yayımlanma Tarihi 28 Haziran 2025
Gönderilme Tarihi 13 Aralık 2023
Kabul Tarihi 8 Şubat 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 28 Sayı: 3

Kaynak Göster

APA Alenezi, E. E., Kerimoğlu, O., & Uğurlu, T. (2025). A recent review of the utilization of 3D printing in the development and manufacturing of pharmaceutical dosage forms. Journal of Research in Pharmacy, 28(3), 828-843.
AMA Alenezi EE, Kerimoğlu O, Uğurlu T. A recent review of the utilization of 3D printing in the development and manufacturing of pharmaceutical dosage forms. J. Res. Pharm. Haziran 2025;28(3):828-843.
Chicago Alenezi, Enfal Eser, Oya Kerimoğlu, ve Timuçin Uğurlu. “A Recent Review of the Utilization of 3D Printing in the Development and Manufacturing of Pharmaceutical Dosage Forms”. Journal of Research in Pharmacy 28, sy. 3 (Haziran 2025): 828-43.
EndNote Alenezi EE, Kerimoğlu O, Uğurlu T (01 Haziran 2025) A recent review of the utilization of 3D printing in the development and manufacturing of pharmaceutical dosage forms. Journal of Research in Pharmacy 28 3 828–843.
IEEE E. E. Alenezi, O. Kerimoğlu, ve T. Uğurlu, “A recent review of the utilization of 3D printing in the development and manufacturing of pharmaceutical dosage forms”, J. Res. Pharm., c. 28, sy. 3, ss. 828–843, 2025.
ISNAD Alenezi, Enfal Eser vd. “A Recent Review of the Utilization of 3D Printing in the Development and Manufacturing of Pharmaceutical Dosage Forms”. Journal of Research in Pharmacy 28/3 (Haziran 2025), 828-843.
JAMA Alenezi EE, Kerimoğlu O, Uğurlu T. A recent review of the utilization of 3D printing in the development and manufacturing of pharmaceutical dosage forms. J. Res. Pharm. 2025;28:828–843.
MLA Alenezi, Enfal Eser vd. “A Recent Review of the Utilization of 3D Printing in the Development and Manufacturing of Pharmaceutical Dosage Forms”. Journal of Research in Pharmacy, c. 28, sy. 3, 2025, ss. 828-43.
Vancouver Alenezi EE, Kerimoğlu O, Uğurlu T. A recent review of the utilization of 3D printing in the development and manufacturing of pharmaceutical dosage forms. J. Res. Pharm. 2025;28(3):828-43.