Araştırma Makalesi
BibTex RIS Kaynak Göster

Anabasis oropediorum Maire. as a health-promoting source: Phytochemical content, in vitro antioxidant, antidiabetic, antibacterial, and anti-inflammatory potential

Yıl 2023, Cilt: 27 Sayı: 5, 1924 - 1935, 28.06.2025

Öz

Phytochemicals, which are necessary for plants to adapt to their environment, offer an exciting source of medicinal products. This study focuses on the desert plant Anabasis oropediorum (Chenopodiaceae), which is native to calcareous sandy regions in North African countries and Palestine. This investigation is the first to shed light on the therapeutic nature of the methanolic extract of the aerial parts of A. oropediorum. A phytochemical screening analysis was conducted, including a quantitative estimate of the total phenols, flavonoids, flavonols, anthocyanins, hydrolyzable tannins, and condensed tannins. Antioxidant activity was evaluated in vitro using three methods: DPPH• scavenging, β-carotene bleaching, and anti-hemolytic assay. The antidiabetic activity was tested using two assays: non-enzymatic hemoglobin glycosylation and glucose uptake by yeast cells assay. Antibacterial activity was evaluated by the disc diffusion method, and anti-inflammatory activity was evaluated by the protein anti-denaturation method. Phytochemical screening revealed the presence of alkaloids, coumarins, cardiac glycosides, leuco-anthocyanins, mucilage, phenols, saponins, sterols, and terpenes. The quantitative analysis showed that the methanolic extract provided a high level of flavonoids (17.0±0.50 µg QE/mg) and the total contents of tannins (5.3±0.04 µg GAE/mg, 7.3±0.14 µg CE/mg). Chlorogenic acid, p-coumaric acid, quercetin, and rutin were the phenolic compounds detected by RP-HPLC analysis. FTIR spectroscopy confirmed the presence of alkanes, aromatic compounds, and aliphatic amines in the methanolic extract. Biologically, this medicinal plant exhibited medium antioxidant activity, good in vitro antidiabetic activity, antibacterial activity against only Staphylococcus aureus, Listeria innocua, and Escherichia coli, and very good albumin protection activity from heat denaturation.

Kaynakça

  • [1] Belyagoubi-Benhammou N, Belyagoubi L, Gismondi A, Di Marco G, Canini A, Atik Bekkara F. GC/MS analysis, and antioxidant and antimicrobial activities of alkaloids extracted by polar and apolar solvents from the stems of Anabasis articulata. Med Chem Res. 2019; 28(5): 754-767. https://doi.org/10.1007/s00044-019-02332-6
  • [2] Lauterbach M, Veranso-Libalah MC, Sukhorukov AP, Kadereit G. Biogeography of the xerophytic genus Anabasis L. (Chenopodiaceae). Ecol Evol. 2019; 9(6): 3539-3552. https://doi.org/10.1002/ece3.4987
  • [3] Farid O, Khallouki F, Akdad M, Breuer A, Owen RW, Eddouks M. Phytochemical characterization of polyphenolic compounds with HPLC–DAD–ESI–MS and evaluation of lipid-lowering capacity of aqueous extracts from Saharan plant Anabasis aretioides (Coss & Moq.) in normal and streptozotocin-induced diabetic rats. J Integr Med. 2018; 16(3): 185-191. https://doi.org/10.1016/j.joim.2018.03.003
  • [4] Qasem JR. The Coloured Atlas of Medicinal and Aromatic Plants of Jordan and Their Uses (Volume Two). Cambridge Scholars Publishing, England, 2020, p. 75.
  • [5] Du H, Wang Y, Hao X, Li C, Peng Y, Wang J, Liu H, Zhou L. Antimicrobial Phenolic Compounds from Anabasis Aphylla L. Nat Prod Commun. 2009; 4(3). https://doi.org/10.1177/1934578X0900400314
  • [6] Bouaziz M, Dhouib A, Loukil S, Boukhris M, Sayadi S. Polyphenols content, antioxidant and antimicrobial activities of extracts of some wild plants collected from the south of Tunisia. Afr J Biotechnol. 2009; 8(24).
  • [7] Chen H, Hajia A, Yang ZD, Li YC. Isolation and structure identification of chemical constituents from Anabasis brevifolia. Yao Xue Xue Bao. 2005; 40(3): 248-251.
  • [8] Pei Y, Yang ZD, Sheng J. Chemical Constituents of Anabasis salsa. Chem Nat Compd. 2014; 50: 957-958. https://doi.org/10.1007/s10600-014-1132-4
  • [9] Gamal G, Abo-El-Seoud KA, Attia G. Triterpenoids from the aerial parts of Anabasis articulata (Forssk) Moq: gastroprotective effect in vivo with in silico studies, cytotoxic and antimicrobial activities. Nat Prod Res. 2022; 36(16): 4076-4084. https://doi.org/10.1080/14786419.2021.1961769
  • [10] Abdou AM, Abdallah HM, Mohamed MA, Fawzy GA, Abdel-Naim AB. A new anti-inflammatory triterpene saponin isolated from Anabasis setifera. Archives of Pharmacal Research. 2013; 36(6): 715-722. https://doi.org/10.1007/s12272-013-0075-9
  • [11] Shakeri A, Hazeri N, Vlizadeh J, Ghasemi A, Tavallaie FZ. Phytochemical screening, antimicrobial and antioxidant activities of Anabasis aphylla extracts. Kragujevac J Sci. 2012; 34.
  • [12] Mohammadi M, Alaei M, Bajalan I. Phytochemical screening, total phenolic and flavonoid contents and antioxidant activity of Anabasis setifera and Salsola tomentosa extracted with different extraction methods and solvents. Orient Pharm Exp Med. 2016; 16: 31-35. https://doi.org/10.1007/s13596-016-0220-3
  • [13] Gamoun M. Grazing intensity effects on the vegetation in desert rangelands of Southern Tunisia. J Arid Land. 2014; 6(3): 324-333. https://doi.org/10.1007/s40333-013-0202-y
  • [14] Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020; 10(1): 16438. https://doi.org/10.1038/s41598-020-73442-0
  • [15] Laib I, Djahra AB. Phytochemical investigation of Helianthemum lippii l. aerial Dum.Cours part and evaluation for its antioxidant activities. Int j second metab. 2022; 9(2). https://doi.org/10.21448/ijsm.999518
  • [16] Munteanu IG, Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int J Mol Sci. 2021; 22(7): 3380. https://doi.org/10.3390/ijms22073380
  • [17] Chekroun-Bechlaghem N, Belyagoubi-Benhammou N, Belyagoubi L, Gismondi A, Nanni V, Di Marco G, Canuti L, Canini A, El Haci IA, Atik Bekkara F. Phytochemical analysis and antioxidant activity of Tamarix africana, Arthrocnemum macrostachyum and Suaeda fruticosa, three halophyte species from Algeria. Plant Biosyst. 2019; 153(6): 843-852. https://doi.org/10.1080/11263504.2018.1555191
  • [18] Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009; 53(2): 75-100. https://doi.org/10.1007/s12013-009-9043-x
  • [19] Tosun M, Ercisli S, Sengul M, Ozer H, Polat T, Ozturk E. Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biol Res. 2009; 42(2): 175-181. https://doi.org//s0716-97602009000200005
  • [20] Zheng CD, Li G, Li HQ, Xu XJ, Gao JM, Zhang AL. DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Nat Prod Commun. 2010; 5(11): 1759-1765.
  • [21] Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014; 5: 84. https://doi.org/10.3389/fphys.2014.00084
  • [22] Nabavi SF, Nabavi SM, Hellio C, Alinezhad H, Zare M, Azimi R, Bahafar R. Antioxidant and antihemolytic activities of methanol extract of Hyssopus angustifolius. J Appl Bot Food Qual. 2012; 85: 198-201.
  • [23] Nagarajan Y, Ali M, Anuradha V. In vitro evaluation of antidiabetic potential of Gymnema sylvestre and Dregea volubilis a medicinally important Asclepiadaceae plant. Int J Biol Sci. 2014; 1(1): 9-12.
  • [24] Braun-Falco O, Korting HC. Skin Cleansing with Synthetic Detergents: Chemical, Ecological, and Clinical Aspects. Springer Science & Business Media, 2012.
  • [25] Ganeshpurkar A, Saluja AK. The Pharmacological Potential of Rutin. Saudi Pharmaceutical Journal. 2017; 25(2): 149-164. https://doi.org/10.1016/j.jsps.2016.04.025
  • [26] David AVA, Radhakrishnan A, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy Reviews. 2016; 10: 84. https://doi.org/10.4103/0973-7847.194044
  • [27] Tiwari PK, Kaur M, Kaur H. Phytochemical screening and Extraction: A Review. Acta Pharm Sci. 2011; 1 (1): 98-106.
  • [28] Urbstaite R, Raudone L, Janulis V. Phytogenotypic Anthocyanin Profiles and Antioxidant Activity Variation in Fruit Samples of the American Cranberry (Vaccinium macrocarpon Aiton). Antioxidants. 2022; 11(2): 250. http://dx.doi.org/10.3390/antiox11020250
  • [29] Mbaebie BO, Edeoga HO, Afolayan AJ. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pac J Trop Biomed. 2012; 2(2): 118-124. https://doi.org/10.1016/S2221-1691(11)60204-9
  • [30] Chouikh A, Chemsa AE, Aounallah C, Aounallah I, Alia F. Phytochemical study, nutritive value, antioxidant and anti-inflammatory activities of phenolic extracts from desert plant Calligonum comosum L'Hér. Algerian journal of biosciences. 2020; 1(02): 68-75. https://doi.org/10.5281/zenodo.4395515
  • [31] Pitchaipillai R, Ponniah T. In vitro antidiabetic activity of ethanolic leaf extract of bruguiera Cylindrica L.–glucose uptake by yeast cells method. Int J Adv Biol. 2016; 2(4): 171-175.
  • [32] Muthukrishnan S, Kumar TS, Gangaprasad A, Maggi F, Rao MV. Phytochemical analysis, antioxidant and antimicrobial activity of wild and in vitro derived plants of Ceropegia thwaitesii Hook – An endemic species from Western Ghats, India. J Genet Eng Biotechnol. 2018; 16(2): 621-630. https://doi.org/10.1016/j.jgeb.2018.06.003
Yıl 2023, Cilt: 27 Sayı: 5, 1924 - 1935, 28.06.2025

Öz

Kaynakça

  • [1] Belyagoubi-Benhammou N, Belyagoubi L, Gismondi A, Di Marco G, Canini A, Atik Bekkara F. GC/MS analysis, and antioxidant and antimicrobial activities of alkaloids extracted by polar and apolar solvents from the stems of Anabasis articulata. Med Chem Res. 2019; 28(5): 754-767. https://doi.org/10.1007/s00044-019-02332-6
  • [2] Lauterbach M, Veranso-Libalah MC, Sukhorukov AP, Kadereit G. Biogeography of the xerophytic genus Anabasis L. (Chenopodiaceae). Ecol Evol. 2019; 9(6): 3539-3552. https://doi.org/10.1002/ece3.4987
  • [3] Farid O, Khallouki F, Akdad M, Breuer A, Owen RW, Eddouks M. Phytochemical characterization of polyphenolic compounds with HPLC–DAD–ESI–MS and evaluation of lipid-lowering capacity of aqueous extracts from Saharan plant Anabasis aretioides (Coss & Moq.) in normal and streptozotocin-induced diabetic rats. J Integr Med. 2018; 16(3): 185-191. https://doi.org/10.1016/j.joim.2018.03.003
  • [4] Qasem JR. The Coloured Atlas of Medicinal and Aromatic Plants of Jordan and Their Uses (Volume Two). Cambridge Scholars Publishing, England, 2020, p. 75.
  • [5] Du H, Wang Y, Hao X, Li C, Peng Y, Wang J, Liu H, Zhou L. Antimicrobial Phenolic Compounds from Anabasis Aphylla L. Nat Prod Commun. 2009; 4(3). https://doi.org/10.1177/1934578X0900400314
  • [6] Bouaziz M, Dhouib A, Loukil S, Boukhris M, Sayadi S. Polyphenols content, antioxidant and antimicrobial activities of extracts of some wild plants collected from the south of Tunisia. Afr J Biotechnol. 2009; 8(24).
  • [7] Chen H, Hajia A, Yang ZD, Li YC. Isolation and structure identification of chemical constituents from Anabasis brevifolia. Yao Xue Xue Bao. 2005; 40(3): 248-251.
  • [8] Pei Y, Yang ZD, Sheng J. Chemical Constituents of Anabasis salsa. Chem Nat Compd. 2014; 50: 957-958. https://doi.org/10.1007/s10600-014-1132-4
  • [9] Gamal G, Abo-El-Seoud KA, Attia G. Triterpenoids from the aerial parts of Anabasis articulata (Forssk) Moq: gastroprotective effect in vivo with in silico studies, cytotoxic and antimicrobial activities. Nat Prod Res. 2022; 36(16): 4076-4084. https://doi.org/10.1080/14786419.2021.1961769
  • [10] Abdou AM, Abdallah HM, Mohamed MA, Fawzy GA, Abdel-Naim AB. A new anti-inflammatory triterpene saponin isolated from Anabasis setifera. Archives of Pharmacal Research. 2013; 36(6): 715-722. https://doi.org/10.1007/s12272-013-0075-9
  • [11] Shakeri A, Hazeri N, Vlizadeh J, Ghasemi A, Tavallaie FZ. Phytochemical screening, antimicrobial and antioxidant activities of Anabasis aphylla extracts. Kragujevac J Sci. 2012; 34.
  • [12] Mohammadi M, Alaei M, Bajalan I. Phytochemical screening, total phenolic and flavonoid contents and antioxidant activity of Anabasis setifera and Salsola tomentosa extracted with different extraction methods and solvents. Orient Pharm Exp Med. 2016; 16: 31-35. https://doi.org/10.1007/s13596-016-0220-3
  • [13] Gamoun M. Grazing intensity effects on the vegetation in desert rangelands of Southern Tunisia. J Arid Land. 2014; 6(3): 324-333. https://doi.org/10.1007/s40333-013-0202-y
  • [14] Konappa N, Udayashankar AC, Krishnamurthy S, Pradeep CK, Chowdappa S, Jogaiah S. GC–MS analysis of phytoconstituents from Amomum nilgiricum and molecular docking interactions of bioactive serverogenin acetate with target proteins. Sci Rep. 2020; 10(1): 16438. https://doi.org/10.1038/s41598-020-73442-0
  • [15] Laib I, Djahra AB. Phytochemical investigation of Helianthemum lippii l. aerial Dum.Cours part and evaluation for its antioxidant activities. Int j second metab. 2022; 9(2). https://doi.org/10.21448/ijsm.999518
  • [16] Munteanu IG, Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int J Mol Sci. 2021; 22(7): 3380. https://doi.org/10.3390/ijms22073380
  • [17] Chekroun-Bechlaghem N, Belyagoubi-Benhammou N, Belyagoubi L, Gismondi A, Nanni V, Di Marco G, Canuti L, Canini A, El Haci IA, Atik Bekkara F. Phytochemical analysis and antioxidant activity of Tamarix africana, Arthrocnemum macrostachyum and Suaeda fruticosa, three halophyte species from Algeria. Plant Biosyst. 2019; 153(6): 843-852. https://doi.org/10.1080/11263504.2018.1555191
  • [18] Perron NR, Brumaghim JL. A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys. 2009; 53(2): 75-100. https://doi.org/10.1007/s12013-009-9043-x
  • [19] Tosun M, Ercisli S, Sengul M, Ozer H, Polat T, Ozturk E. Antioxidant properties and total phenolic content of eight Salvia species from Turkey. Biol Res. 2009; 42(2): 175-181. https://doi.org//s0716-97602009000200005
  • [20] Zheng CD, Li G, Li HQ, Xu XJ, Gao JM, Zhang AL. DPPH-scavenging activities and structure-activity relationships of phenolic compounds. Nat Prod Commun. 2010; 5(11): 1759-1765.
  • [21] Mohanty JG, Nagababu E, Rifkind JM. Red blood cell oxidative stress impairs oxygen delivery and induces red blood cell aging. Front Physiol. 2014; 5: 84. https://doi.org/10.3389/fphys.2014.00084
  • [22] Nabavi SF, Nabavi SM, Hellio C, Alinezhad H, Zare M, Azimi R, Bahafar R. Antioxidant and antihemolytic activities of methanol extract of Hyssopus angustifolius. J Appl Bot Food Qual. 2012; 85: 198-201.
  • [23] Nagarajan Y, Ali M, Anuradha V. In vitro evaluation of antidiabetic potential of Gymnema sylvestre and Dregea volubilis a medicinally important Asclepiadaceae plant. Int J Biol Sci. 2014; 1(1): 9-12.
  • [24] Braun-Falco O, Korting HC. Skin Cleansing with Synthetic Detergents: Chemical, Ecological, and Clinical Aspects. Springer Science & Business Media, 2012.
  • [25] Ganeshpurkar A, Saluja AK. The Pharmacological Potential of Rutin. Saudi Pharmaceutical Journal. 2017; 25(2): 149-164. https://doi.org/10.1016/j.jsps.2016.04.025
  • [26] David AVA, Radhakrishnan A, Parasuraman S. Overviews of Biological Importance of Quercetin: A Bioactive Flavonoid. Pharmacognosy Reviews. 2016; 10: 84. https://doi.org/10.4103/0973-7847.194044
  • [27] Tiwari PK, Kaur M, Kaur H. Phytochemical screening and Extraction: A Review. Acta Pharm Sci. 2011; 1 (1): 98-106.
  • [28] Urbstaite R, Raudone L, Janulis V. Phytogenotypic Anthocyanin Profiles and Antioxidant Activity Variation in Fruit Samples of the American Cranberry (Vaccinium macrocarpon Aiton). Antioxidants. 2022; 11(2): 250. http://dx.doi.org/10.3390/antiox11020250
  • [29] Mbaebie BO, Edeoga HO, Afolayan AJ. Phytochemical analysis and antioxidants activities of aqueous stem bark extract of Schotia latifolia Jacq. Asian Pac J Trop Biomed. 2012; 2(2): 118-124. https://doi.org/10.1016/S2221-1691(11)60204-9
  • [30] Chouikh A, Chemsa AE, Aounallah C, Aounallah I, Alia F. Phytochemical study, nutritive value, antioxidant and anti-inflammatory activities of phenolic extracts from desert plant Calligonum comosum L'Hér. Algerian journal of biosciences. 2020; 1(02): 68-75. https://doi.org/10.5281/zenodo.4395515
  • [31] Pitchaipillai R, Ponniah T. In vitro antidiabetic activity of ethanolic leaf extract of bruguiera Cylindrica L.–glucose uptake by yeast cells method. Int J Adv Biol. 2016; 2(4): 171-175.
  • [32] Muthukrishnan S, Kumar TS, Gangaprasad A, Maggi F, Rao MV. Phytochemical analysis, antioxidant and antimicrobial activity of wild and in vitro derived plants of Ceropegia thwaitesii Hook – An endemic species from Western Ghats, India. J Genet Eng Biotechnol. 2018; 16(2): 621-630. https://doi.org/10.1016/j.jgeb.2018.06.003
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Noura Gheraissa 0000-0002-1377-4246

Ahmed Elkhalifa Chemsa 0000-0002-2220-0877

Nezar Cherrada 0000-0002-4153-6958

Ebru Erol

Eman Ramadan Elsharkawy 0000-0003-2284-3466

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 5

Kaynak Göster

APA Gheraissa, N., Chemsa, A. E., Cherrada, N., Erol, E., vd. (2025). Anabasis oropediorum Maire. as a health-promoting source: Phytochemical content, in vitro antioxidant, antidiabetic, antibacterial, and anti-inflammatory potential. Journal of Research in Pharmacy, 27(5), 1924-1935.
AMA Gheraissa N, Chemsa AE, Cherrada N, Erol E, Elsharkawy ER. Anabasis oropediorum Maire. as a health-promoting source: Phytochemical content, in vitro antioxidant, antidiabetic, antibacterial, and anti-inflammatory potential. J. Res. Pharm. Temmuz 2025;27(5):1924-1935.
Chicago Gheraissa, Noura, Ahmed Elkhalifa Chemsa, Nezar Cherrada, Ebru Erol, ve Eman Ramadan Elsharkawy. “Anabasis Oropediorum Maire. As a Health-Promoting Source: Phytochemical Content, in Vitro Antioxidant, Antidiabetic, Antibacterial, and Anti-Inflammatory Potential”. Journal of Research in Pharmacy 27, sy. 5 (Temmuz 2025): 1924-35.
EndNote Gheraissa N, Chemsa AE, Cherrada N, Erol E, Elsharkawy ER (01 Temmuz 2025) Anabasis oropediorum Maire. as a health-promoting source: Phytochemical content, in vitro antioxidant, antidiabetic, antibacterial, and anti-inflammatory potential. Journal of Research in Pharmacy 27 5 1924–1935.
IEEE N. Gheraissa, A. E. Chemsa, N. Cherrada, E. Erol, ve E. R. Elsharkawy, “Anabasis oropediorum Maire. as a health-promoting source: Phytochemical content, in vitro antioxidant, antidiabetic, antibacterial, and anti-inflammatory potential”, J. Res. Pharm., c. 27, sy. 5, ss. 1924–1935, 2025.
ISNAD Gheraissa, Noura vd. “Anabasis Oropediorum Maire. As a Health-Promoting Source: Phytochemical Content, in Vitro Antioxidant, Antidiabetic, Antibacterial, and Anti-Inflammatory Potential”. Journal of Research in Pharmacy 27/5 (Temmuz 2025), 1924-1935.
JAMA Gheraissa N, Chemsa AE, Cherrada N, Erol E, Elsharkawy ER. Anabasis oropediorum Maire. as a health-promoting source: Phytochemical content, in vitro antioxidant, antidiabetic, antibacterial, and anti-inflammatory potential. J. Res. Pharm. 2025;27:1924–1935.
MLA Gheraissa, Noura vd. “Anabasis Oropediorum Maire. As a Health-Promoting Source: Phytochemical Content, in Vitro Antioxidant, Antidiabetic, Antibacterial, and Anti-Inflammatory Potential”. Journal of Research in Pharmacy, c. 27, sy. 5, 2025, ss. 1924-35.
Vancouver Gheraissa N, Chemsa AE, Cherrada N, Erol E, Elsharkawy ER. Anabasis oropediorum Maire. as a health-promoting source: Phytochemical content, in vitro antioxidant, antidiabetic, antibacterial, and anti-inflammatory potential. J. Res. Pharm. 2025;27(5):1924-35.