Araştırma Makalesi
BibTex RIS Kaynak Göster

Formulation and in vitro evaluation of pramipexole orally disintegrating tablets for pediatric restless leg syndrome

Yıl 2023, Cilt: 27 Sayı: 5, 1808 - 1820, 28.06.2025

Öz

In this study, orally disintegrating tablets (ODT) of pramipexole dihydrochloride monohydrate (PPX) was developed with direct compression method by using ready-to-use excipients Parteck® ODT, Pharmaburst® 500, Ludiflash®, F-Melt®, and Prosolv® Easytab SP for pediatric restless leg syndrome (RLS). The formulated ODTs were circular in shape with a total weight of around 100 mg, which was appropriate for pediatric use. In spite of very low content of the drug, content uniformity could be obtained successfully in accordance to the pharmacopoeial specification with a satisfactory mechanical strength in terms of hardness and friability. However, formulations based on Parteck® ODT and Ludiflash® could not achieve a disintegration time <30 s according to in vitro disintegration test, which was also supported by the simulated wetting test. The optimal ODTs based on Pharmaburst® 500, F-Melt® and Prosolv® Easytab SP were further evaluated for in vitro dissolution study. A very fast release of the drug was observed with these formulations that reached a peak value in 10 min., which was superior than that of the reference conventional tablet formulation of PPX. As a result, pediatric orally disintegrating tablets of PPX were successfully formulated with Pharmaburst® 500, F-Melt® and Prosolv® Easytab SP by using direct compression method with suitable characteristics, which can be further studied to use in pediatric RLS.

Kaynakça

  • [1] Manconi M, Garcia-Borreguero D, Schormair B, Videnovic A, Berger K, Ferri R, et al. Restless legs syndrome. Nat Rev Dis Primers. 2021; 7(1): 80.
  • [2] Benbir G and Guilleminault C. Pramipexole: new use for an old drug–the potential use of pramipexole in the treatment of restless legs syndrome. Neuropsychiatr Dis Treat. 2006; 2(4): 393.
  • [3] Comella CL. Restless legs syndrome: treatment with dopaminergic agents. Neurology. 2002; 58 (suppl 1): S87-S92.
  • [4] Montplaisir J, Allen RP, Arthur W, Ferini-Strambi L. Restless legs syndrome and periodic limb movements during sleep. Principles and Practice of Sleep Medicine, fifth ed., Elsevier Inc., 2010, pp. 1026-37.
  • [5] Maheswaran M, Kushida CA. Restless legs syndrome in children. Med Gen Med 2006; 8(2): 79.
  • [6] Picchietti DL, Bruni O, de Weerd A, Durmer JS, Kotagal S, Owens JA, et al. Pediatric restless legs syndrome diagnostic criteria: an update by the International Restless Legs Syndrome Study Group. Sleep Med. 2013; 14(12): 1253-9.
  • [7] Silber MH, Buchfuhrer MJ, Earley CJ, Koo BB, Manconi M, Winkelman JW, et al., editors. The management of restless legs syndrome: an updated algorithm. Mayo Clin Proc. 2021; 96(7): 1921-1937.
  • [8] Vlasie A, Trifu SC, Lupuleac C, Kohn B, Cristea MB. Restless legs syndrome: An overview of pathophysiology, comorbidities and therapeutic approaches. Exp Ther Med. 2022; 23(2): 1-10.
  • [9] Carvey P, McGuire S, Ling Z. Neuroprotective effects of D3 dopamine receptor agonists. Parkinsonism Relat Disord. 2001; 7(3): 213-23.
  • [10] Allen R, Picchietti D, Garcia-Borreguero D, Ondo W, Walters A, Winkelman J, et al. International Restless Legs Syndrome Study Group Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria–history, rationale, description, and significance. Sleep Med. 2014; 15(8): 860-73.
  • [11] Mirapex Product Information, Boehringer Ingelheim International GmbH Ridgefield, CT 06877 USA, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020667s014s017s018lbl.pdf. (accessed on 14 September 2022).
  • [12] Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)–a novel solid oral dosage form for paediatric use. Eur J Pharm Biopharm. 2011; 78(3): 462-9.
  • [13] Karavasili C, Gkaragkounis A, Fatouros DG. Patent landscape of pediatric-friendly oral dosage forms and administration devices. Expert Opin Ther Pat. 2021; 31(7): 663-85.
  • [14] Wiedey R, Kokott M, Breitkreutz J. Orodispersible tablets for pediatric drug delivery: current challenges and recent advances. Expert Opin Drug Deliv. 2021; 18(12): 1873-90.
  • [15] Chinwala M. Recent formulation advances and therapeutic usefulness of orally disintegrating tablets (ODTs). Pharmacy. 2020; 8(4): 186.
  • [16] Badgujar BP, Mundada AS. The technologies used for developing orally disintegrating tablets: a review. Acta Pharm. 2011; 61(2): 117-39.
  • [17] Fu Y, Yang S, Jeong SH, Kimura S, Park K. Orally fast disintegrating tablets: developments, technologies, taste-masking and clinical studies. Crit Rev Ther Drug Carr Syst. 2004; 21(6).
  • [18] Türkmen Ö, Şenyiğit ZA, Baloğlu E. Formulation and evaluation of fexofenadine hydrochloride orally disintegrating tablets for pediatric use. J Drug Deliv Sci Technol. 2018; 43: 201-10.
  • [19] Kim J-Y, An S-H, Rhee Y-S, Park C-W, Park E-S. A comparative study between spray-drying and fluidized bed coating processes for the preparation of pramipexole controlled-release microparticles for orally disintegrating tablets. Dry Technol. 2014; 32(8): 935-45.
  • [20] Kazaz Ç, Mesut B, Özsoy Y, Ocak M. Formulation development and evaluation of taste-masked atomoxetine hydrochloride orally disintegrating tablets (ODTs). J Res Pharm 2021; 25(5).
  • [21] Segall AI. Preformulation: The use of FTIR in compatibility studies. JIAPS. 2019; 4(3): 01-6.
  • [22] Marini A, Berbenni V, Pegoretti M, Bruni G, Cofrancesco P, Sinistri C, et al. Drug-excipient compatibility studies by physico-chemical techniques; the case of atenolol. J Therm Anal Calorim. 2003; 73(2): 547-61.
  • [23] Venkateswarlu K, Thakur H, Babu TNB. Fabrication of Extended Release Tablets of Pramipexole: In-vitro Studies. Pharm Methods. 2017; 8(2).
  • [24] Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010; 1(3): 3-26.
  • [25] Łaszcz M, Trzcińska K, Kubiszewski M, Kosmacińska B, Glice M. Stability studies and structural characterization of pramipexole. J Pharm Biomed Anal. 2010; 53(4): 1033-6.
  • [26] Moqbel HA, ElMeshad AN, El-Nabarawi MA. A pharmaceutical study on chlorzoxazone orodispersible tablets: formulation, in-vitro and in-vivo evaluation. Drug Deliv. 2016; 23(8): 2998-3007.
  • [27] Peddapatla RV, Sheridan G, Slevin C, Swaminathan S, Browning I, O’Reilly C, et al. Process model approach to predict tablet weight variability for direct compression formulations at pilot and production scale. Pharmaceutics. 2021; 13(7): 1033.
  • [28] Drašković M, Djuriš J, Ibrić S, Parojčić J. Functionality and performance evaluation of directly compressible co-processed excipients based on dynamic compaction analysis and percolation theory. Powder Technol. 2018; 326: 292-301.
  • [29] Brniak W, Jachowicz R, Krupa A, Skorka T, Niwinski K. Evaluation of co-processed excipients used for direct compression of orally disintegrating tablets (ODT) using novel disintegration apparatus. Pharm Dev Technol. 2013; 18(2): 464-74.
  • [30] Rojas J, Buckner I, Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev Ind Pharm. 2012; 38(10): 1159-70.
  • [31] Muselík J, Franc A, Doležel P, Goněc R, Krondlová A, Lukášová I. Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP. Acta Pharm. 2014; 64(3): 355-67.
  • [32] European Pharmacopoeia, tenth ed., Strasbourg Cedex, France, 2019, pp. 336-7, 98-400.
  • [33] Zhang Y, Law Y, Chakrabarti S. Physical properties and compact analysis of commonly used direct compression binders. AAPS PharmSciTech. 2003; 4(4): 489-99.
  • [34] Rehula M, Adamek R, Spacek V. Stress relaxation study of fillers for directly compressed tablets. Powder Technol. 2012; 217: 510-5.
  • [35] Jacob S, Shirwaikar A, Joseph A, Srinivasan K. Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets of glipizide. Indian J Pharm Sci. 2007; 69(5): 633.
  • [36] Yassin S, Goodwin DJ, Anderson A, Sibik J, Wilson DI, Gladden LF, et al. The disintegration process in microcrystalline cellulose based tablets, part 1: influence of temperature, porosity and superdisintegrants. J Pharm Sci. 2015; 104(10): 3440-50.
  • [37] Brniak W, Jachowicz R, Krupa A, Skorka T, Niwinski K. Evaluation of co-processed excipients used for direct compression of orally disintegrating tablets (ODT) using novel disintegration apparatus. Pharm Dev Technol. 2013; 18(2): 464-74.
  • [38] Abdelmonem R, Abdellatif MM, Al-Samadi IEI, El-Nabarawi MA. Formulation and evaluation of baclofen-meloxicam orally disintegrating tablets (ODTs) using co-processed excipients and improvement of ODTs performance using six sigma method. Drug Des Devel Ther. 2021; 15: 4383-402.
  • [39] Harada T, Narazaki R, Ohwaki T, Uchida T. Effect of physical properties of orally disintegrating tablets on disintegration time as determined by a new apparatus. J Drug Deliv Sci Technol. 2010; 20(5): 377-83.
  • [40] Food and Drug Administration CDER Guidance for Industry, Orally Disintegrating Tablets 2008. https://www.fda.gov/media/70877/download (accessed on 18 October 2022).
  • [41] Rowe RC, Sheskey P, Quinn M. Handbook of Pharmaceutical Excipients, sixth ed., London UK: Libros Digitales-Pharmaceutical Press; 2009.
  • [42] Sutthapitaksakul L, Thanawuth K, Huanbutta K, Sriamornsak P. Effect of a superdisintegrant on disintegration of orally disintegrating tablets determined by simulated wetting test and in vitro disintegration test. Pharmazie. 2022; 77(10): 287-90.
  • [43] Ervasti T, Niinikoski H, Mäki-Lohiluoma E, Leppinen H, Ketolainen J, Korhonen O, et al. The comparison of two challenging low dose APIs in a continuous direct compression process. Pharmaceutics. 2020; 12(3): 279.
  • [44] Fouad SA, Malaak FA, El-Nabarawi MA, Abu Zeid K. Development of orally disintegrating tablets containing solid dispersion of a poorly soluble drug for enhanced dissolution: in-vitro optimization/in-vivo evaluation. PLoS One. 2020; 15(12): e0244646.
  • [45] Teaima MH, Abdel-Haleem KM, Osama R, El-Nabarawi MA, Elnahas OS. A promising single oral disintegrating tablet for co-delivery of pitavastatin calcium and lornoxicam using co-processed excipients: formulation, characterization and pharmacokinetic study. Drug Des Devel Ther. 2021; 15: 4229.
  • [46] Frampton JE. Pramipexole extended-release: a review of its use in patients with Parkinson’s disease. Drugs. 2014; 74(18): 2175-90.
  • [47] Amel M, Pojarani LB, Burgaz EV, Türkmen Ö. Development and Validation of New RP-HPLC Method for Estimation of Pramipexole Dihydrochloride in Bulk and Pharmaceutical Formulation. EMUJPharmSci. 2022; 5(1): 1-10.
  • [48] Tzankov B, Voycheva C, Yordanov Y, Aluani D, Spassova I, Kovacheva D, et al. Development and in vitro safety evaluation of pramipexole-loaded hollow mesoporous silica (HMS) particles. Biotechnol Biotechnol Equip. 2019; 33(1): 1204-15.
  • [49] Chamberlain R, Windolf H, Geissler S, Quodbach J, Breitkreutz J. Precise Dosing of Pramipexole for Low-Dosed Filament Production by Hot Melt Extrusion Applying Various Feeding Methods. Pharmaceutics. 2022; 14(1): 216.
  • [50] Park JH, Holman KM, Bish GA, Krieger DG, Ramlose DS, Herman CJ, et al. An Alternative to the USP Disintegration Test for Orally Disintegrating Tablets 2008. https://www.pharmtech.com/view/alternative-usp-disintegration-test-orally-disintegrating-tablets (accessed on 14 September 2022).
  • [51] The United States Pharmacopeial Convention. USP 29 <701> Disintegration. Rockville, MD, USA, 2019. pp. 2670-2.
  • [52] Momin R, Gupta H, Panchal R, Mehta PJ. Development of Pramipexole Hydrochloride Nanocrystals and their Characterization based on in vitro Dissolution Studies. Curr Nanomed. 2020; 10(4): 391-404.
  • [53] Klancke J. Dissolution testing of orally disintegrating tablets. Dissolution Technol. 2003; 10(2): 6-9.
  • [54] Kraemer J, Gajendran J, Guillot A, Schichtel J, Tuereli A. Dissolution testing of orally disintegrating tablets. J Pharm Pharmacol. 2012; 64(7): 911-8.
Yıl 2023, Cilt: 27 Sayı: 5, 1808 - 1820, 28.06.2025

Öz

Kaynakça

  • [1] Manconi M, Garcia-Borreguero D, Schormair B, Videnovic A, Berger K, Ferri R, et al. Restless legs syndrome. Nat Rev Dis Primers. 2021; 7(1): 80.
  • [2] Benbir G and Guilleminault C. Pramipexole: new use for an old drug–the potential use of pramipexole in the treatment of restless legs syndrome. Neuropsychiatr Dis Treat. 2006; 2(4): 393.
  • [3] Comella CL. Restless legs syndrome: treatment with dopaminergic agents. Neurology. 2002; 58 (suppl 1): S87-S92.
  • [4] Montplaisir J, Allen RP, Arthur W, Ferini-Strambi L. Restless legs syndrome and periodic limb movements during sleep. Principles and Practice of Sleep Medicine, fifth ed., Elsevier Inc., 2010, pp. 1026-37.
  • [5] Maheswaran M, Kushida CA. Restless legs syndrome in children. Med Gen Med 2006; 8(2): 79.
  • [6] Picchietti DL, Bruni O, de Weerd A, Durmer JS, Kotagal S, Owens JA, et al. Pediatric restless legs syndrome diagnostic criteria: an update by the International Restless Legs Syndrome Study Group. Sleep Med. 2013; 14(12): 1253-9.
  • [7] Silber MH, Buchfuhrer MJ, Earley CJ, Koo BB, Manconi M, Winkelman JW, et al., editors. The management of restless legs syndrome: an updated algorithm. Mayo Clin Proc. 2021; 96(7): 1921-1937.
  • [8] Vlasie A, Trifu SC, Lupuleac C, Kohn B, Cristea MB. Restless legs syndrome: An overview of pathophysiology, comorbidities and therapeutic approaches. Exp Ther Med. 2022; 23(2): 1-10.
  • [9] Carvey P, McGuire S, Ling Z. Neuroprotective effects of D3 dopamine receptor agonists. Parkinsonism Relat Disord. 2001; 7(3): 213-23.
  • [10] Allen R, Picchietti D, Garcia-Borreguero D, Ondo W, Walters A, Winkelman J, et al. International Restless Legs Syndrome Study Group Restless legs syndrome/Willis-Ekbom disease diagnostic criteria: updated International Restless Legs Syndrome Study Group (IRLSSG) consensus criteria–history, rationale, description, and significance. Sleep Med. 2014; 15(8): 860-73.
  • [11] Mirapex Product Information, Boehringer Ingelheim International GmbH Ridgefield, CT 06877 USA, 2021. https://www.accessdata.fda.gov/drugsatfda_docs/label/2008/020667s014s017s018lbl.pdf. (accessed on 14 September 2022).
  • [12] Stoltenberg I, Breitkreutz J. Orally disintegrating mini-tablets (ODMTs)–a novel solid oral dosage form for paediatric use. Eur J Pharm Biopharm. 2011; 78(3): 462-9.
  • [13] Karavasili C, Gkaragkounis A, Fatouros DG. Patent landscape of pediatric-friendly oral dosage forms and administration devices. Expert Opin Ther Pat. 2021; 31(7): 663-85.
  • [14] Wiedey R, Kokott M, Breitkreutz J. Orodispersible tablets for pediatric drug delivery: current challenges and recent advances. Expert Opin Drug Deliv. 2021; 18(12): 1873-90.
  • [15] Chinwala M. Recent formulation advances and therapeutic usefulness of orally disintegrating tablets (ODTs). Pharmacy. 2020; 8(4): 186.
  • [16] Badgujar BP, Mundada AS. The technologies used for developing orally disintegrating tablets: a review. Acta Pharm. 2011; 61(2): 117-39.
  • [17] Fu Y, Yang S, Jeong SH, Kimura S, Park K. Orally fast disintegrating tablets: developments, technologies, taste-masking and clinical studies. Crit Rev Ther Drug Carr Syst. 2004; 21(6).
  • [18] Türkmen Ö, Şenyiğit ZA, Baloğlu E. Formulation and evaluation of fexofenadine hydrochloride orally disintegrating tablets for pediatric use. J Drug Deliv Sci Technol. 2018; 43: 201-10.
  • [19] Kim J-Y, An S-H, Rhee Y-S, Park C-W, Park E-S. A comparative study between spray-drying and fluidized bed coating processes for the preparation of pramipexole controlled-release microparticles for orally disintegrating tablets. Dry Technol. 2014; 32(8): 935-45.
  • [20] Kazaz Ç, Mesut B, Özsoy Y, Ocak M. Formulation development and evaluation of taste-masked atomoxetine hydrochloride orally disintegrating tablets (ODTs). J Res Pharm 2021; 25(5).
  • [21] Segall AI. Preformulation: The use of FTIR in compatibility studies. JIAPS. 2019; 4(3): 01-6.
  • [22] Marini A, Berbenni V, Pegoretti M, Bruni G, Cofrancesco P, Sinistri C, et al. Drug-excipient compatibility studies by physico-chemical techniques; the case of atenolol. J Therm Anal Calorim. 2003; 73(2): 547-61.
  • [23] Venkateswarlu K, Thakur H, Babu TNB. Fabrication of Extended Release Tablets of Pramipexole: In-vitro Studies. Pharm Methods. 2017; 8(2).
  • [24] Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010; 1(3): 3-26.
  • [25] Łaszcz M, Trzcińska K, Kubiszewski M, Kosmacińska B, Glice M. Stability studies and structural characterization of pramipexole. J Pharm Biomed Anal. 2010; 53(4): 1033-6.
  • [26] Moqbel HA, ElMeshad AN, El-Nabarawi MA. A pharmaceutical study on chlorzoxazone orodispersible tablets: formulation, in-vitro and in-vivo evaluation. Drug Deliv. 2016; 23(8): 2998-3007.
  • [27] Peddapatla RV, Sheridan G, Slevin C, Swaminathan S, Browning I, O’Reilly C, et al. Process model approach to predict tablet weight variability for direct compression formulations at pilot and production scale. Pharmaceutics. 2021; 13(7): 1033.
  • [28] Drašković M, Djuriš J, Ibrić S, Parojčić J. Functionality and performance evaluation of directly compressible co-processed excipients based on dynamic compaction analysis and percolation theory. Powder Technol. 2018; 326: 292-301.
  • [29] Brniak W, Jachowicz R, Krupa A, Skorka T, Niwinski K. Evaluation of co-processed excipients used for direct compression of orally disintegrating tablets (ODT) using novel disintegration apparatus. Pharm Dev Technol. 2013; 18(2): 464-74.
  • [30] Rojas J, Buckner I, Kumar V. Co-proccessed excipients with enhanced direct compression functionality for improved tableting performance. Drug Dev Ind Pharm. 2012; 38(10): 1159-70.
  • [31] Muselík J, Franc A, Doležel P, Goněc R, Krondlová A, Lukášová I. Influence of process parameters on content uniformity of a low dose active pharmaceutical ingredient in a tablet formulation according to GMP. Acta Pharm. 2014; 64(3): 355-67.
  • [32] European Pharmacopoeia, tenth ed., Strasbourg Cedex, France, 2019, pp. 336-7, 98-400.
  • [33] Zhang Y, Law Y, Chakrabarti S. Physical properties and compact analysis of commonly used direct compression binders. AAPS PharmSciTech. 2003; 4(4): 489-99.
  • [34] Rehula M, Adamek R, Spacek V. Stress relaxation study of fillers for directly compressed tablets. Powder Technol. 2012; 217: 510-5.
  • [35] Jacob S, Shirwaikar A, Joseph A, Srinivasan K. Novel co-processed excipients of mannitol and microcrystalline cellulose for preparing fast dissolving tablets of glipizide. Indian J Pharm Sci. 2007; 69(5): 633.
  • [36] Yassin S, Goodwin DJ, Anderson A, Sibik J, Wilson DI, Gladden LF, et al. The disintegration process in microcrystalline cellulose based tablets, part 1: influence of temperature, porosity and superdisintegrants. J Pharm Sci. 2015; 104(10): 3440-50.
  • [37] Brniak W, Jachowicz R, Krupa A, Skorka T, Niwinski K. Evaluation of co-processed excipients used for direct compression of orally disintegrating tablets (ODT) using novel disintegration apparatus. Pharm Dev Technol. 2013; 18(2): 464-74.
  • [38] Abdelmonem R, Abdellatif MM, Al-Samadi IEI, El-Nabarawi MA. Formulation and evaluation of baclofen-meloxicam orally disintegrating tablets (ODTs) using co-processed excipients and improvement of ODTs performance using six sigma method. Drug Des Devel Ther. 2021; 15: 4383-402.
  • [39] Harada T, Narazaki R, Ohwaki T, Uchida T. Effect of physical properties of orally disintegrating tablets on disintegration time as determined by a new apparatus. J Drug Deliv Sci Technol. 2010; 20(5): 377-83.
  • [40] Food and Drug Administration CDER Guidance for Industry, Orally Disintegrating Tablets 2008. https://www.fda.gov/media/70877/download (accessed on 18 October 2022).
  • [41] Rowe RC, Sheskey P, Quinn M. Handbook of Pharmaceutical Excipients, sixth ed., London UK: Libros Digitales-Pharmaceutical Press; 2009.
  • [42] Sutthapitaksakul L, Thanawuth K, Huanbutta K, Sriamornsak P. Effect of a superdisintegrant on disintegration of orally disintegrating tablets determined by simulated wetting test and in vitro disintegration test. Pharmazie. 2022; 77(10): 287-90.
  • [43] Ervasti T, Niinikoski H, Mäki-Lohiluoma E, Leppinen H, Ketolainen J, Korhonen O, et al. The comparison of two challenging low dose APIs in a continuous direct compression process. Pharmaceutics. 2020; 12(3): 279.
  • [44] Fouad SA, Malaak FA, El-Nabarawi MA, Abu Zeid K. Development of orally disintegrating tablets containing solid dispersion of a poorly soluble drug for enhanced dissolution: in-vitro optimization/in-vivo evaluation. PLoS One. 2020; 15(12): e0244646.
  • [45] Teaima MH, Abdel-Haleem KM, Osama R, El-Nabarawi MA, Elnahas OS. A promising single oral disintegrating tablet for co-delivery of pitavastatin calcium and lornoxicam using co-processed excipients: formulation, characterization and pharmacokinetic study. Drug Des Devel Ther. 2021; 15: 4229.
  • [46] Frampton JE. Pramipexole extended-release: a review of its use in patients with Parkinson’s disease. Drugs. 2014; 74(18): 2175-90.
  • [47] Amel M, Pojarani LB, Burgaz EV, Türkmen Ö. Development and Validation of New RP-HPLC Method for Estimation of Pramipexole Dihydrochloride in Bulk and Pharmaceutical Formulation. EMUJPharmSci. 2022; 5(1): 1-10.
  • [48] Tzankov B, Voycheva C, Yordanov Y, Aluani D, Spassova I, Kovacheva D, et al. Development and in vitro safety evaluation of pramipexole-loaded hollow mesoporous silica (HMS) particles. Biotechnol Biotechnol Equip. 2019; 33(1): 1204-15.
  • [49] Chamberlain R, Windolf H, Geissler S, Quodbach J, Breitkreutz J. Precise Dosing of Pramipexole for Low-Dosed Filament Production by Hot Melt Extrusion Applying Various Feeding Methods. Pharmaceutics. 2022; 14(1): 216.
  • [50] Park JH, Holman KM, Bish GA, Krieger DG, Ramlose DS, Herman CJ, et al. An Alternative to the USP Disintegration Test for Orally Disintegrating Tablets 2008. https://www.pharmtech.com/view/alternative-usp-disintegration-test-orally-disintegrating-tablets (accessed on 14 September 2022).
  • [51] The United States Pharmacopeial Convention. USP 29 <701> Disintegration. Rockville, MD, USA, 2019. pp. 2670-2.
  • [52] Momin R, Gupta H, Panchal R, Mehta PJ. Development of Pramipexole Hydrochloride Nanocrystals and their Characterization based on in vitro Dissolution Studies. Curr Nanomed. 2020; 10(4): 391-404.
  • [53] Klancke J. Dissolution testing of orally disintegrating tablets. Dissolution Technol. 2003; 10(2): 6-9.
  • [54] Kraemer J, Gajendran J, Guillot A, Schichtel J, Tuereli A. Dissolution testing of orally disintegrating tablets. J Pharm Pharmacol. 2012; 64(7): 911-8.
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Ömer Türkmen 0000-0002-2134-6196

Leyla Beba Pojarani 0000-0001-5051-4489

Moein Amel

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 5

Kaynak Göster

APA Türkmen, Ö., Beba Pojarani, L., & Amel, M. (2025). Formulation and in vitro evaluation of pramipexole orally disintegrating tablets for pediatric restless leg syndrome. Journal of Research in Pharmacy, 27(5), 1808-1820.
AMA Türkmen Ö, Beba Pojarani L, Amel M. Formulation and in vitro evaluation of pramipexole orally disintegrating tablets for pediatric restless leg syndrome. J. Res. Pharm. Temmuz 2025;27(5):1808-1820.
Chicago Türkmen, Ömer, Leyla Beba Pojarani, ve Moein Amel. “Formulation and in Vitro Evaluation of Pramipexole Orally Disintegrating Tablets for Pediatric Restless Leg Syndrome”. Journal of Research in Pharmacy 27, sy. 5 (Temmuz 2025): 1808-20.
EndNote Türkmen Ö, Beba Pojarani L, Amel M (01 Temmuz 2025) Formulation and in vitro evaluation of pramipexole orally disintegrating tablets for pediatric restless leg syndrome. Journal of Research in Pharmacy 27 5 1808–1820.
IEEE Ö. Türkmen, L. Beba Pojarani, ve M. Amel, “Formulation and in vitro evaluation of pramipexole orally disintegrating tablets for pediatric restless leg syndrome”, J. Res. Pharm., c. 27, sy. 5, ss. 1808–1820, 2025.
ISNAD Türkmen, Ömer vd. “Formulation and in Vitro Evaluation of Pramipexole Orally Disintegrating Tablets for Pediatric Restless Leg Syndrome”. Journal of Research in Pharmacy 27/5 (Temmuz 2025), 1808-1820.
JAMA Türkmen Ö, Beba Pojarani L, Amel M. Formulation and in vitro evaluation of pramipexole orally disintegrating tablets for pediatric restless leg syndrome. J. Res. Pharm. 2025;27:1808–1820.
MLA Türkmen, Ömer vd. “Formulation and in Vitro Evaluation of Pramipexole Orally Disintegrating Tablets for Pediatric Restless Leg Syndrome”. Journal of Research in Pharmacy, c. 27, sy. 5, 2025, ss. 1808-20.
Vancouver Türkmen Ö, Beba Pojarani L, Amel M. Formulation and in vitro evaluation of pramipexole orally disintegrating tablets for pediatric restless leg syndrome. J. Res. Pharm. 2025;27(5):1808-20.