Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 24 Sayı: 1, 82 - 99, 27.06.2025
https://doi.org/10.35333/jrp.2020.114

Öz

Kaynakça

  • [1] Sternke EA, Abrahamson K, Bai MJ. Comorbid chronic pain and depression: patient perspectives on empathy. Pain. Manag Nurs. 2016; 17(6): 1-9. [CrossRef]
  • [2] Öztürk AA, Yenilmez E, Yazan Y. Dexketoprofen trometamol-loaded Eudragit® RL 100 nanoparticle formulation, characterization and release kinetics. Acta Pharm Sci. 2018; 57(1): 69-84. [CrossRef]
  • [3] Dugowson CE, Gnanashanmugam P. Nonsteroidal anti-inflammatory drugs. Phys Med Rehabil Clin N Am. 2006; 17: 347-354. [CrossRef]
  • [4] Öztürk AA, Yenilmez E, Şenel B, Arslan R, Yazan Y. Dexketoprofen trometamol-loaded Kollidon® SR and Eudragit® RS 100 polymeric nanoparticles: formulation and in vitro-in vivo Evaluation. Lat Am J Pharm. 2017;36(11):2153-2165.
  • [5] Matsui H, Shimokawa O, Kaneko T, Nagano Y, Rai K, Hyodo I. The pathophysiology of nonsteroidal antiinflammatory drug (NSAID) induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr. 2011; 48(07): 107-111. [CrossRef]
  • [6] Carabaza A, Cabré F, Rotllan E, Gómez M, Gutiérrez M, García ML, Mauleón D. Stereoselective inhibition of inducible cyclooxygenase by chiral nonsteroidal anti-inflammatory agents. J Clin Pharmacol. 1996; 36: 505-512. [CrossRef]
  • [7] Burke D, Bannister J. Dexketoprofen trometamol in post-operative pain management. Acut Pain. 2003; 5: 57-62. [CrossRef]
  • [8] Mauleón D, Artigas R, García ML, Carganico G. Preclinical and clinical development of dexketoprofen. Drugs. 1996; 5(24): 24-46. [CrossRef]
  • [9] Mainardi F, Maggioni F, Pezzola D, Zava D, Zanchin G. Dexketoprofen trometamol in the acute treatment of migraine attack: a phase II, randomized, double-blind, crossover, blank controlled, dose optimization study. J Pain. 2014; 15(4): 388-394. [CrossRef]
  • [10] Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm. 2000; 50(1): 161-177. [CrossRef]
  • [11] Mehnert W, Mäder K. Solid lipid nanoparticles-Production, characterization and applications. Adv Drug Deliv Rev. 2012; 64: 83-101. [CrossRef]
  • [12] Garud A, Singh D, Garud N. Solid lipid nanoparticles (SLN): method, characterization and applications. Int Curr Pharm J. 2012; 1(11): 384-393. [CrossRef]
  • [13] Öztürk AA, Gündüz AB, Özışık O. Supervised machine learning algorithms for evaluation of solid lipid nanoparticles and particle size. Comb Chem High Thoughput Screen. 2018; 21(9): 693-699. [CrossRef]
  • [14] Santos HM, Capelo JL. Trends in ultrasonic-based equipment for analytical sample treatment. Talanta. 2007; 73: 795- 802. [CrossRef]
  • [15] Kaur I, Ellis LJ, Romer I, Tantra R, Carriere M, Allard S, Mayne-L'Hermite M, Minelli C, Unger W, Potthoff A, Rades S, Valsami-Jones E. Dispersion of nanomaterials in aqueous media: towards protocol optimization. J Vis Exp. 2017; 130: 56074. [CrossRef]
  • [16] Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014; 11(12): 1865-1883. [CrossRef]
  • [17] Pandya JB, Parmar RD, Soniwala MM, Chavda JR. Solid lipid nanoparticles: overview on excipients. AJPTI. 2013; 01(03): 1-9.
  • [18] Franco F, Pérez-Maqueda LA, Pérez-Rodríguez JL. The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J Colloid Interface Sci. 2004; 274: 107-117. [CrossRef]
  • [19] Lopedota A, Trapani A, Cutrignelli A, Chiarantini L, Pantucci E, Curci R, Manuali E, Trapani G. The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur J Pharm Biopharm. 2009; 72: 509-520. [CrossRef]
  • [20] Numanoglu U, Tarımcı N., Characterization of solid lipid nanoparticles (SLNTM) and theı̇r pharmaceutical and cosmetic applications. J Fac Pharm Ankara. 2006; 35(3): 211-235.
  • [21] Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009; 136: 2-13. [CrossRef]
  • [22] Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004; 95: 627-638. [CrossRef]
  • [23] Büyükköroğlu G, Yazan Y, Öner AF. Preparation and physicochemical characterizations of solid lipid nanoparticles containing DOTAP for DNA delivery. Turk J Chem. 2015; 39: 1012-1024.
  • [24] Başaran E, Demirel M, Sırmagül B, Yazan Y. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul. 2010; 27(1): 37-47. [CrossRef]
  • [25] Jenning V, Gohla SH. Comparison of wax and glyceride solid lipid nanoparticles (SLN®). Int J Pharm. 2000; 196: 219- 222. [CrossRef]
  • [26] Öztürk AA, Martin-Banderas L, Cayero Otero MD, Yenilmez E, Şenel B, Yazan Y. Dexketoprofen trometamol-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles: preparation, in vitro characterization and cyctotoxity. Trop J Pharm Res. 2019; 18(1): 1-11. [CrossRef]
  • [27] Jenning V, Mader K, Gohla S. Solid lipid nanoparticles (SLNTM) based on binary mixtures of liquid and solid lipids: A 1H-NMR study. Int J Pharm. 2000; 205: 15-21. [CrossRef]
  • [28] Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012; 130(2): 192-201. [CrossRef]
  • [29] Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010; 12: 263-271. [CrossRef]
  • [30] Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharma. 2010; 67(3): 217-223.
  • [31] Zuo J, Gao Y, Bou-Chacra N, Löbenberg R. Evaluation of the DDSolver software applications. BioMed Res Int. 2014; Article ID 204925: 1-9. [CrossRef]
  • [32] Kırımlıoğlu GY, Yazan Y, Erol K Ünel ÇÇ. Gamma-aminobutyric acid loaded halloysite nanotubes and in vitro-in vivo evaluation for brain delivery. Int J Pharm. 2015; 495(2): 816-826. [CrossRef]
  • [33] Baek JS, Cho CW. Comparison of solid lipid nanoparticles for encapsulating paclitaxel or docetaxel. J Pharm Invest. 2015; 45: 625–631. [CrossRef]
  • [34] Wang JY, Wang Y, Meng X. Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res Lett. 2016; 11: 524-535 [CrossRef]
  • [35] Olbrich C, Bakowsky J, Leh CM, Müller RH, Kneue C., Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release. 2001; 77: 345–355. [CrossRef]
  • [36] Yuan H, Miao J, Du YZ, You J, Hu FQ, Zeng SU. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm. 2008; 348: 137-145 [CrossRef]
  • [37] Sagir O, Sunay FB, Yildirim H, Aksoz E, Ozaslan S, Koroglu A, Aydemir T, Ulusa AE, Kockar F. Evaluation of the effects of dexketoprofen trometamol on knee joint: an in vivo & in vitro study. Indian J Med Res. 2013; 138(6): 912- 918.
  • [38] Shah KA, Date AA, Joshi MD, Patravale VD. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007; 345: 163-171. [CrossRef]
  • [39] Siddiqui A, Alayoubi A, El-Malah Y, Nazzal S. Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharm Dev Technol. 2014; 19(3): 342-346. [CrossRef]
  • [40] Archana K, Vikas P. Development and validation of reversed-phase high performance liquid chomatographic method for estimation of dexketoprofen trometamol in bulk and tablet dosage form. AJPCT. 2013; 4: 395-400.
  • [41] Öztürk AA, Yenilmez E, Yazan Y. Development and validation of high performance liquid chomatography (HPLC) modified method for dexketoprofen trometamol. EIJST. 2017; 6(4): 33-41.
  • [42] Ash M, Ash I. Handbook of Green Chemicals. Second.Ed. Synapse Info Resources, New York, 2004.
  • [43] MedicinesComplete, Glyceryl Behenate, https://www.medicinescomplete.com/mc/excipients/2012/1001938956.htm, 2017
  • [44] Khoshneviszadeh R, Bazzaz BSF, Housaindokht MR, Ebrahim-Habibi A, Rajabi O. A comparison of explanation methods of encapsulation efficacy of hydroquinone in a liposomal system. J Paramed Sci. 2016; 7(2): 23- 28.
  • [45] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity tests. J Immunol Methods. 1983; 65: 55-63. [CrossRef]
  • [46] Gencer S, Cebeci A, Irmak-Yazicioglu MB. Silencing of the MMP-3 Gene by siRNA Transfection in Gastric Cancer AGS Cells. J Gastrointestin Liver Dis. 2010; 20: 19-26.
  • [47] Arslan R, Bektas N, Ozturk Y. Antinociceptive activity of methanol extract of fruits of Capparis ovata in mice. J. Ethnopharmacol. 2010; 131: 28–32. [CrossRef]

Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): Formulation, in vitro and in vivo evaluation

Yıl 2020, Cilt: 24 Sayı: 1, 82 - 99, 27.06.2025
https://doi.org/10.35333/jrp.2020.114

Öz

Development, in vitro and in vivo evaluation of dexketoprofen trometamol (DT)-loaded nanosized drug delivery system was aimed in this study. DT-loaded solid lipid nanoparticles (SLNs) were prepared using probe sonication. DT release from SLNs prepared and their kinetics were investigated. Structures of SLNs were elucidated by particle size and zeta potential measurements, shape and surface imaging, thermal analysis, X-ray diffraction, FT-IR and 1H-NMR determinations. DT-loaded particles demonstrated characteristic plaque shapes while in vitro release studies showed extended release of DT. Korsmeyer-Peppas kinetic model was found to fit the best using DDSolver software program. Stability, cytotoxicity and in vivo animal experiments were further performed on DT-loaded SLN showing also prolonged analgesic activity in mice. Depending on the in vitro and in vivo test results, formulation developed in this study seems to prolong DT release and is promising for extending analgesic activity.

Kaynakça

  • [1] Sternke EA, Abrahamson K, Bai MJ. Comorbid chronic pain and depression: patient perspectives on empathy. Pain. Manag Nurs. 2016; 17(6): 1-9. [CrossRef]
  • [2] Öztürk AA, Yenilmez E, Yazan Y. Dexketoprofen trometamol-loaded Eudragit® RL 100 nanoparticle formulation, characterization and release kinetics. Acta Pharm Sci. 2018; 57(1): 69-84. [CrossRef]
  • [3] Dugowson CE, Gnanashanmugam P. Nonsteroidal anti-inflammatory drugs. Phys Med Rehabil Clin N Am. 2006; 17: 347-354. [CrossRef]
  • [4] Öztürk AA, Yenilmez E, Şenel B, Arslan R, Yazan Y. Dexketoprofen trometamol-loaded Kollidon® SR and Eudragit® RS 100 polymeric nanoparticles: formulation and in vitro-in vivo Evaluation. Lat Am J Pharm. 2017;36(11):2153-2165.
  • [5] Matsui H, Shimokawa O, Kaneko T, Nagano Y, Rai K, Hyodo I. The pathophysiology of nonsteroidal antiinflammatory drug (NSAID) induced mucosal injuries in stomach and small intestine. J Clin Biochem Nutr. 2011; 48(07): 107-111. [CrossRef]
  • [6] Carabaza A, Cabré F, Rotllan E, Gómez M, Gutiérrez M, García ML, Mauleón D. Stereoselective inhibition of inducible cyclooxygenase by chiral nonsteroidal anti-inflammatory agents. J Clin Pharmacol. 1996; 36: 505-512. [CrossRef]
  • [7] Burke D, Bannister J. Dexketoprofen trometamol in post-operative pain management. Acut Pain. 2003; 5: 57-62. [CrossRef]
  • [8] Mauleón D, Artigas R, García ML, Carganico G. Preclinical and clinical development of dexketoprofen. Drugs. 1996; 5(24): 24-46. [CrossRef]
  • [9] Mainardi F, Maggioni F, Pezzola D, Zava D, Zanchin G. Dexketoprofen trometamol in the acute treatment of migraine attack: a phase II, randomized, double-blind, crossover, blank controlled, dose optimization study. J Pain. 2014; 15(4): 388-394. [CrossRef]
  • [10] Müller RH, Mäder K, Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery-a review of the state of the art. Eur J Pharm Biopharm. 2000; 50(1): 161-177. [CrossRef]
  • [11] Mehnert W, Mäder K. Solid lipid nanoparticles-Production, characterization and applications. Adv Drug Deliv Rev. 2012; 64: 83-101. [CrossRef]
  • [12] Garud A, Singh D, Garud N. Solid lipid nanoparticles (SLN): method, characterization and applications. Int Curr Pharm J. 2012; 1(11): 384-393. [CrossRef]
  • [13] Öztürk AA, Gündüz AB, Özışık O. Supervised machine learning algorithms for evaluation of solid lipid nanoparticles and particle size. Comb Chem High Thoughput Screen. 2018; 21(9): 693-699. [CrossRef]
  • [14] Santos HM, Capelo JL. Trends in ultrasonic-based equipment for analytical sample treatment. Talanta. 2007; 73: 795- 802. [CrossRef]
  • [15] Kaur I, Ellis LJ, Romer I, Tantra R, Carriere M, Allard S, Mayne-L'Hermite M, Minelli C, Unger W, Potthoff A, Rades S, Valsami-Jones E. Dispersion of nanomaterials in aqueous media: towards protocol optimization. J Vis Exp. 2017; 130: 56074. [CrossRef]
  • [16] Aburahma MH, Badr-Eldin SM. Compritol 888 ATO: a multifunctional lipid excipient in drug delivery systems and nanopharmaceuticals. Expert Opin Drug Deliv. 2014; 11(12): 1865-1883. [CrossRef]
  • [17] Pandya JB, Parmar RD, Soniwala MM, Chavda JR. Solid lipid nanoparticles: overview on excipients. AJPTI. 2013; 01(03): 1-9.
  • [18] Franco F, Pérez-Maqueda LA, Pérez-Rodríguez JL. The effect of ultrasound on the particle size and structural disorder of a well-ordered kaolinite. J Colloid Interface Sci. 2004; 274: 107-117. [CrossRef]
  • [19] Lopedota A, Trapani A, Cutrignelli A, Chiarantini L, Pantucci E, Curci R, Manuali E, Trapani G. The use of Eudragit RS 100/cyclodextrin nanoparticles for the transmucosal administration of glutathione. Eur J Pharm Biopharm. 2009; 72: 509-520. [CrossRef]
  • [20] Numanoglu U, Tarımcı N., Characterization of solid lipid nanoparticles (SLNTM) and theı̇r pharmaceutical and cosmetic applications. J Fac Pharm Ankara. 2006; 35(3): 211-235.
  • [21] Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Release. 2009; 136: 2-13. [CrossRef]
  • [22] Venkateswarlu V, Manjunath K. Preparation, characterization and in vitro release kinetics of clozapine solid lipid nanoparticles. J Control Release. 2004; 95: 627-638. [CrossRef]
  • [23] Büyükköroğlu G, Yazan Y, Öner AF. Preparation and physicochemical characterizations of solid lipid nanoparticles containing DOTAP for DNA delivery. Turk J Chem. 2015; 39: 1012-1024.
  • [24] Başaran E, Demirel M, Sırmagül B, Yazan Y. Cyclosporine-A incorporated cationic solid lipid nanoparticles for ocular delivery. J Microencapsul. 2010; 27(1): 37-47. [CrossRef]
  • [25] Jenning V, Gohla SH. Comparison of wax and glyceride solid lipid nanoparticles (SLN®). Int J Pharm. 2000; 196: 219- 222. [CrossRef]
  • [26] Öztürk AA, Martin-Banderas L, Cayero Otero MD, Yenilmez E, Şenel B, Yazan Y. Dexketoprofen trometamol-loaded poly-lactic-co-glycolic acid (PLGA) nanoparticles: preparation, in vitro characterization and cyctotoxity. Trop J Pharm Res. 2019; 18(1): 1-11. [CrossRef]
  • [27] Jenning V, Mader K, Gohla S. Solid lipid nanoparticles (SLNTM) based on binary mixtures of liquid and solid lipids: A 1H-NMR study. Int J Pharm. 2000; 205: 15-21. [CrossRef]
  • [28] Bucolo C, Drago F, Salomone S. Ocular drug delivery: a clue from nanotechnology. Front Pharmacol. 2012; 130(2): 192-201. [CrossRef]
  • [29] Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010; 12: 263-271. [CrossRef]
  • [30] Dash S, Murthy PN, Nath L, Chowdhury P. Kinetic modeling on drug release from controlled drug delivery systems. Acta Pol Pharma. 2010; 67(3): 217-223.
  • [31] Zuo J, Gao Y, Bou-Chacra N, Löbenberg R. Evaluation of the DDSolver software applications. BioMed Res Int. 2014; Article ID 204925: 1-9. [CrossRef]
  • [32] Kırımlıoğlu GY, Yazan Y, Erol K Ünel ÇÇ. Gamma-aminobutyric acid loaded halloysite nanotubes and in vitro-in vivo evaluation for brain delivery. Int J Pharm. 2015; 495(2): 816-826. [CrossRef]
  • [33] Baek JS, Cho CW. Comparison of solid lipid nanoparticles for encapsulating paclitaxel or docetaxel. J Pharm Invest. 2015; 45: 625–631. [CrossRef]
  • [34] Wang JY, Wang Y, Meng X. Chitosan nanolayered cisplatin-loaded lipid nanoparticles for enhanced anticancer efficacy in cervical cancer. Nanoscale Res Lett. 2016; 11: 524-535 [CrossRef]
  • [35] Olbrich C, Bakowsky J, Leh CM, Müller RH, Kneue C., Cationic solid-lipid nanoparticles can efficiently bind and transfect plasmid DNA. J Control Release. 2001; 77: 345–355. [CrossRef]
  • [36] Yuan H, Miao J, Du YZ, You J, Hu FQ, Zeng SU. Cellular uptake of solid lipid nanoparticles and cytotoxicity of encapsulated paclitaxel in A549 cancer cells. Int J Pharm. 2008; 348: 137-145 [CrossRef]
  • [37] Sagir O, Sunay FB, Yildirim H, Aksoz E, Ozaslan S, Koroglu A, Aydemir T, Ulusa AE, Kockar F. Evaluation of the effects of dexketoprofen trometamol on knee joint: an in vivo & in vitro study. Indian J Med Res. 2013; 138(6): 912- 918.
  • [38] Shah KA, Date AA, Joshi MD, Patravale VD. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007; 345: 163-171. [CrossRef]
  • [39] Siddiqui A, Alayoubi A, El-Malah Y, Nazzal S. Modeling the effect of sonication parameters on size and dispersion temperature of solid lipid nanoparticles (SLNs) by response surface methodology (RSM). Pharm Dev Technol. 2014; 19(3): 342-346. [CrossRef]
  • [40] Archana K, Vikas P. Development and validation of reversed-phase high performance liquid chomatographic method for estimation of dexketoprofen trometamol in bulk and tablet dosage form. AJPCT. 2013; 4: 395-400.
  • [41] Öztürk AA, Yenilmez E, Yazan Y. Development and validation of high performance liquid chomatography (HPLC) modified method for dexketoprofen trometamol. EIJST. 2017; 6(4): 33-41.
  • [42] Ash M, Ash I. Handbook of Green Chemicals. Second.Ed. Synapse Info Resources, New York, 2004.
  • [43] MedicinesComplete, Glyceryl Behenate, https://www.medicinescomplete.com/mc/excipients/2012/1001938956.htm, 2017
  • [44] Khoshneviszadeh R, Bazzaz BSF, Housaindokht MR, Ebrahim-Habibi A, Rajabi O. A comparison of explanation methods of encapsulation efficacy of hydroquinone in a liposomal system. J Paramed Sci. 2016; 7(2): 23- 28.
  • [45] Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity tests. J Immunol Methods. 1983; 65: 55-63. [CrossRef]
  • [46] Gencer S, Cebeci A, Irmak-Yazicioglu MB. Silencing of the MMP-3 Gene by siRNA Transfection in Gastric Cancer AGS Cells. J Gastrointestin Liver Dis. 2010; 20: 19-26.
  • [47] Arslan R, Bektas N, Ozturk Y. Antinociceptive activity of methanol extract of fruits of Capparis ovata in mice. J. Ethnopharmacol. 2010; 131: 28–32. [CrossRef]
Toplam 47 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Farmasotik Biyoteknoloji
Bölüm Articles
Yazarlar

A. Alper Öztürk

Evrim Akyıl

Rana Arslan

Behiye Şenel

Yasemin Yazan

Yayımlanma Tarihi 27 Haziran 2025
Yayımlandığı Sayı Yıl 2020 Cilt: 24 Sayı: 1

Kaynak Göster

APA Öztürk, A. A., Akyıl, E., Arslan, R., Şenel, B., vd. (2025). Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): Formulation, in vitro and in vivo evaluation. Journal of Research in Pharmacy, 24(1), 82-99. https://doi.org/10.35333/jrp.2020.114
AMA Öztürk AA, Akyıl E, Arslan R, Şenel B, Yazan Y. Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): Formulation, in vitro and in vivo evaluation. J. Res. Pharm. Haziran 2025;24(1):82-99. doi:10.35333/jrp.2020.114
Chicago Öztürk, A. Alper, Evrim Akyıl, Rana Arslan, Behiye Şenel, ve Yasemin Yazan. “Dexketoprofen Trometamol Loaded Solid Lipid Nanoparticles (SLNs): Formulation, in Vitro and in Vivo Evaluation”. Journal of Research in Pharmacy 24, sy. 1 (Haziran 2025): 82-99. https://doi.org/10.35333/jrp.2020.114.
EndNote Öztürk AA, Akyıl E, Arslan R, Şenel B, Yazan Y (01 Haziran 2025) Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): Formulation, in vitro and in vivo evaluation. Journal of Research in Pharmacy 24 1 82–99.
IEEE A. A. Öztürk, E. Akyıl, R. Arslan, B. Şenel, ve Y. Yazan, “Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): Formulation, in vitro and in vivo evaluation”, J. Res. Pharm., c. 24, sy. 1, ss. 82–99, 2025, doi: 10.35333/jrp.2020.114.
ISNAD Öztürk, A. Alper vd. “Dexketoprofen Trometamol Loaded Solid Lipid Nanoparticles (SLNs): Formulation, in Vitro and in Vivo Evaluation”. Journal of Research in Pharmacy 24/1 (Haziran 2025), 82-99. https://doi.org/10.35333/jrp.2020.114.
JAMA Öztürk AA, Akyıl E, Arslan R, Şenel B, Yazan Y. Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): Formulation, in vitro and in vivo evaluation. J. Res. Pharm. 2025;24:82–99.
MLA Öztürk, A. Alper vd. “Dexketoprofen Trometamol Loaded Solid Lipid Nanoparticles (SLNs): Formulation, in Vitro and in Vivo Evaluation”. Journal of Research in Pharmacy, c. 24, sy. 1, 2025, ss. 82-99, doi:10.35333/jrp.2020.114.
Vancouver Öztürk AA, Akyıl E, Arslan R, Şenel B, Yazan Y. Dexketoprofen trometamol loaded solid lipid nanoparticles (SLNs): Formulation, in vitro and in vivo evaluation. J. Res. Pharm. 2025;24(1):82-99.