Araştırma Makalesi
BibTex RIS Kaynak Göster

Development and characterization of in situ gelling system containing atorvastatin-loaded polycaprolactone nanoparticles for periodontal diseases

Yıl 2023, Cilt: 27 Sayı: 5, 1951 - 1973, 28.06.2025

Öz

The periodontal pocket provides a suitable environment for bacterial accumulation and growth which results in ultimately tooth loss. The clinical efficacy of current therapy for periodontal pocket is low because the flushing actions within the mouth causes to rapid clearance of the solution. The antioxidant and anti-inflammatory effects of atorvastatin (ATV) can facilitate healing process of periodontal diseases. The aim of this study was to develop in situ gel formulation containing ATV-loaded polycaprolactone nanoparticles (PCL-NPs). PCL NPs were prepared by nanoprecipitation method. The NPs had spherical shape with a particle size range of 176-329 nm. They showed 59% encapsulation efficiency and prolonged release profile. In order to increase the mucoadhesive properties of the formulation and the residence time of the drug at the site of action, NPs were incorporated to in situ gel to provide a combination therapy. In situ gel formulation was prepared by cold method and characterized in terms of pH, gelation temperature and time, viscosity, syringeability, and rheological behaviours. In vitro release studies revealed that in situ gel formulation remarkably extend the release time of ATV and mathematical release kinetic modelling shows formulations can fit multiple models. The overall findings indicated that the combination therapy strategy of locally administration of in situ gel containing ATV-loaded polycaprolactone nanoparticles to periodontal pockets is a promising and innovative approach.

Kaynakça

  • [1] Melcher, A. H. On the repair potential of periodontal tissues. Journal of Periodontology. 1976; 47(5): 256-260. https://doi.org/10.1902/jop.1976.47.5.256
  • [2] Pragati, S., Ashok, S., & Kuldeep, S. Recent advances in periodontal drug delivery systems. International Journal of Drug Delivery. 2009; 1(1). http://doi.org/10.5138/ijdd.2009.0975.0215.01001
  • [3] Tatakis, D. N., Kumar, P. S. Etiology and pathogenesis of periodontal diseases. Dent Clin North Am. 2005; 49(3): 491-516. https://doi.org/10.1016/j.cden.2005.03.001
  • [4] Kim, W. J., Soh, Y., & Heo, S. M. Recent Advances of Therapeutic Targets for the Treatment of Periodontal Disease. Biomol Ther (Seoul). 2021; 29(3): 263-267. https://doi.org/10.4062/biomolther.2021.001
  • [5] Jain, M. K., & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005; 4(12): 977-987. https://doi.org/10.1038/nrd1901
  • [6] Barsante, M. M., Roffe, E., Yokoro, C. M., Tafuri, W. L., Souza, D. G., Pinho, V., Castro, M.S.A., Teixeira, M. M. Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. Eur J Pharmacol. 2005; 516(3): 282-289. https://doi.org/10.1016/j.ejphar.2005.05.005
  • [7] Shao, Q., Shen, L. H., Hu, L. H., Pu, J., Jing, Q., & He, B. Atorvastatin suppresses inflammatory response induced by oxLDL through inhibition of ERK phosphorylation, IκBα degradation, and COX‐2 expression in murine macrophages. Journal of Cellular Biochemistry. 2012; 113(2): 611-618. https://doi.org/10.1002/jcb.23388
  • [8] Zamvil, S. S., & Steinman, L. Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology. 2002; 59: 970-971.
  • [9] Armitage, J. The safety of statins in clinical practice. Lancet. 2007; 370(9601): 1781-1790. https://doi.org/10.1016/S0140-6736(07)60716-8
  • [10] Sierra, S., Ramos, M. C., Molina, P., Esteo, C., Vazquez, J. A., & Burgos, J. S. Statins as Neuroprotectants: A Comparative In Vitro Study of Lipophilicity, Blood-Brain-Barrier Penetration, Lowering of Brain Cholesterol, and Decrease of Neuron Cell Death. Journal of Alzheimers Disease. 2011; 23(2): 307-318. https://doi.org/10.3233/Jad-2010-101179
  • [11] Begines, B., Ortiz, T., Perez-Aranda, M., Martinez, G., Merinero, M., Arguelles-Arias, F., & Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel). 2020; 10(7): 1403. https://doi.org/10.3390/nano10071403
  • [12] Khalid, M., & El-Sawy, H. S. Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics. 2017; 528(1-2): 675-691. https://doi.org/10.1016/j.ijpharm.2017.06.052
  • [13] Gou, M., Wei, X., Men, K., Wang, B., Luo, F., Zhao, X., Wei, Y., Qian, Z. PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. Curr Drug Targets. 2011; 12(8): 1131-1150. https://doi.org/10.2174/138945011795906642
  • [14] Mondrinos, M. J., Dembzynski, R., Lu, L., Byrapogu, V. K., Wootton, D. M., Lelkes, P. I., & Zhou, J. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials. 2006; 27(25): 4399-4408. https://doi.org/10.1016/j.biomaterials.2006.03.049
  • [15] Wei, X., Gong, C., Gou, M., Fu, S., Guo, Q., Shi, S., Luo, F., Guo, G., Qiu, L., Qian, Z. Biodegradable poly (ɛ-caprolactone)–poly (ethylene glycol) copolymers as drug delivery system. International Journal of Pharmaceutics. 2009; 381(1): 1-18. https://doi.org/10.1016/j.ijpharm.2009.07.033
  • [16] Yamamoto, M., Ikada, Y., & Tabata, Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001; 12(1): 77-88. https://doi.org/10.1163/156856201744461
  • [17] Tangpasuthadol, V., Pongchaisirikul, N., & Hoven, V. P. Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydr Res. 2003; 338(9): 937-942. https://doi.org/10.1016/s0008-6215(03)00038-7
  • [18] Wilsonjr, O., & Hull, J. Surface modification of nanophased hydroxyapatite with chitosan Materials. Sci. Eng. C. 2008; 28: 434-437. https://doi.org/10.1016/j.msec.2007.04.005
  • [19] Badran, M. M., Mady, M. M., Ghannam, M. M., & Shakeel, F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int J Biol Macromol. 2017; 95: 643-649. https://doi.org/10.1016/j.ijbiomac.2016.11.098
  • [20] Nasra, M. M., Khiri, H. M., Hazzah, H. A., & Abdallah, O. Y. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Delivery. 2017; 24(1): 133-142. https://doi.org/10.1080/10717544.2016.1233591
  • [21] Beg, S., Dhiman, S., Sharma, T., Jain, A., Sharma, R. K., Jain, A., & Singh, B. Stimuli Responsive In Situ Gelling Systems Loaded with PLGA Nanoparticles of Moxifloxacin Hydrochloride for Effective Treatment of Periodontitis. AAPS Pharmscitech. 2020; 21(3): 76. https://doi.org/10.1208/s12249-019-1613-7
  • [22] Polat, H. K. In Situ Gels Triggered by Temperature for Ocular Delivery of Dexamethasone and Dexamethasone/ SBE-β-CD Complex. J.Res.Pharm. 2022; 26(4): 873-883. http://dx.doi.org/10.29228/jrp.186
  • [23] Badri, W., Miladi, K., Nazari, Q. A., Fessi, H., & Elaissari, A. Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017; 516: 238-244. https://doi.org/10.1016/j.colsurfa.2016.12.029
  • [24] Tavares, M. R., de Menezes, L. R., Dutra, J. C., Cabral, L. M., & Tavares, M. I. B. Surface-coated polycaprolactone nanoparticles with pharmaceutical application: Structural and molecular mobility evaluation by TD-NMR. Polymer Testing. 2017; 60: 39-48. https://doi.org/10.1016/j.polymertesting.2017.01.032
  • [25] Varan, C., & Bilensoy, E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein J Nanotechnol. 2017; 8(1): 1446-1456. https://doi.org/10.3762/bjnano.8.144
  • [26] Gaumet, M., Vargas, A., Gurny, R., & Delie, F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008; 69(1): 1-9. https://doi.org/10.1016/j.ejpb.2007.08.001
  • [27] Longmire, M., Choyke, P. L., & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 2008; 3(5): 703-717. https://doi.org/10.2217/17435889.3.5.703
  • [28] Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., & Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Research Letters. 2018; 13(1): 1-21. https://doi.org/10.1186/s11671-018-2457-x
  • [29] Chorny, M., Fishbein, I., Danenberg, H. D., & Golomb, G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002; 83(3): 389-400. https://doi.org/10.1016/s0168-3659(02)00211-0
  • [30] Miladi, K., Sfar, S., Fessi, H., & Elaissari, A. Encapsulation of alendronate sodium by nanoprecipitation and double emulsion: From preparation to in vitro studies. Industrial Crops and Products. 2015; 72: 24-33. https://doi.org/10.1016/j.indcrop.2015.01.079
  • [31] Colmenares Roldán, G. J., Agudelo Gomez, L. M., Carlos Cornelio, J. A., Rodriguez, L. F., Pinal, R., & Hoyos Palacio, L. M. Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments. Journal of Nanoparticle Research. 2018; 20(3): 1-12. https://doi.org/10.1007/s11051-018-4168-8
  • [32] Rasmussen, M. K., Pedersen, J. N., & Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020; 11(1): 2337. https://doi.org/10.1038/s41467-020-15889-3
  • [33] Jo, D. H., Kim, J. H., Lee, T. G., & Kim, J. H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015; 11(7): 1603-1611. https://doi.org/10.1016/j.nano.2015.04.015
  • [34] Yang, S. C., Ge, H. X., Hu, Y., Jiang, X. Q., & Yang, C. Z. Formation of positively charged poly(butyl cyanoacrylate) nanoparticles stabilized with chitosan. Colloid and Polymer Science. 2000; 278(4): 285-292. https://doi.org/10.1007/s003960050516
  • [35] Budhian, A., Siegel, S. J., & Winey, K. I. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007; 336(2): 367-375. https://doi.org/10.1016/j.ijpharm.2006.11.061
  • [36] Mikusova, V., & Mikus, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci. 2021; 22(17): 9652. https://doi.org/10.3390/ijms22179652
  • [37] Varan, G., Benito, J. M., Mellet, C. O., & Bilensoy, E. Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein J Nanotechnol. 2017; 8(1): 1457-1468. https://doi.org/10.3762/bjnano.8.145
  • [38] Nagarwal, R. C., Kumar, R., & Pandit, J. K. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci. 2012; 47(4): 678-685. https://doi.org/10.1016/j.ejps.2012.08.008
  • [39] Permana, A. D., Utami, R. N., Layadi, P., Himawan, A., Juniarti, N., Anjani, Q. K., Utomo, E., Mardikasari, S. A., Arjuna, A., Donnelly, R. F. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int J Pharm. 2021; 602: 120623. https://doi.org/10.1016/j.ijpharm.2021.120623
  • [40] Reed, K. L., Malamed, S. F., & Fonner, A. M. Local anesthesia part 2: technical considerations. Anesth Prog. 2012; 59(3): 127-136. https://doi.org/10.2344/0003-3006-59.3.127
  • [41] Du, L., Tong, L., Jin, Y., Jia, J., Liu, Y., Su, C., Yu, S., Li, X. A multifunctional in situ-forming hydrogel for wound healing. Wound Repair Regen. 2012; 20(6): 904-910. https://doi.org/10.1111/j.1524-475X.2012.00848.x
  • [42] Balasingam, R., Khan, A., & Thinakaran, R. Formulation of in Situ Gelling System for Ophthalmic Delivery of Erythromycin. Int J Students’ Res Technol Manag. 2017; 5(3): 01-08.
  • [43] Wanka, G., Hoffmann, H., & Ulbricht, W. Phase-Diagrams and Aggregation Behavior of Poly(Oxyethylene)-Poly(Oxypropylene)-Poly(Oxyethylene) Triblock Copolymers in Aqueous-Solutions. Macromolecules. 1994; 27(15): 4145-4159. https://doi.org/10.1021/ma00093a016
  • [44] El-Enin, A. A., & El-Feky, G. Formulation and evaluation of in-situ gelling tenoxicam liquid suppositories. J. of Life Medicine. 2013; (1): 2
  • [45] Abd Elhady, S. S., Mortada, N. D., Awad, G. A., & Zaki, N. M. Development of in situ gelling and muco adhesive mebeverine hydrochloride solution for rectal administration. Saudi Pharmaceutical Journal. 2003; 11.
  • [46] Morsi, N., Ghorab, D., Refai, H., & Teba, H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. International Journal of Pharmaceutics. 2016; 506(1-2): 57-67. https://doi.org/10.1016/j.ijpharm.2016.04.021
  • [47] Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., & Xie, S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010; 12(3): 263-271. https://doi.org/10.1208/s12248-010-9185-1
  • [48] Patil, A. Preparation, characterization and toxicity evaluation of a novel sustained release delivery system for a hydrogen sulfide donor-GYY 4137. 2016; Creighton University.
  • [49] Fathalla, Z. M. A., Vangala, A., Longman, M., Khaled, K. A., Hussein, A. K., El-Garhy, O. H., & Alany, R. G. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies. European Journal of Pharmaceutics and Biopharmaceutics. 2017; 114: 119-134. https://doi.org/10.1016/j.ejpb.2017.01.008
  • [50] Laddha, U. D., & Kshirsagar, S. J. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: In vitro, ex vivo and in vivo evidences. Journal of Drug Delivery Science and Technology. 2021; 61: 102112. https://doi.org/10.1016/j.jddst.2020.102112
  • [51] Chu, K., Chen, L., Xu, W., Li, H., Zhang, Y., Xie, W., & Zheng, J. Preparation of a paeonol-containing temperature-sensitive in situ gel and its preliminary efficacy on allergic rhinitis. Int J Mol Sci. 2013; 14(3): 6499-6515. https://doi.org/10.3390/ijms14036499
  • [52] Munot, N. M., Kishore, G., & Mithila, K. Development and evaluation of biodegradable microspheres embedded in in situ gel for controlled delivery of hydrophilic drug for treating oral infections: In vitro and in vivo studies. Asian Journal of Pharmaceutics (AJP). 2014; 8(3). https://doi.org/10.22377/ajp.v8i3.358
  • [53] Yang, H., Li, J., Patel, S. K., Palmer, K. E., Devlin, B., & Rohan, L. C. Design of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles for Vaginal Co-Delivery of Griffithsin and Dapivirine and Their Synergistic Effect for HIV Prophylaxis. Pharmaceutics. 2019; 11(4): 184. https://doi.org/10.3390/pharmaceutics11040184
  • [54] Ozturk, A. A., Yenilmez, E., & Ozarda, M. G. Clarithromycin-Loaded Poly (Lactic-co-glycolic Acid) (PLGA) Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Surface Modification with Chitosan on Formulation, Nanoparticle Characterization and Antibacterial Effects. Polymers (Basel). 2019; 11(10): 1632. https://doi.org/10.3390/polym11101632
  • [55] Rehman, M., Ihsan, A., Madni, A., Bajwa, S. Z., Shi, D., Webster, T. J., & Khan, W. S. Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies. Int J Nanomedicine. 2007; 12: 8325-8336. https://doi.org/10.2147/IJN.S147506
  • [56] Papadopoulou, V., Kosmidis, K., Vlachou, M., & Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006; 309(1-2): 44-50. https://doi.org/10.1016/j.ijpharm.2005.10.044
  • [57] Ainurofiq, A., & Choiri, S. Drug Release Mechanism of Slightly Soluble Drug from Nanocomposite Matrix Formulated with Zeolite/Hydrotalcite as Drug Carrier. Tropical Journal of Pharmaceutical Research. 2015; 14(7): 1129-1135. https://doi.org/10.4314/tjpr.v14i7.2
  • [58] Unal, S., Aktas, Y., Benito, J. M., & Bilensoy, E. Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. Int J Pharm. 2020; 584: 119468. https://doi.org/10.1016/j.ijpharm.2020.119468
  • [59] Bilensoy, E., Gürkaynak, O., Doğan, A. L., & Hıncal, A. A. Safety and efficacy of amphiphilic ß-cyclodextrin nanoparticles for paclitaxel delivery. International Journal of Pharmaceutics. 2008; 47(1-2): 163-170. https://doi.org/10.1016/j.ijpharm.2007.06.051
  • [60] Polat, H. K. Design of Metformin HCl and Moxifloxacin HCl Loaded Thermosensitive In Situ Gel. J.Res.Pharm. 2022; 26(5): 1230-1241. http://dx.doi.org/10.29228/jrp.215
  • [61] Almeida, H., Amaral, M. H., Lobao, P., & Sousa Lobo, J. M. Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Deliv. 2013; 10(9): 1223-1237. https://doi.org/10.1517/17425247.2013.796360
  • [62] Maheshwari, M., Miglani, G., Mali, A., Paradkar, A., Yamamura, S., & Kadam, S. Development of tetracycline-serratiopeptidase-containing periodontal gel: formulation and preliminary clinical study. AAPS Pharmscitech. 2006; 7(3): 76. https://doi.org/10.1208/pt070376
  • [63] Wanka, G., Hoffmann, H., & Ulbricht, W. Macromolecules1994, 27, 4145. [ACS Full Text], Google Scholar. (b) Alexandridis, P.; Hatton, T. A. Colloids Surf. A, 96, 1.
  • [64] Polat, H. K., Kurt, N., Aytekin, E., Akdağ Çaylı, Y., Bozdağ Pehlivan, S., & Çalış, S. Design of Besifloxacin HCl-Loaded Nanostructured Lipid Carriers: In Vitro and Ex Vivo Evaluation. J Ocul Pharmacol Ther. 2022; 38(6): 412–423. https://doi.org/10.1089/jop.2022.0008
  • [65] Puthli, S., & Vavia, P. R. Stability studies of microparticulate system with piroxicam as model drug. AAPS Pharmscitech. 2009; 10(3): 872-880. https://doi.org/10.1208/s12249-009-9280-8
Yıl 2023, Cilt: 27 Sayı: 5, 1951 - 1973, 28.06.2025

Öz

Kaynakça

  • [1] Melcher, A. H. On the repair potential of periodontal tissues. Journal of Periodontology. 1976; 47(5): 256-260. https://doi.org/10.1902/jop.1976.47.5.256
  • [2] Pragati, S., Ashok, S., & Kuldeep, S. Recent advances in periodontal drug delivery systems. International Journal of Drug Delivery. 2009; 1(1). http://doi.org/10.5138/ijdd.2009.0975.0215.01001
  • [3] Tatakis, D. N., Kumar, P. S. Etiology and pathogenesis of periodontal diseases. Dent Clin North Am. 2005; 49(3): 491-516. https://doi.org/10.1016/j.cden.2005.03.001
  • [4] Kim, W. J., Soh, Y., & Heo, S. M. Recent Advances of Therapeutic Targets for the Treatment of Periodontal Disease. Biomol Ther (Seoul). 2021; 29(3): 263-267. https://doi.org/10.4062/biomolther.2021.001
  • [5] Jain, M. K., & Ridker, P. M. Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov. 2005; 4(12): 977-987. https://doi.org/10.1038/nrd1901
  • [6] Barsante, M. M., Roffe, E., Yokoro, C. M., Tafuri, W. L., Souza, D. G., Pinho, V., Castro, M.S.A., Teixeira, M. M. Anti-inflammatory and analgesic effects of atorvastatin in a rat model of adjuvant-induced arthritis. Eur J Pharmacol. 2005; 516(3): 282-289. https://doi.org/10.1016/j.ejphar.2005.05.005
  • [7] Shao, Q., Shen, L. H., Hu, L. H., Pu, J., Jing, Q., & He, B. Atorvastatin suppresses inflammatory response induced by oxLDL through inhibition of ERK phosphorylation, IκBα degradation, and COX‐2 expression in murine macrophages. Journal of Cellular Biochemistry. 2012; 113(2): 611-618. https://doi.org/10.1002/jcb.23388
  • [8] Zamvil, S. S., & Steinman, L. Cholesterol-lowering statins possess anti-inflammatory activity that might be useful for treatment of MS. Neurology. 2002; 59: 970-971.
  • [9] Armitage, J. The safety of statins in clinical practice. Lancet. 2007; 370(9601): 1781-1790. https://doi.org/10.1016/S0140-6736(07)60716-8
  • [10] Sierra, S., Ramos, M. C., Molina, P., Esteo, C., Vazquez, J. A., & Burgos, J. S. Statins as Neuroprotectants: A Comparative In Vitro Study of Lipophilicity, Blood-Brain-Barrier Penetration, Lowering of Brain Cholesterol, and Decrease of Neuron Cell Death. Journal of Alzheimers Disease. 2011; 23(2): 307-318. https://doi.org/10.3233/Jad-2010-101179
  • [11] Begines, B., Ortiz, T., Perez-Aranda, M., Martinez, G., Merinero, M., Arguelles-Arias, F., & Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. Nanomaterials (Basel). 2020; 10(7): 1403. https://doi.org/10.3390/nano10071403
  • [12] Khalid, M., & El-Sawy, H. S. Polymeric nanoparticles: Promising platform for drug delivery. International Journal of Pharmaceutics. 2017; 528(1-2): 675-691. https://doi.org/10.1016/j.ijpharm.2017.06.052
  • [13] Gou, M., Wei, X., Men, K., Wang, B., Luo, F., Zhao, X., Wei, Y., Qian, Z. PCL/PEG copolymeric nanoparticles: potential nanoplatforms for anticancer agent delivery. Curr Drug Targets. 2011; 12(8): 1131-1150. https://doi.org/10.2174/138945011795906642
  • [14] Mondrinos, M. J., Dembzynski, R., Lu, L., Byrapogu, V. K., Wootton, D. M., Lelkes, P. I., & Zhou, J. Porogen-based solid freeform fabrication of polycaprolactone-calcium phosphate scaffolds for tissue engineering. Biomaterials. 2006; 27(25): 4399-4408. https://doi.org/10.1016/j.biomaterials.2006.03.049
  • [15] Wei, X., Gong, C., Gou, M., Fu, S., Guo, Q., Shi, S., Luo, F., Guo, G., Qiu, L., Qian, Z. Biodegradable poly (ɛ-caprolactone)–poly (ethylene glycol) copolymers as drug delivery system. International Journal of Pharmaceutics. 2009; 381(1): 1-18. https://doi.org/10.1016/j.ijpharm.2009.07.033
  • [16] Yamamoto, M., Ikada, Y., & Tabata, Y. Controlled release of growth factors based on biodegradation of gelatin hydrogel. J Biomater Sci Polym Ed. 2001; 12(1): 77-88. https://doi.org/10.1163/156856201744461
  • [17] Tangpasuthadol, V., Pongchaisirikul, N., & Hoven, V. P. Surface modification of chitosan films. Effects of hydrophobicity on protein adsorption. Carbohydr Res. 2003; 338(9): 937-942. https://doi.org/10.1016/s0008-6215(03)00038-7
  • [18] Wilsonjr, O., & Hull, J. Surface modification of nanophased hydroxyapatite with chitosan Materials. Sci. Eng. C. 2008; 28: 434-437. https://doi.org/10.1016/j.msec.2007.04.005
  • [19] Badran, M. M., Mady, M. M., Ghannam, M. M., & Shakeel, F. Preparation and characterization of polymeric nanoparticles surface modified with chitosan for target treatment of colorectal cancer. Int J Biol Macromol. 2017; 95: 643-649. https://doi.org/10.1016/j.ijbiomac.2016.11.098
  • [20] Nasra, M. M., Khiri, H. M., Hazzah, H. A., & Abdallah, O. Y. Formulation, in-vitro characterization and clinical evaluation of curcumin in-situ gel for treatment of periodontitis. Drug Delivery. 2017; 24(1): 133-142. https://doi.org/10.1080/10717544.2016.1233591
  • [21] Beg, S., Dhiman, S., Sharma, T., Jain, A., Sharma, R. K., Jain, A., & Singh, B. Stimuli Responsive In Situ Gelling Systems Loaded with PLGA Nanoparticles of Moxifloxacin Hydrochloride for Effective Treatment of Periodontitis. AAPS Pharmscitech. 2020; 21(3): 76. https://doi.org/10.1208/s12249-019-1613-7
  • [22] Polat, H. K. In Situ Gels Triggered by Temperature for Ocular Delivery of Dexamethasone and Dexamethasone/ SBE-β-CD Complex. J.Res.Pharm. 2022; 26(4): 873-883. http://dx.doi.org/10.29228/jrp.186
  • [23] Badri, W., Miladi, K., Nazari, Q. A., Fessi, H., & Elaissari, A. Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017; 516: 238-244. https://doi.org/10.1016/j.colsurfa.2016.12.029
  • [24] Tavares, M. R., de Menezes, L. R., Dutra, J. C., Cabral, L. M., & Tavares, M. I. B. Surface-coated polycaprolactone nanoparticles with pharmaceutical application: Structural and molecular mobility evaluation by TD-NMR. Polymer Testing. 2017; 60: 39-48. https://doi.org/10.1016/j.polymertesting.2017.01.032
  • [25] Varan, C., & Bilensoy, E. Cationic PEGylated polycaprolactone nanoparticles carrying post-operation docetaxel for glioma treatment. Beilstein J Nanotechnol. 2017; 8(1): 1446-1456. https://doi.org/10.3762/bjnano.8.144
  • [26] Gaumet, M., Vargas, A., Gurny, R., & Delie, F. Nanoparticles for drug delivery: the need for precision in reporting particle size parameters. Eur J Pharm Biopharm. 2008; 69(1): 1-9. https://doi.org/10.1016/j.ejpb.2007.08.001
  • [27] Longmire, M., Choyke, P. L., & Kobayashi, H. Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine. 2008; 3(5): 703-717. https://doi.org/10.2217/17435889.3.5.703
  • [28] Sukhanova, A., Bozrova, S., Sokolov, P., Berestovoy, M., Karaulov, A., & Nabiev, I. Dependence of Nanoparticle Toxicity on Their Physical and Chemical Properties. Nanoscale Research Letters. 2018; 13(1): 1-21. https://doi.org/10.1186/s11671-018-2457-x
  • [29] Chorny, M., Fishbein, I., Danenberg, H. D., & Golomb, G. Lipophilic drug loaded nanospheres prepared by nanoprecipitation: effect of formulation variables on size, drug recovery and release kinetics. J Control Release. 2002; 83(3): 389-400. https://doi.org/10.1016/s0168-3659(02)00211-0
  • [30] Miladi, K., Sfar, S., Fessi, H., & Elaissari, A. Encapsulation of alendronate sodium by nanoprecipitation and double emulsion: From preparation to in vitro studies. Industrial Crops and Products. 2015; 72: 24-33. https://doi.org/10.1016/j.indcrop.2015.01.079
  • [31] Colmenares Roldán, G. J., Agudelo Gomez, L. M., Carlos Cornelio, J. A., Rodriguez, L. F., Pinal, R., & Hoyos Palacio, L. M. Production of polycaprolactone nanoparticles with low polydispersity index in a tubular recirculating system by using a multifactorial design of experiments. Journal of Nanoparticle Research. 2018; 20(3): 1-12. https://doi.org/10.1007/s11051-018-4168-8
  • [32] Rasmussen, M. K., Pedersen, J. N., & Marie, R. Size and surface charge characterization of nanoparticles with a salt gradient. Nat Commun. 2020; 11(1): 2337. https://doi.org/10.1038/s41467-020-15889-3
  • [33] Jo, D. H., Kim, J. H., Lee, T. G., & Kim, J. H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine. 2015; 11(7): 1603-1611. https://doi.org/10.1016/j.nano.2015.04.015
  • [34] Yang, S. C., Ge, H. X., Hu, Y., Jiang, X. Q., & Yang, C. Z. Formation of positively charged poly(butyl cyanoacrylate) nanoparticles stabilized with chitosan. Colloid and Polymer Science. 2000; 278(4): 285-292. https://doi.org/10.1007/s003960050516
  • [35] Budhian, A., Siegel, S. J., & Winey, K. I. Haloperidol-loaded PLGA nanoparticles: systematic study of particle size and drug content. Int J Pharm. 2007; 336(2): 367-375. https://doi.org/10.1016/j.ijpharm.2006.11.061
  • [36] Mikusova, V., & Mikus, P. Advances in Chitosan-Based Nanoparticles for Drug Delivery. Int J Mol Sci. 2021; 22(17): 9652. https://doi.org/10.3390/ijms22179652
  • [37] Varan, G., Benito, J. M., Mellet, C. O., & Bilensoy, E. Development of polycationic amphiphilic cyclodextrin nanoparticles for anticancer drug delivery. Beilstein J Nanotechnol. 2017; 8(1): 1457-1468. https://doi.org/10.3762/bjnano.8.145
  • [38] Nagarwal, R. C., Kumar, R., & Pandit, J. K. Chitosan coated sodium alginate-chitosan nanoparticles loaded with 5-FU for ocular delivery: in vitro characterization and in vivo study in rabbit eye. Eur J Pharm Sci. 2012; 47(4): 678-685. https://doi.org/10.1016/j.ejps.2012.08.008
  • [39] Permana, A. D., Utami, R. N., Layadi, P., Himawan, A., Juniarti, N., Anjani, Q. K., Utomo, E., Mardikasari, S. A., Arjuna, A., Donnelly, R. F. Thermosensitive and mucoadhesive in situ ocular gel for effective local delivery and antifungal activity of itraconazole nanocrystal in the treatment of fungal keratitis. Int J Pharm. 2021; 602: 120623. https://doi.org/10.1016/j.ijpharm.2021.120623
  • [40] Reed, K. L., Malamed, S. F., & Fonner, A. M. Local anesthesia part 2: technical considerations. Anesth Prog. 2012; 59(3): 127-136. https://doi.org/10.2344/0003-3006-59.3.127
  • [41] Du, L., Tong, L., Jin, Y., Jia, J., Liu, Y., Su, C., Yu, S., Li, X. A multifunctional in situ-forming hydrogel for wound healing. Wound Repair Regen. 2012; 20(6): 904-910. https://doi.org/10.1111/j.1524-475X.2012.00848.x
  • [42] Balasingam, R., Khan, A., & Thinakaran, R. Formulation of in Situ Gelling System for Ophthalmic Delivery of Erythromycin. Int J Students’ Res Technol Manag. 2017; 5(3): 01-08.
  • [43] Wanka, G., Hoffmann, H., & Ulbricht, W. Phase-Diagrams and Aggregation Behavior of Poly(Oxyethylene)-Poly(Oxypropylene)-Poly(Oxyethylene) Triblock Copolymers in Aqueous-Solutions. Macromolecules. 1994; 27(15): 4145-4159. https://doi.org/10.1021/ma00093a016
  • [44] El-Enin, A. A., & El-Feky, G. Formulation and evaluation of in-situ gelling tenoxicam liquid suppositories. J. of Life Medicine. 2013; (1): 2
  • [45] Abd Elhady, S. S., Mortada, N. D., Awad, G. A., & Zaki, N. M. Development of in situ gelling and muco adhesive mebeverine hydrochloride solution for rectal administration. Saudi Pharmaceutical Journal. 2003; 11.
  • [46] Morsi, N., Ghorab, D., Refai, H., & Teba, H. Ketoroloac tromethamine loaded nanodispersion incorporated into thermosensitive in situ gel for prolonged ocular delivery. International Journal of Pharmaceutics. 2016; 506(1-2): 57-67. https://doi.org/10.1016/j.ijpharm.2016.04.021
  • [47] Zhang, Y., Huo, M., Zhou, J., Zou, A., Li, W., Yao, C., & Xie, S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010; 12(3): 263-271. https://doi.org/10.1208/s12248-010-9185-1
  • [48] Patil, A. Preparation, characterization and toxicity evaluation of a novel sustained release delivery system for a hydrogen sulfide donor-GYY 4137. 2016; Creighton University.
  • [49] Fathalla, Z. M. A., Vangala, A., Longman, M., Khaled, K. A., Hussein, A. K., El-Garhy, O. H., & Alany, R. G. Poloxamer-based thermoresponsive ketorolac tromethamine in situ gel preparations: Design, characterisation, toxicity and transcorneal permeation studies. European Journal of Pharmaceutics and Biopharmaceutics. 2017; 114: 119-134. https://doi.org/10.1016/j.ejpb.2017.01.008
  • [50] Laddha, U. D., & Kshirsagar, S. J. Formulation of nanoparticles loaded in situ gel for treatment of dry eye disease: In vitro, ex vivo and in vivo evidences. Journal of Drug Delivery Science and Technology. 2021; 61: 102112. https://doi.org/10.1016/j.jddst.2020.102112
  • [51] Chu, K., Chen, L., Xu, W., Li, H., Zhang, Y., Xie, W., & Zheng, J. Preparation of a paeonol-containing temperature-sensitive in situ gel and its preliminary efficacy on allergic rhinitis. Int J Mol Sci. 2013; 14(3): 6499-6515. https://doi.org/10.3390/ijms14036499
  • [52] Munot, N. M., Kishore, G., & Mithila, K. Development and evaluation of biodegradable microspheres embedded in in situ gel for controlled delivery of hydrophilic drug for treating oral infections: In vitro and in vivo studies. Asian Journal of Pharmaceutics (AJP). 2014; 8(3). https://doi.org/10.22377/ajp.v8i3.358
  • [53] Yang, H., Li, J., Patel, S. K., Palmer, K. E., Devlin, B., & Rohan, L. C. Design of Poly(lactic-co-glycolic Acid) (PLGA) Nanoparticles for Vaginal Co-Delivery of Griffithsin and Dapivirine and Their Synergistic Effect for HIV Prophylaxis. Pharmaceutics. 2019; 11(4): 184. https://doi.org/10.3390/pharmaceutics11040184
  • [54] Ozturk, A. A., Yenilmez, E., & Ozarda, M. G. Clarithromycin-Loaded Poly (Lactic-co-glycolic Acid) (PLGA) Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Surface Modification with Chitosan on Formulation, Nanoparticle Characterization and Antibacterial Effects. Polymers (Basel). 2019; 11(10): 1632. https://doi.org/10.3390/polym11101632
  • [55] Rehman, M., Ihsan, A., Madni, A., Bajwa, S. Z., Shi, D., Webster, T. J., & Khan, W. S. Solid lipid nanoparticles for thermoresponsive targeting: evidence from spectrophotometry, electrochemical, and cytotoxicity studies. Int J Nanomedicine. 2007; 12: 8325-8336. https://doi.org/10.2147/IJN.S147506
  • [56] Papadopoulou, V., Kosmidis, K., Vlachou, M., & Macheras, P. On the use of the Weibull function for the discernment of drug release mechanisms. Int J Pharm. 2006; 309(1-2): 44-50. https://doi.org/10.1016/j.ijpharm.2005.10.044
  • [57] Ainurofiq, A., & Choiri, S. Drug Release Mechanism of Slightly Soluble Drug from Nanocomposite Matrix Formulated with Zeolite/Hydrotalcite as Drug Carrier. Tropical Journal of Pharmaceutical Research. 2015; 14(7): 1129-1135. https://doi.org/10.4314/tjpr.v14i7.2
  • [58] Unal, S., Aktas, Y., Benito, J. M., & Bilensoy, E. Cyclodextrin nanoparticle bound oral camptothecin for colorectal cancer: Formulation development and optimization. Int J Pharm. 2020; 584: 119468. https://doi.org/10.1016/j.ijpharm.2020.119468
  • [59] Bilensoy, E., Gürkaynak, O., Doğan, A. L., & Hıncal, A. A. Safety and efficacy of amphiphilic ß-cyclodextrin nanoparticles for paclitaxel delivery. International Journal of Pharmaceutics. 2008; 47(1-2): 163-170. https://doi.org/10.1016/j.ijpharm.2007.06.051
  • [60] Polat, H. K. Design of Metformin HCl and Moxifloxacin HCl Loaded Thermosensitive In Situ Gel. J.Res.Pharm. 2022; 26(5): 1230-1241. http://dx.doi.org/10.29228/jrp.215
  • [61] Almeida, H., Amaral, M. H., Lobao, P., & Sousa Lobo, J. M. Applications of poloxamers in ophthalmic pharmaceutical formulations: an overview. Expert Opin Drug Deliv. 2013; 10(9): 1223-1237. https://doi.org/10.1517/17425247.2013.796360
  • [62] Maheshwari, M., Miglani, G., Mali, A., Paradkar, A., Yamamura, S., & Kadam, S. Development of tetracycline-serratiopeptidase-containing periodontal gel: formulation and preliminary clinical study. AAPS Pharmscitech. 2006; 7(3): 76. https://doi.org/10.1208/pt070376
  • [63] Wanka, G., Hoffmann, H., & Ulbricht, W. Macromolecules1994, 27, 4145. [ACS Full Text], Google Scholar. (b) Alexandridis, P.; Hatton, T. A. Colloids Surf. A, 96, 1.
  • [64] Polat, H. K., Kurt, N., Aytekin, E., Akdağ Çaylı, Y., Bozdağ Pehlivan, S., & Çalış, S. Design of Besifloxacin HCl-Loaded Nanostructured Lipid Carriers: In Vitro and Ex Vivo Evaluation. J Ocul Pharmacol Ther. 2022; 38(6): 412–423. https://doi.org/10.1089/jop.2022.0008
  • [65] Puthli, S., & Vavia, P. R. Stability studies of microparticulate system with piroxicam as model drug. AAPS Pharmscitech. 2009; 10(3): 872-880. https://doi.org/10.1208/s12249-009-9280-8
Toplam 65 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Sedat Ünal

Osman Doğan

Heybet Kerem Polat 0000-0001-5006-3091

Yeşim Aktaş

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 5

Kaynak Göster

APA Ünal, S., Doğan, O., Polat, H. K., Aktaş, Y. (2025). Development and characterization of in situ gelling system containing atorvastatin-loaded polycaprolactone nanoparticles for periodontal diseases. Journal of Research in Pharmacy, 27(5), 1951-1973.
AMA Ünal S, Doğan O, Polat HK, Aktaş Y. Development and characterization of in situ gelling system containing atorvastatin-loaded polycaprolactone nanoparticles for periodontal diseases. J. Res. Pharm. Temmuz 2025;27(5):1951-1973.
Chicago Ünal, Sedat, Osman Doğan, Heybet Kerem Polat, ve Yeşim Aktaş. “Development and Characterization of in Situ Gelling System Containing Atorvastatin-Loaded Polycaprolactone Nanoparticles for Periodontal Diseases”. Journal of Research in Pharmacy 27, sy. 5 (Temmuz 2025): 1951-73.
EndNote Ünal S, Doğan O, Polat HK, Aktaş Y (01 Temmuz 2025) Development and characterization of in situ gelling system containing atorvastatin-loaded polycaprolactone nanoparticles for periodontal diseases. Journal of Research in Pharmacy 27 5 1951–1973.
IEEE S. Ünal, O. Doğan, H. K. Polat, ve Y. Aktaş, “Development and characterization of in situ gelling system containing atorvastatin-loaded polycaprolactone nanoparticles for periodontal diseases”, J. Res. Pharm., c. 27, sy. 5, ss. 1951–1973, 2025.
ISNAD Ünal, Sedat vd. “Development and Characterization of in Situ Gelling System Containing Atorvastatin-Loaded Polycaprolactone Nanoparticles for Periodontal Diseases”. Journal of Research in Pharmacy 27/5 (Temmuz 2025), 1951-1973.
JAMA Ünal S, Doğan O, Polat HK, Aktaş Y. Development and characterization of in situ gelling system containing atorvastatin-loaded polycaprolactone nanoparticles for periodontal diseases. J. Res. Pharm. 2025;27:1951–1973.
MLA Ünal, Sedat vd. “Development and Characterization of in Situ Gelling System Containing Atorvastatin-Loaded Polycaprolactone Nanoparticles for Periodontal Diseases”. Journal of Research in Pharmacy, c. 27, sy. 5, 2025, ss. 1951-73.
Vancouver Ünal S, Doğan O, Polat HK, Aktaş Y. Development and characterization of in situ gelling system containing atorvastatin-loaded polycaprolactone nanoparticles for periodontal diseases. J. Res. Pharm. 2025;27(5):1951-73.