Araştırma Makalesi
BibTex RIS Kaynak Göster

Tamarindus indica seed extracts inhibit mouse microsomal 5α-reductase in vitro

Yıl 2023, Cilt: 27 Sayı: 5, 1989 - 1997, 28.06.2025

Öz

Tamarindus indica seeds have important roles in the field of health sciences. The seeds are used in traditional medicine due to their beneficial effects on urologic disorders, including benign prostatic hyperplasia. The present study evaluates the inhibitory activity of T. indica seed extracts against 5α-reductase (5αR). This enzyme is responsible for the conversion of testosterone to dihydrotestosterone, which stimulates prostatic enlargement. Seeds were separately extracted with ethanol, ethyl acetate, and hexane. The inhibitory activity of the extracts was assessed in the presence of testosterone and 5αR from mouse liver. Unchanged testosterone was quantified by high-performance liquid chromatography with photodiode array detector. Inhibition was calculated based on the remaining testosterone and was expressed as dutasteride equivalent 5αR inhibitory activity (DE; μg dutasteride equivalent per mg extract). The most active extract underwent phytocompound profiling by ultra-performance liquid chromatography quadruple time-of-flight mass spectrometric analysis. The results showed that ethyl acetate extract was the most active 5αR inhibitor with a DE value of 153.31 ± 10.60. Fifteen phytocompounds from the classes of tocopherol, fatty acid, phytosterol, saponin, terpenoid, and phenolic compounds were identified, which may be partly responsible for the inhibitory activity of the extract. The findings indicate that T. indica seeds can be a source of 5αR inhibitors.

Kaynakça

  • [1] Roehrborn CG. Pathology of benign prostatic hyperplasia. Int J Impot Res. 2008; Suppl 3(S11-18). https://doi.org/10.1038/ijir.2008.55
  • [2] Lee C, Kozlowski JT, Grayhack JT. Intrinsic and extrinsic factors controlling benign prostatic growth. Prostate. 1997; 31(2): 131-138. https://doi.org/10.1002/(sici)1097-0045(19970501)31:2%3C131::aid-pros9%3E3.0.co;2-q
  • [3] Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E. Prostate volume and growth in testosterone-substituted hypogonadal men are dependent on the CAG repeat polymorphism of the androgen receptor gene: a longitudinal pharmacogenetic study. J Clin Endocrinol Metab. 2003; 88(5): 2049-2054. https://doi.org/10.1210/jc.2002-021947
  • [4] Lee CL, Kuo HC. Pathophysiology of benign prostate enlargement and lower urinary tract symptoms: current concepts. Tzu Chi Med J. 2017; 29(2): 79-83. https://doi.org/10.4103/tcmj.tcmj_20_17
  • [5] Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer. J Cell Biochem. 2006; 99(2): 333-344. https://doi.org/10.1002/jcb.20794
  • [6] Azzouni F, Godoy A, Li Y, Mohler J. The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol. 2012; 530121. https://doi.org/10.1155/2012/530121
  • [7] Chowdhury S, Beitel LK, Lumbroso R, Purisima EO, Paliouras M, Trifiro M. A targeted bivalent androgen receptor binding compound for prostate cancer therapy. Horm Cancer. 2019; 10(1): 24-25. https://doi.org/10.1007/s12672-018-0353-6
  • [8] Wilson JD. The pathogenesis of benign prostatic hyperplasia. Am J Med. 1980; 68(5): 745-756. https://doi.org/10.1016/0002-9343(80)90267-3
  • [9] Imperato-McGinley J, Guerrero L, Gautier T, Peterson RE. Steroid 5alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science. 1974; 184(4170): 1213-1215. https://doi.org/10.1126/science.186.4170.1213
  • [10] Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency. Mole Cell Endocrinol. 2002; 198(1-2): 51-59. https://doi.org/10.1016/s0303-7207(02)00368-4
  • [11] Russell DW, Wilson JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994; 63: 25-61. https://doi.org/10.1146/annurev.bi.63.070194.000325
  • [12] Carson C 3rd, Rittmaster R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology. 2003; 61(4 Suppl 1): 2-7. https://doi.org/10.1016/s0090-4295(03)00045-1
  • [13] Edwards JL. Diagnosis and management of benign prostatic hyperplasia. Am Fam Physician. 2008; 77(10): 1403-1410.
  • [14] Zaid H, Raiyn J, Nasser A, Saad B, Rayan A. Physicochemical properties of natural based products versus synthetic chemicals. Open Nutraceutical J. 2010; 3: 194-202. http://doi.org/10.2174/18763960010030100194
  • [15] Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Yu AI, Mahboob T, Tangpoong J, Nissapatorn V. Recommended medicinal plants as source of natural products. Digital Chin Med. 2018; 1(2): 131-142. https://doi.org/10.1016/S2589-3777(19)30018-7
  • [16] Vadivel V, Pugalenthi M. Evaluation of nutritional value and protein quality of an under-utilized tribal food legume. Indian J Tradit Knwol. 2010. 9(4): 791-797.
  • [17] Alok S, Jain SK, Verma A, Kumar M, Sabharwal M. Pathophysiology of kidney, gallbladder and urinary stones treatment with herbal and allopathic medicine: a review. Asian Pac J Trop Dis. 2013; 3(6): 496-504. https://doi.org/10.1016/S2222-1808(13)60107-3
  • [18] Chika A, Bello SO, Yunusa A, Yahaya AB, Sadiq A. Ethnobotanical survey of medicinal plants used as remedies for benign prostatic hyperplasia in Sokoto North Western Nigeria. Nat J Physiol Pharm Pharmacol. 2022; 12: 511-518. http://doi.org/10.5455/njppp.2022.12.01043202203032022
  • [19] Whorwood CB, Donovan SJ, Wood PJ, Phillips DIW. Regulation of glucocorticoid receptor α and β isoforms and type I 11β-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J Clin Endocrinol Metab. 86(5): 2296-2308. https://doi.org/10.1210/jcem.86.5.7503
  • [20] Lakka NS, Kuppan C. Principles of chromatography method development. In: Boldura OM, Balta C, Awwad S. (Eds). Biochemical Analysis Tools Methods for Bio-Molecules Studies. IntechOpen Limited, United Kingdom, 2019. https://doi.org/10.5772/intechopen.89501
  • [21] Zhu C, Goodall DM, Wren SAC. Elevated temperature HPLC: principles and applications to small molecules and biomolecules. LCGC Asia Pacific. 2005; 8: 48-59.
  • [22] Maehre HK, Dalheim L, Edvisen GK, Elvevoll EO, Jensen IJ. Protein determination-method matters. Foods. 2018; 7: 5. https://doi.org/10.3390/foods7010005
  • [23] Noumi E, Kolaipla B. Prostatic illnesses: epidemiology and treatment with medicinal plants in Maroua (Cameroon). Int J Res Ayurveda Pharm. 2011; 2(3): 822-829.
  • [24] Sudjaroen Y, Haubner R, Wurtele G, Hull WE, Erben G, Spiegelhalder B, Changbumrung S, Bartsch H, Owen RW. Isolation and structure elucidation of phenolic antioxidants from tamarind (Tamarindus indica L.) seeds and pericarp. Food Chem Toxicol. 2005; 43(11): 1673-1682. https://doi.org/10.1016/j.fct.2005.05.013
  • [25] Noreljaleel AEM, Wilhelm A, Bonnet SL. Analysis of commercial proanthocyanidins. Part 6: sulfation of flavan-3-ols catechin and epicatechin, and procyanidin B-3. Molecules. 2020; 25: 4980. https://doi.org/10.3390/molecules25214980
  • [26] Hiipakka RA, Zhang HZ, Dai W, Dai Q, Liao S. Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem Pharmacol. 2002; 63(6): 1165-1176. https://doi.org/10.1016/s0006-2952(02)00848-1
  • [27] Khantam C, Yooin W, Sringarm K, Sommano SR, Jiranusornkul S, Carmona FD, Nimlamool W, Jantrawut P, Rachtanapun P, Ruksiriwanich W. Effect on steroid 5-alpha reductase gene expression of Thai rice bran extracts and molecular dynamics study on SRD5A2. Biology. 2021; 10(4): 319. https://doi.org/10.3390/biology10040319
  • [28] Liu J, Shimizu K, Kondo R. Anti-androgenic activity of fatty acids. Chem Biodivers. 2009; 6(4): 503-512. https://doi.org/10.1002/cbdv.200800125
  • [29] Chaiyana W, Punyoyai C, Somwongin S, Leelapornpisid P, Ingkaninan K, Waranuch N, Srivilai J, Thitipramote N, Wisuitiprot W, Schuster R, Viernstein H, Mueller M. Inhibition of 5α-reductase, IL-6 secretion, and oxidation process of Equisetum debile Roxb. ex Vaucher extract as functional food and nutraceutical ingredients. Nutrients. 2017; 9: 1105. https://doi.org/10.3390/nu9101105
  • [30] Azizi A, Mumin NH, Shafqat N. Phytochemicals with anti 5-alpha-reductase activity: a prospective for prostate cancer treatment. F100Res. 2021; 10: 221. https://doi.org/10.12688/f1000research.51066.3
  • [31] Awad AB, Hartati MS, Fink CS. Phytosterol feeding induces alteration in testosterone metabolism in rat tissues. J Nutr Biochem. 1998; 9(12): 712-717. https://doi.org/10.1016/S0955-2863(98)00076-X
  • [32] Lee HH, Ho CT, Lin JK. Theaflavin-3,3’-digallate and penta-O-galloyl-beta-D-glucose inhibit rat liver microsomal 5alpha-reductase activity and the expression of androgen receptor LNCaP prostate cancer cells. Carcinogenesis. 2004; 25(7): 1109-1118. https://doi.org/10.1093/carcin/bgh106
  • [33] Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972; 48(2): 422-427. https://doi.org/10.1016/0003-2697(72)90094-2
  • [34] Koseki J, Matsumoto T, Matsubara Y, Tsuchiya K, Mizuhara Y, Sekiguchi K, Nishimura H, Watanabe J, Kaneko A, Hattori T, Maemura K, Kase Y. Inhibition of rat 5α-reductase activity and testosterone-induced sebum synthesis in hamster sebocytes by an extract of Quercus acutissima Cortex. Evid Based Complement Alternat Med. 2015; 853846. https://doi.org/10.1155/2015/853846
  • [35] Morikawa T, Luo F, Manse Y, Sugita H, Saeki S, Chaipech S, Pongpiriyadacha Y, Muraoka O, Ninomiya K. Geranylated coumarins from Thai medicinal plant Mammea siamensis with testosterone 5α-reductase inhibitory activity. Front Chem. 2020; 8: 199. https://doi.org/10.3389/fchem.2020.00199
  • [36] Kumar T, Chaiyasut C, Rungseevijitprapa W, Suttajit M. Screening of steroid 5α-reductase inhibitory activity and total phenolic content of Thai plants. J Med Plant Res. 2011; 5(7): 1265-1271.
Yıl 2023, Cilt: 27 Sayı: 5, 1989 - 1997, 28.06.2025

Öz

Kaynakça

  • [1] Roehrborn CG. Pathology of benign prostatic hyperplasia. Int J Impot Res. 2008; Suppl 3(S11-18). https://doi.org/10.1038/ijir.2008.55
  • [2] Lee C, Kozlowski JT, Grayhack JT. Intrinsic and extrinsic factors controlling benign prostatic growth. Prostate. 1997; 31(2): 131-138. https://doi.org/10.1002/(sici)1097-0045(19970501)31:2%3C131::aid-pros9%3E3.0.co;2-q
  • [3] Zitzmann M, Depenbusch M, Gromoll J, Nieschlag E. Prostate volume and growth in testosterone-substituted hypogonadal men are dependent on the CAG repeat polymorphism of the androgen receptor gene: a longitudinal pharmacogenetic study. J Clin Endocrinol Metab. 2003; 88(5): 2049-2054. https://doi.org/10.1210/jc.2002-021947
  • [4] Lee CL, Kuo HC. Pathophysiology of benign prostate enlargement and lower urinary tract symptoms: current concepts. Tzu Chi Med J. 2017; 29(2): 79-83. https://doi.org/10.4103/tcmj.tcmj_20_17
  • [5] Dehm SM, Tindall DJ. Molecular regulation of androgen action in prostate cancer. J Cell Biochem. 2006; 99(2): 333-344. https://doi.org/10.1002/jcb.20794
  • [6] Azzouni F, Godoy A, Li Y, Mohler J. The 5 alpha-reductase isozyme family: a review of basic biology and their role in human diseases. Adv Urol. 2012; 530121. https://doi.org/10.1155/2012/530121
  • [7] Chowdhury S, Beitel LK, Lumbroso R, Purisima EO, Paliouras M, Trifiro M. A targeted bivalent androgen receptor binding compound for prostate cancer therapy. Horm Cancer. 2019; 10(1): 24-25. https://doi.org/10.1007/s12672-018-0353-6
  • [8] Wilson JD. The pathogenesis of benign prostatic hyperplasia. Am J Med. 1980; 68(5): 745-756. https://doi.org/10.1016/0002-9343(80)90267-3
  • [9] Imperato-McGinley J, Guerrero L, Gautier T, Peterson RE. Steroid 5alpha-reductase deficiency in man: an inherited form of male pseudohermaphroditism. Science. 1974; 184(4170): 1213-1215. https://doi.org/10.1126/science.186.4170.1213
  • [10] Imperato-McGinley J, Zhu YS. Androgens and male physiology the syndrome of 5alpha-reductase-2 deficiency. Mole Cell Endocrinol. 2002; 198(1-2): 51-59. https://doi.org/10.1016/s0303-7207(02)00368-4
  • [11] Russell DW, Wilson JD. Steroid 5 alpha-reductase: two genes/two enzymes. Annu Rev Biochem. 1994; 63: 25-61. https://doi.org/10.1146/annurev.bi.63.070194.000325
  • [12] Carson C 3rd, Rittmaster R. The role of dihydrotestosterone in benign prostatic hyperplasia. Urology. 2003; 61(4 Suppl 1): 2-7. https://doi.org/10.1016/s0090-4295(03)00045-1
  • [13] Edwards JL. Diagnosis and management of benign prostatic hyperplasia. Am Fam Physician. 2008; 77(10): 1403-1410.
  • [14] Zaid H, Raiyn J, Nasser A, Saad B, Rayan A. Physicochemical properties of natural based products versus synthetic chemicals. Open Nutraceutical J. 2010; 3: 194-202. http://doi.org/10.2174/18763960010030100194
  • [15] Boy HIA, Rutilla AJH, Santos KA, Ty AMT, Yu AI, Mahboob T, Tangpoong J, Nissapatorn V. Recommended medicinal plants as source of natural products. Digital Chin Med. 2018; 1(2): 131-142. https://doi.org/10.1016/S2589-3777(19)30018-7
  • [16] Vadivel V, Pugalenthi M. Evaluation of nutritional value and protein quality of an under-utilized tribal food legume. Indian J Tradit Knwol. 2010. 9(4): 791-797.
  • [17] Alok S, Jain SK, Verma A, Kumar M, Sabharwal M. Pathophysiology of kidney, gallbladder and urinary stones treatment with herbal and allopathic medicine: a review. Asian Pac J Trop Dis. 2013; 3(6): 496-504. https://doi.org/10.1016/S2222-1808(13)60107-3
  • [18] Chika A, Bello SO, Yunusa A, Yahaya AB, Sadiq A. Ethnobotanical survey of medicinal plants used as remedies for benign prostatic hyperplasia in Sokoto North Western Nigeria. Nat J Physiol Pharm Pharmacol. 2022; 12: 511-518. http://doi.org/10.5455/njppp.2022.12.01043202203032022
  • [19] Whorwood CB, Donovan SJ, Wood PJ, Phillips DIW. Regulation of glucocorticoid receptor α and β isoforms and type I 11β-hydroxysteroid dehydrogenase expression in human skeletal muscle cells: a key role in the pathogenesis of insulin resistance? J Clin Endocrinol Metab. 86(5): 2296-2308. https://doi.org/10.1210/jcem.86.5.7503
  • [20] Lakka NS, Kuppan C. Principles of chromatography method development. In: Boldura OM, Balta C, Awwad S. (Eds). Biochemical Analysis Tools Methods for Bio-Molecules Studies. IntechOpen Limited, United Kingdom, 2019. https://doi.org/10.5772/intechopen.89501
  • [21] Zhu C, Goodall DM, Wren SAC. Elevated temperature HPLC: principles and applications to small molecules and biomolecules. LCGC Asia Pacific. 2005; 8: 48-59.
  • [22] Maehre HK, Dalheim L, Edvisen GK, Elvevoll EO, Jensen IJ. Protein determination-method matters. Foods. 2018; 7: 5. https://doi.org/10.3390/foods7010005
  • [23] Noumi E, Kolaipla B. Prostatic illnesses: epidemiology and treatment with medicinal plants in Maroua (Cameroon). Int J Res Ayurveda Pharm. 2011; 2(3): 822-829.
  • [24] Sudjaroen Y, Haubner R, Wurtele G, Hull WE, Erben G, Spiegelhalder B, Changbumrung S, Bartsch H, Owen RW. Isolation and structure elucidation of phenolic antioxidants from tamarind (Tamarindus indica L.) seeds and pericarp. Food Chem Toxicol. 2005; 43(11): 1673-1682. https://doi.org/10.1016/j.fct.2005.05.013
  • [25] Noreljaleel AEM, Wilhelm A, Bonnet SL. Analysis of commercial proanthocyanidins. Part 6: sulfation of flavan-3-ols catechin and epicatechin, and procyanidin B-3. Molecules. 2020; 25: 4980. https://doi.org/10.3390/molecules25214980
  • [26] Hiipakka RA, Zhang HZ, Dai W, Dai Q, Liao S. Structure-activity relationships for inhibition of human 5alpha-reductases by polyphenols. Biochem Pharmacol. 2002; 63(6): 1165-1176. https://doi.org/10.1016/s0006-2952(02)00848-1
  • [27] Khantam C, Yooin W, Sringarm K, Sommano SR, Jiranusornkul S, Carmona FD, Nimlamool W, Jantrawut P, Rachtanapun P, Ruksiriwanich W. Effect on steroid 5-alpha reductase gene expression of Thai rice bran extracts and molecular dynamics study on SRD5A2. Biology. 2021; 10(4): 319. https://doi.org/10.3390/biology10040319
  • [28] Liu J, Shimizu K, Kondo R. Anti-androgenic activity of fatty acids. Chem Biodivers. 2009; 6(4): 503-512. https://doi.org/10.1002/cbdv.200800125
  • [29] Chaiyana W, Punyoyai C, Somwongin S, Leelapornpisid P, Ingkaninan K, Waranuch N, Srivilai J, Thitipramote N, Wisuitiprot W, Schuster R, Viernstein H, Mueller M. Inhibition of 5α-reductase, IL-6 secretion, and oxidation process of Equisetum debile Roxb. ex Vaucher extract as functional food and nutraceutical ingredients. Nutrients. 2017; 9: 1105. https://doi.org/10.3390/nu9101105
  • [30] Azizi A, Mumin NH, Shafqat N. Phytochemicals with anti 5-alpha-reductase activity: a prospective for prostate cancer treatment. F100Res. 2021; 10: 221. https://doi.org/10.12688/f1000research.51066.3
  • [31] Awad AB, Hartati MS, Fink CS. Phytosterol feeding induces alteration in testosterone metabolism in rat tissues. J Nutr Biochem. 1998; 9(12): 712-717. https://doi.org/10.1016/S0955-2863(98)00076-X
  • [32] Lee HH, Ho CT, Lin JK. Theaflavin-3,3’-digallate and penta-O-galloyl-beta-D-glucose inhibit rat liver microsomal 5alpha-reductase activity and the expression of androgen receptor LNCaP prostate cancer cells. Carcinogenesis. 2004; 25(7): 1109-1118. https://doi.org/10.1093/carcin/bgh106
  • [33] Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem. 1972; 48(2): 422-427. https://doi.org/10.1016/0003-2697(72)90094-2
  • [34] Koseki J, Matsumoto T, Matsubara Y, Tsuchiya K, Mizuhara Y, Sekiguchi K, Nishimura H, Watanabe J, Kaneko A, Hattori T, Maemura K, Kase Y. Inhibition of rat 5α-reductase activity and testosterone-induced sebum synthesis in hamster sebocytes by an extract of Quercus acutissima Cortex. Evid Based Complement Alternat Med. 2015; 853846. https://doi.org/10.1155/2015/853846
  • [35] Morikawa T, Luo F, Manse Y, Sugita H, Saeki S, Chaipech S, Pongpiriyadacha Y, Muraoka O, Ninomiya K. Geranylated coumarins from Thai medicinal plant Mammea siamensis with testosterone 5α-reductase inhibitory activity. Front Chem. 2020; 8: 199. https://doi.org/10.3389/fchem.2020.00199
  • [36] Kumar T, Chaiyasut C, Rungseevijitprapa W, Suttajit M. Screening of steroid 5α-reductase inhibitory activity and total phenolic content of Thai plants. J Med Plant Res. 2011; 5(7): 1265-1271.
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Eczacılık ve İlaç Bilimleri (Diğer)
Bölüm Articles
Yazarlar

Gerwin Louis Tapan Dela Torre 0000-0002-0963-9199

Richelle Ann Mallapre Manalo 0000-0001-5440-3102

Erna Custodio Arollado 0000-0003-1997-4609

Yayımlanma Tarihi 28 Haziran 2025
Yayımlandığı Sayı Yıl 2023 Cilt: 27 Sayı: 5

Kaynak Göster

APA Dela Torre, G. L. T., Manalo, R. A. M., & Arollado, E. C. (2025). Tamarindus indica seed extracts inhibit mouse microsomal 5α-reductase in vitro. Journal of Research in Pharmacy, 27(5), 1989-1997.
AMA Dela Torre GLT, Manalo RAM, Arollado EC. Tamarindus indica seed extracts inhibit mouse microsomal 5α-reductase in vitro. J. Res. Pharm. Temmuz 2025;27(5):1989-1997.
Chicago Dela Torre, Gerwin Louis Tapan, Richelle Ann Mallapre Manalo, ve Erna Custodio Arollado. “Tamarindus Indica Seed Extracts Inhibit Mouse Microsomal 5α-Reductase in Vitro”. Journal of Research in Pharmacy 27, sy. 5 (Temmuz 2025): 1989-97.
EndNote Dela Torre GLT, Manalo RAM, Arollado EC (01 Temmuz 2025) Tamarindus indica seed extracts inhibit mouse microsomal 5α-reductase in vitro. Journal of Research in Pharmacy 27 5 1989–1997.
IEEE G. L. T. Dela Torre, R. A. M. Manalo, ve E. C. Arollado, “Tamarindus indica seed extracts inhibit mouse microsomal 5α-reductase in vitro”, J. Res. Pharm., c. 27, sy. 5, ss. 1989–1997, 2025.
ISNAD Dela Torre, Gerwin Louis Tapan vd. “Tamarindus Indica Seed Extracts Inhibit Mouse Microsomal 5α-Reductase in Vitro”. Journal of Research in Pharmacy 27/5 (Temmuz 2025), 1989-1997.
JAMA Dela Torre GLT, Manalo RAM, Arollado EC. Tamarindus indica seed extracts inhibit mouse microsomal 5α-reductase in vitro. J. Res. Pharm. 2025;27:1989–1997.
MLA Dela Torre, Gerwin Louis Tapan vd. “Tamarindus Indica Seed Extracts Inhibit Mouse Microsomal 5α-Reductase in Vitro”. Journal of Research in Pharmacy, c. 27, sy. 5, 2025, ss. 1989-97.
Vancouver Dela Torre GLT, Manalo RAM, Arollado EC. Tamarindus indica seed extracts inhibit mouse microsomal 5α-reductase in vitro. J. Res. Pharm. 2025;27(5):1989-97.